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Motivation: Internet Advertising (Again)

Old Ad Serving Policy

(We have data!)

New (Better?) Policy

(No data)

Can we determine the 

value of our new policy 

using only our old data?



Policy evaluation
Definition: The problem of evaluating a new strategy for behavior, or policy, 

using only observations collected during the execution of another policy.

How can we evaluate the value of a new policy if we have no 

control over the available data?



Exploration Scavenging!
• Principled method for policy evaluation when the following (very) 

restrictive assumption holds true

The original exploration policy does not depend on the current input.

• Other assumption: Each action is chosen sufficiently often.

• Given this assumption, the technique can be used to accurately estimate 

the value of a new policy.
o Bonus: Can be used even if the exploration policy is deterministic.

o Bonus: A trick allows us to evaluate between multiple policies, even if they depend on 

the input. More on this later.



Contextual Bandit Setting (Again)
• Recall: k-armed bandit.

o Formalization of exploration vs exploitation 

dilemma by autonomous agents.

• Recall: Contextual bandit
o Generalization of standard k-armed bandit.

o Allows agent to first observe side information or 

context before choosing an arm.

• In Advertisement:
o Choose ad or set of ads to display.

o Contextual information about user and 

page/article.

o Reward in the form of CTR.

Context + Our Old Friend The Gambling Octopus



Why Some Other Models Fail
• Recall: Want to find a new policy maximizing our expected reward given 

a previous dataset. This is a “warm start” problem

• Supervised learning using a regressor: Generalizes poorly because it 

may include choices not in the data. Distribution mismatch.

• Standard bandit: Curse of dimensionality, because it requires condition 

on the context.

• Contextual bandit: Requires interaction or probability across the actions 

of the policy.

Exploration Scavenging provides a solution given our independence 

assumption.



Why Should I Care? (aka. Why Businesses Care)
• Want to evaluate new method without incurring the risk and cost of 

actually implementing this new method/policy.

• Existing logs containing huge amounts of historical data based on 

existing policies.

• It makes economical sense to, if possible, use these logs.

• It makes economical sense to, if possible, not risk the loss of testing out 

a new potentially bad policy.

• Online ad placement is once again a good example.



Relaxing Assumptions for an Unbiased Estimator

Literature Timeline

2008 2010 2011 2015

Exploration Scavenging

(Strehl & Wortman)

Learning From Logged Implicit Information 

Data (Strehl et al.)

Doubly Robust Policy 

Evaluation & Learning

(Langford & Li)

Counterfactual Risk Minimization

(Swaminathan & Joachims)

Solving Variance Problem
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Contextual Bandit Model
• Input Space: 𝒳

• Action Set: 𝒜

• Distribution of (input, reward) tuples: 𝑥, റ𝑟 ~𝐷

• Where 𝑥 ∈ 𝒳 and റ𝑟 ∈ 0,1 𝑘

• Note: Non-contextual bandit is simply the case where 𝒳 = 1



Contextual Bandit Model
• Events occur on a round by round basis where at each round 𝑡:

o The world draws 𝑥, റ𝑟 ~𝐷 and announces 𝑥𝑡
o The algorithm chooses an action 𝑎𝑡 ∈ 𝒜

o The world announces the reward 𝑟𝑡,𝑎𝑡of action 𝑎𝑡

• The algorithm does not learn what reward it would have received had it 

chosen some other action.



• In the general bandit setting the goal is to maximize the sum of rewards     

over the rounds of interaction.

• However, our focus here is the subgoal of policy evaluation.

• Explicitly, given a data set 𝑆 ∈ 𝒳 x 𝒜 x 0,1 𝑇 which is generated by 

following some fixed policy 𝜋 for 𝑇 steps.

• Given a different policy ℎ ∶ 𝒳 → 𝒜 we want to estimate the value of policy 

ℎ, where value is defined as

𝑉𝐷 ℎ = 𝐸 𝑥, റ𝑟 ~𝐷[𝑟ℎ(𝑥)]

Goal
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Impossibility Results
• Policy evaluation not possible when the exploration policy 𝜋 chooses 

some action 𝑎 with zero probability

Natural Question: Is it possible to have an evaluation procedure as long as 𝜋

chooses each action sufficiently often?

• If 𝜋 depends on the current input, there are cases when new policies ℎ

cannot be evaluated, even if each action is chosen frequently by 𝜋

• If input-dependent exploration policies are disallowed, policy evaluation 

becomes possible



Proving that Evaluation is not possible in general

Theorem 1: There exist contextual bandit problems 𝐷 and 𝐷′ with 𝑘 = 2

actions, a hypothesis ℎ, and a policy 𝜋 dependent on the current observation 

𝑥𝑡 with each action visited with probability ½, such that the observations of 𝜋

on 𝐷 are statistically indistinguishable from observations of 𝜋 on 𝐷′, yet 

𝑉𝐷 ℎ − 𝑉𝐷′ ℎ = 1



Proof of Theorem 1

Here, 𝑉𝐷 ℎ = 0, while 𝑉𝐷′ ℎ = 1, 

but observations collected using 

exploration policy 𝜋 are 

indistinguishable for 𝐷 and 𝐷′

Proof: The proof is by construction. Suppose 𝑥𝑡 takes on the values 0 and 1, 
each with probability ½ under both 𝐷 and 𝐷′. Let 𝜋 𝑥 = 𝑥 be the exploration 
policy, and let ℎ 𝑥 = 1 − 𝑥 be the policy we wish to evaluate. Suppose that 
rewards are deterministic given 𝑥𝑡.

Under 𝑫 Under 𝑫′

𝑟𝑡,0 𝑟𝑡,1 𝑟𝑡,0 𝑟𝑡,1

𝑥𝑡 = 0 0 0 0 1

𝑥𝑡 = 1 0 1 1 1



Techniques for Policy Evaluation
• We have established that policy evaluation can be impossible in general

• Cannot perform policy evaluation when –
o The exploration ploicy 𝜋 depends on the current input

o 𝜋 fails to choose each action sufficiently often

Next Question: Can policy evaluation be done when this is not the case?

• We now discuss techniques for policy evaluation under these special 

circumstances



Exact Theoretical Estimator for the Value
Theorem 2: For any contextual bandit distribution 𝐷 over 𝑥, റ𝑟 , any policy ℎ, 

any exploration policy 𝜋 such that 

• For each action 𝑎, there is a constant 𝑇𝑎 > 0 for which 𝑡 ∶ 𝑎𝑡 = 𝑎 = 𝑇𝑎 with 

probability 1

• 𝜋 chooses 𝑎𝑡 independent of 𝑥𝑡, 

𝑉𝐷 ℎ = 𝐸 𝑥𝑡,𝑟𝑡 ~𝐷
𝑇 ෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡



Proof of Theorem 2
Proof: 𝐸 𝑥𝑡,𝑟𝑡 ~𝐷𝑇 σ𝑡=1

𝑇 𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 =𝑎𝑡

𝑇𝑎𝑡

Reordering terms in the summation, we can write 𝑡 = 1,… , 𝑇 = U𝑎∈{1,…,𝑘}{𝑡 ∶ 𝑎𝑡 = 𝑎}

= 𝐸 𝑥𝑡,𝑟𝑡 ~𝐷
𝑇 σ𝑎=1

𝑘 σ{𝑡∶𝑎𝑡 =𝑎}
𝑟𝑡,𝑎 𝐼 ℎ 𝑥𝑡 =𝑎

𝑇𝑎

By linearity of expectation,

=σ𝑎=1
𝑘 𝐸 𝑥𝑡,𝑟𝑡 ~𝐷

𝑇 σ{𝑡∶𝑎𝑡 =𝑎}
𝑟𝑡,𝑎 𝐼 ℎ 𝑥𝑡 =𝑎

𝑇𝑎

The exploration policy 𝜋 chooses 𝑎𝑡 independent of 𝑥𝑡, and 𝑇𝑎 is fixed. So, 
𝑟𝑡,𝑎 𝐼 ℎ 𝑥𝑡 =𝑎

𝑇𝑎
is identically 

distributed for all 𝑡 such that 𝑎𝑡 = 𝑎. 



Proof of Theorem 2
So, we get,

𝐸 𝑥𝑡,𝑟𝑡 ~𝐷
𝑇 σ𝑡=1

𝑇 𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 =𝑎𝑡

𝑇𝑎𝑡

=σ𝑎=1
𝑘 𝐸 𝑥𝑡,𝑟𝑡 ~𝐷

𝑇 σ{𝑡∶𝑎𝑡 =𝑎}
𝑟𝑡,𝑎 𝐼 ℎ 𝑥𝑡 =𝑎

𝑇𝑎

=σ𝑎=1
𝑘 𝐸(𝑥, റ𝑟)~𝐷 𝑇𝑎

𝑟𝑎 𝐼 ℎ 𝑥 =𝑎

𝑇𝑎

By linearity of expectation again,

=𝐸(𝑥, റ𝑟)~𝐷 σ𝑎=1
𝑘 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎

=𝑉𝐷(ℎ)



The Practical Estimator
Theorem 3: For every contextual bandit distribution 𝐷 over 𝑥, റ𝑟 with 

rewards 𝑟𝑎 ∈ [0,1], for every sequence of 𝑇 actions 𝑎𝑡 chosen by an exploration 

policy 𝜋 that may be a function of history but does not depend on 𝑥𝑡, for every 

hypothesis ℎ, and for any 𝛿 ∈ (0,1), with probability 1 − 𝛿,

𝑉𝐷 ℎ −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡
≤ ෍

𝑎=1

𝑘
2ln 2𝑘𝑇/𝛿

𝑇𝑎



Proof of Theorem 3
Proof: 𝑉𝐷 ℎ = 𝐸(𝑥, റ𝑟)~𝐷 σ𝑎=1

𝑘 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎

𝑉𝐷 ℎ −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡
= 𝐸 𝑥, റ𝑟 ~𝐷 ෍

𝑎=1

𝑘

𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡

By linearity of Expectation,

= ෍

𝑎=1

𝑘

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡

Fix an action 𝑎. Let 𝑡𝑖 denote the 𝑖th time step that action 𝑎 was taken, with 𝑖 ranging from 1 to 𝑇𝑎.

Again, we can use the fact that 𝑡 = 1, … , 𝑇 = U𝑎∈{1,…,𝑘} 𝑡 ∶ 𝑎𝑡 = 𝑎 = U𝑎∈{1,…,𝑘} 𝑡𝑖 ∶ 𝑖 ∈ {1,… , 𝑇𝑎} to get



Proof of Theorem 3

෍

𝑎=1

𝑘

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡

= ෍

𝑎=1

𝑘

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑇𝑎
෍

𝑖=1

𝑇𝑎

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎

From the triangle inequality, we get,

≤ ෍

𝑎=1

𝑘

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑇𝑎
෍

𝑖=1

𝑇𝑎

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎

R.H.S. of original bound = σ𝑎=1
𝑘 2ln 2𝑘𝑇/𝛿

𝑇𝑎



Proof of Theorem 3
So, if we are able to prove for all actions 𝑎 ∈ {1,… , 𝑘} that, with probability at most 𝛿/𝑘,

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑇𝑎
෍

𝑖=1

𝑇𝑎

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 >
2ln 2𝑘𝑇/𝛿

𝑇𝑎

we can use the union bound to show that with probability 1 − σ𝑎∈{1,…,𝑘}
𝛿

𝑘
= 1 − 𝛿,

𝑉𝐷 ℎ −෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡
≤ ෍

𝑎=1

𝑘

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑇𝑎
෍

𝑖=1

𝑇𝑎

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎

≤ ෍

𝑎=1

𝑘
2ln 2𝑘𝑇/𝛿

𝑇𝑎



Proof of Theorem 3
Fix an action 𝑎. Let us define for 𝑖 ∈ {1,…𝑇},

𝑍𝑖 = ൝
𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 − 𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 , 𝑖𝑓 𝑖 ≤ 𝑇𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that 𝑍𝑖 ∈ [−1, 1] and 𝐸 𝑍𝑖 = 0. 

Fix 𝑡 ∈ {1,… , 𝑇}. Applying Azuma’s inequality, we get that for any 𝛿′ ∈ (0,1), with probability 1 − 𝛿′,

1

𝑡
෍

𝑖=1

𝑡

𝑍𝑖 ≤
2ln 2/𝛿′

𝑡

So, if 𝑡 ≤ 𝑇𝑎, 

1

𝑡
෍

𝑖=1

𝑡

𝑍𝑖 =
1

𝑡
෍

𝑖=1

𝑡

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 − 𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎



Proof of Theorem 3

1

𝑡
෍

𝑖=1

𝑡

𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 − 𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎

= 𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑡
σ𝑖=1
𝑡 𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 ≤

2ln 2/𝛿′

𝑡
with probability 1 − 𝛿′. 

Taking 𝛿′ = 𝛿/(𝑇𝑘), 

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑡
σ𝑖=1
𝑡 𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 >

2ln 2𝑘𝑇/𝛿

𝑡
with probability 𝛿/(𝑇𝑘)

We have that this equation holds for 𝑡 ∈ {1,… , 𝑇}. So, we have 𝑇 inequalities.

For the above equation to hold for all 𝑡 ∈ {1,… , 𝑇}, all the 𝑇 inequalities have to hold. Using the union 

bound, the probability of that happening is upper bounded by σ𝑡∈{1,…,𝑇} 𝛿/(𝑇𝑘) = 𝑇𝛿/(𝑇𝑘) =
𝛿

𝑘



Proof of Theorem 3
Since the inequality holds for all 𝑡 with probability 𝛿/𝑘, it holds for 𝑡 = 𝑇𝑎 with probability 𝛿/𝑘.

𝐸 𝑥, റ𝑟 ~𝐷 𝑟𝑎 𝐼 ℎ 𝑥 = 𝑎 −
1

𝑇𝑎
σ𝑖=1
𝑇𝑎 𝑟𝑡𝑖,𝑎𝐼 ℎ 𝑥𝑡𝑖 = 𝑎 >

2ln 2𝑘𝑇/𝛿

𝑇𝑎
with probability 𝛿/𝑘

Note that we can’t directly say that this happens with a probability of 𝛿/𝑘𝑇 by taking 𝑡 = 𝑇𝑎, as 𝑇𝑎 is a 

random variable and our analysis is for a fixed 𝑡, it doesn’t hold when 𝑡 is a random variable.



Practical Estimator Reaching the Exact Value
Corollary 4: For every contextual bandit distribution 𝐷 over 𝑥, റ𝑟 , for every 

exploration policy 𝜋 choosing action 𝑎𝑡 independent of the current input, for 

every hypothesis ℎ, is every action 𝑎 ∈ {1, … , 𝑘} is guaranteed to be chosen by 

𝜋 at least a constant fraction of the time, then as 𝑇 → ∞, the estimator

෢𝑉𝐷 ℎ =෍

𝑡=1

𝑇
𝑟𝑡,𝑎𝑡𝐼 ℎ 𝑥𝑡 = 𝑎𝑡

𝑇𝑎𝑡

goes arbitrarily close to 𝑉𝐷 ℎ with probability 1.



Multiple Exploration Policies
• The results we have discussed require the exploration policy to choose 

actions independent of the current input, which is very limiting

• There exist some special cases when exploration data can prove to be 

useful even when the exploration policy depends on the context

One such scenario : Multiple Exploration Policies



Multiple Exploration Policies
• Suppose we have collected data from a system that has rotated through 𝐾

known exploration policies 𝜋1, 𝜋2, … , 𝜋𝐾 over time

• Each policy 𝜋𝑖 may depend on the context, but the choice of picking a policy 

at any given time may not

• Can redefine the action of the bandit problem as a choice of following one 

of the 𝐾 policies, i.e. policy ℎ’s action is to choose which of 𝜋1, 𝜋2, … , 𝜋𝐾 to 

follow

• Since historically the decision to choose amongst 𝜋1, 𝜋2, … , 𝜋𝐾 was content 

independent, Theorem 3 holds

• Here, ℎ can make a context dependent decision about which policy to 

follow, potentially achieving better performance than any single policy



1

Introduction & 

Motivation

2

Model & 

Goal

3 4

Application to 

Internet Advertising

5

Related Work
Exploration Scavenging 

Theorems



Application to Internet Advertising
• Technology companies are interested in finding better ways to search over 

the increasingly large selection of potential ads to display

• Evaluating ad-serving policies can be costly
o This cost grows linearly with the number of candidate policies

• We can tackle the problem of evaluating a new ad-serving policy using data 

logged from an existing system using exploration scavenging



Internet Advertising as a Contextual Bandit Problem
• Each time a user visits a web page, an advertising engine places a limited 

number of ads in a slate on the page
o Slate of ads has a limited number of selected ads

o Every ad is placed on a specific position, selected by the algorithm

• Online advertising problem can be mapped to contextual bandit problem
o Choosing an ad or set of ads to display corresponds to choosing an arm to pull.

o Content of the web page provides context

• For our problem, we have, reward as a bit vector that identifies whether or 

not each returned ad was clicked



The Direct Approach
• The bit vector can be converted to a single real-valued reward 𝑟 in a 

number of ways, for instance by summing the components and normalizing

• The we compute 𝑟
𝐼 ℎ 𝑥 =𝑠

count 𝑠
, where 

o s is a slate of ads

o count(𝑠) is the number of times the state s was displayed during all trials

• Summing this quantity over all trials yields a good estimator of the value of 

the new policy ℎ



• For a large set of ads and a large slate size, the number of possible slates is 

very large 

• Due to the indicator variable the contribution to the sum for a single 

example is zero unless same slate is chosen by ℎ and the current system 𝜋

• But because of the large number of possible slates it’s unlikely that the 

same state is chosen many times

• Therefore, the resulting estimator has a large variance

Drawbacks of The Direct Approach



The Factoring Assumption
• The above problem can be avoided by making the following assumption

• Assumption: Probability of clicking can be decomposed into two terms, an 

intrinsic click-through rate (CTR) that depends only on the web page 𝑥 and 

the ad 𝑎, and a position-dependent multiplier 𝐶𝑖 for position 𝑖, called the 

attention decay coefficient (ADC)

• Formally: We assume that 𝒫 𝑥, 𝑎, 𝑖 = 𝐶𝑖𝒫(𝑥, 𝑎) where 
o 𝒫 𝑥, 𝑎, 𝑖 is the probability that ad 𝑎 is clicked when placed at position 𝑖, on web page 𝑥,

o 𝒫 𝑥, 𝑎 is the position independent click through rate 

o 𝐶𝑖 is the position dependent constant (ADC). We have, 𝐶1 = 1, so 𝒫 𝑥, 𝑎, 1 = 𝒫 𝑥, 𝑎



The Factoring Assumption
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Probability of being clicked → 𝑷(𝒙, 𝒂, 𝒊)

=

Position Independent Click Through Rate → 𝑷(𝒙, 𝒂)

*

Position Dependent Multiplier (ADC) → 𝑪𝒊



The Factoring Assumption
• The assumption allows us to transition from dealing with slates of ads to 

individual ads

• For a slate (𝑥, 𝑠, Ԧ𝑟), with 𝑙 ads, we can form 𝑙 examples of the form 𝑥, 𝑎𝑖, 𝑟𝑖
′

o where 𝑎𝑖 is the 𝑖𝑡ℎ ad in the slate

o 𝑟𝑖
′ =

𝑟𝑖

𝐶𝑖
, where 𝑟𝑖 = 1 𝑜𝑟 0

• We will now define a new estimator. 

• Let 𝜎(𝑎, 𝑥) be the slot in which the evaluation policy ℎ places ad 𝑎 on input 𝑥



The Factoring Assumption
• If ℎ does not display 𝑎 on input 𝑥, then 𝜎 𝑎, 𝑥 = 0. We define 𝐶0 = 0.

• Define a new estimator of the value of ℎ as 

෠𝑉𝐷 ℎ =෍

𝑡=1

𝑇

෍

𝑖=1

𝑙
𝑟𝑖
′𝐶𝜎 𝑎,𝑥

𝑇𝑎𝑖

• Where 𝑇𝑎𝑖 is the total number of times ad 𝑎 is displayed and 𝑙 be the 

number of ads shown in a slate



The Factoring Assumption
• Here, 𝐶𝜎(𝑎𝑖,𝑥) takes place of the indicator 

o 𝐶𝜎(𝑎𝑖,𝑥) is zero when ℎ does not place 𝑎 on the page 𝑥

o It gives higher weights to the reward of an ad that ℎ places in a better slot

• This estimator is consistent as long as the current ad-serving policy does 

not depend on the input webpage 𝑥 and every ad is displayed enough 

• We require the knowledge of the ADCs to use the above. We will now 

discuss how to estimate them



Estimating Attention Decay Coefficients (ADCs)
• Assume that a data set 𝑆 includes observations (𝑥𝑡, 𝑎𝑡, 𝑟𝑡,𝑎𝑡), for a policy 𝜋

that  chooses the 𝑡𝑡ℎ slate of ads to display independent of the input 𝑥𝑡, for 

𝑡 = 1,2,3…𝑇 , 𝑎𝑡 is the slate of ads displayed at time 𝑡 and 𝑟𝑡,𝑎𝑡 is the reward 

vector. 

• Let 𝐶 𝑎, 𝑖 be the number of clicks on ad 𝑎 observed during rounds in which 

it is displayed in position 𝑖, and 𝑀 𝑎, 𝑖 be the number of impressions of 𝑎 in 

slot 𝑖. Finally, 𝐶𝑇𝑅 𝑎, 𝑖 =
𝐶 𝑎,𝑖

𝑀 𝑎,𝑖
, be the observed CTR of ad 𝑎 in slot 𝑖



The Naive Estimator
• One might think that the ADCs can be calculated by taking the ratio 

between the global empirical click-through rate for each position 𝑖 and the 

global empirical click-through rate for position 1

𝐸𝑠𝑡𝑛𝑎𝑖𝑣𝑒 𝑖 =
σ𝑎 𝐶(𝑎, 𝑖) /σ𝑎𝑀(𝑎, 𝑖)

σ𝑎 𝐶 𝑎, 1 /σ𝑎𝑀(𝑎, 1)

• Unfortunately, this method has a bias which is often quite large in practice

• It underestimates the ratios 𝐶𝑖 due to the fact that existing policies 

generally already place better ads (with higher 𝒫(𝑥, 𝑎)) in the better slot



A New Estimator
• For a fixed ad 𝑎 and a fixed position 𝑖, it is possible to estimate the 

probability of 𝑎 being clicked in position 𝑖 fairly accurately, if it happens 

sufficiently many times. Similarly, for ad 𝑎 in position 1.

• We may estimate 𝐶𝑖 as 𝐶𝑖 =
𝐸𝑥~𝐷 𝒫 𝑥,𝑎,𝑖

𝐸𝑥~𝐷 𝒫 𝑥,𝑎,1
. If we do this for all ads, we can 

average the resulting estimates to form a single estimate.

𝐸𝑆𝑇𝛼𝑡 𝑖 =
σ𝑎 𝛼𝑎𝐶𝑇𝑅 𝑎, 𝑖

σ𝑎 𝛼𝑎𝐶𝑇𝑅 𝑎, 1

• where Ԧ𝛼 is a vector of nonnegative constants 𝛼𝑎 for each ad 𝑎 ∈ 𝐴.



Consistency of the Estimator
Theorem 6: If the ad-display policy chooses slates independent of input and Ԧ𝛼

has all positive entries, then the estimator 𝐸𝑠𝑡𝛼 in Equation 4 is consistent.

• Next question, How do we choose the values for α

• If every component of Ԧ𝛼 is set to the same value, then the estimate for 𝐶𝑖
can be viewed as the mean of all estimates of 𝐶𝑖 for each ad 

• If the estimates for certain ads are more accurate than others, we’d like to 

weight those more heavily

• We want to pick Ԧ𝛼 to minimize the variance of our final estimator



Minimizing the Variance
Theorem 7: The variance of the expression

෍

𝑎

𝛼𝑎𝐶𝑇𝑅 𝑎, 𝑖 +෍

𝑎

𝛼𝑎𝐶𝑇𝑅(𝑎, 1)

subject to σ𝑎 𝛼𝑎 = 1 is minimized when

𝛼𝑎 ≔
2 𝑀 𝑎, 𝑖 .𝑀 𝑎, 1

𝑀 𝑎, 𝑖 𝜎𝑎,𝑖
2 +𝑀 𝑎, 1 𝜎𝑎,1

2

where 𝜎𝑎,𝑖
2 is the variance of the indicator random variable that is 1 when ad 𝑎

is clicked given that ad 𝑎 is placed in position 𝑖



A New Estimator
• Most current ad serving algorithm violate the assumption that the policy 

has to be independent of the web page.
o Exploration scavenging is no longer guaranteed to work.

• Luckily, in practice, it is generally not the case that extreme scenarios like 

the counterexample in the proof of Theorem 1 arise.

• It is more likely that the algorithms choose among the same small set of 

ads to display for any given context

• In practise, major difference is the order in which these ads are displayed



Empirical comparison 
• A common technique for estimating ADCs borrowed from the information 

retrieval literature is discounted cumulative gain

• Given parameter 𝑏, DCG would suggest defining 𝐶𝑖 = 1/ log𝑏(𝑏 + 𝑖) for all 𝑖

• The coefficients discussed below were computed from training on about 20 

million examples obtained from the logs of “Content Match”, Yahoo!’s 

online advertisement engine

• For the new estimator we use 𝛼𝑎 = 𝑀 𝑎, 𝑝 𝑀 𝑎, 1 /(𝑀 𝑎, 𝑝 + 𝑀(𝑎, 1))



Empirical comparison 
• The following table summarizes the coefficients computed for the first four 

slots using the naive estimator and the new estimator, and the DCG

• As suspected, the coefficients for the new estimator are larger than the old, 

suggesting a reduction in bias

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒

Naive 1.0 0.512090 0.369638 0.271847

New 1.0 0.613387 0.527310 0.432521

DCG 1.0 0.630930 0.5 0.430677



Towards A Realistic Application 
• Unfortunately the new estimator may still have an unacceptably large 

variance 

• The method only benefits from examples in which the exploration policy 

and the new policy ℎ choose overlapping sets of ads to display
o A rare event in large databases

• Instead, consider policies ℎ𝜋 to reorder the ads chosen by 𝜋

• A good reordering policy plausibly provides useful information to guide the 

choice of a new ranking policy. 



Towards A Realistic Application 
We define a new estimator

෢𝑉𝐷 ℎ𝜋 =෍

𝑡=1

𝑇

෍

𝑖=1

𝑙

𝑟𝑖
′𝐶𝜎′(𝑎𝑖, 𝑥)

• Where 𝜎′(𝑎𝑖 , 𝑥) is the slot that ℎ𝜋 would assign to ad 𝑎𝑖 in this new model.

• This approach has small variance and quickly converges



Results
• To illustrate the method a training set of 20 million examples gathered using Yahoo!’s 

current ad serving algorithm 𝜋 is used 

• We let the policy ℎ𝜋 be the policy that reorders ads to display those with the highest 

empirical click-through rate first, ignoring the context 𝑥.

• This policy was then compared to policy h′𝜋 which reorders ads at random

• Number of clicks we expect the new policies to receive per click of the old policy 𝜋

were computed in the two cases for comparison, which we call 𝑟

• Result: For ℎ𝜋, 𝑟 = 1.086 and for ℎ′𝜋 , 𝑟 = 1.016

o Thus, exploration scavenging strongly suggests using policy ℎ𝜋 over ℎ′𝜋
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Learning from Logged Implicit Exploration Data
• Same setup as the previous paper – Contextual bandit problem

• But remove the tight assumption that the exploration policy 𝜋 can only take 

context independent actions

• Goal is to maximize the sum of rewards 𝑟𝑎 over the rounds of interaction
o Use previously recorded events to form a good policy on the first round of interaction

• Formally, given a dataset 𝑆 = 𝑥, 𝑎, 𝑟𝑎
∗ generated by the interaction of an 

uncontrolled logging policy, address the problem of constructing a policy ℎ

which tries to maximize 𝑉 ℎ = 𝐸 𝑥, റ𝑟 ~𝐷[𝑟ℎ(𝑥)]



Approach
• For each event 𝑥, 𝑎, 𝑟𝑎 , estimate the probability ො𝜋(𝑎|𝑥) that the logging policy 

chooses 𝑎, using regression

• For each 𝑥, 𝑎, 𝑟𝑎 , create a synthetic controlled contextual bandit setting according to 

𝑥, 𝑎, 𝑟𝑎 , 1/max{ ො𝜋 𝑎 𝑥 , 𝜏}

o 1/max{ො𝜋 𝑎 𝑥 , 𝜏} is an importance weight that specifies how important the current event 

is for training

• Apply an offline contextual bandit algorithm to these generated events to evaluate 

the performance of any hypothesis ℎ

෠𝑉ෝ𝜋
ℎ 𝑆 =

1

|𝑆|
෍

𝑥,𝑎,𝑟 ∈𝑆

𝑟𝑎𝐼 ℎ 𝑥 = 𝑎

max{ො𝜋 𝑎 𝑥 , 𝜏}

o Evaluation works well as long as the actions chosen by ℎ have adequate support over 𝜋

and ො𝜋 is a good estimate for 𝜋

• Using the evaluation model, find the best hypothesis ෠ℎ



Double Robust Policy Evaluation and Learning
• Propose a method of policy evaluation that is more robust compared to 

earlier methods

• Main problem with policy evaluation is that we cannot directly simulate our 

policy over the data set and we have only partial information about the 

reward

• Two approaches to overcome this limitation, direct method (DM) and 

inverse propensity score (IPS)

• We first introduce these methods, which were used in the previous two 

papers



Direct Method
• Direct Method: Form an estimate ො𝜌𝑎(𝑥) of the expected reward conditioned on the 

context and action, 𝜌𝑎 𝑥 = 𝐸 𝑥, റ𝑟 ~𝐷[𝑟𝑎|𝑥]. The policy value is estimated by

෠𝑉ℎ
𝐷𝑀 =

1

|𝑆|
෍

𝑥∈𝑆

ො𝜌ℎ(𝑥)(𝑥)

• If ො𝜌𝑎(𝑥) is a good estimate of the true expected reward, 𝜌𝑎 𝑥 , then the DM estimate 

is close to 𝑉ℎ

• Problem is that the estimate ො𝜌 is formed without the knowledge of ℎ and hence 

might focus on approximating 𝜌 mainly in areas that are not relevant for 𝑉ℎ and not 

sufficiently in the areas that are important for 𝑉ℎ

• So, DM suffers from problems with bias



Inverse Propensity Score
• Inverse Propensity Score: Instead of approximating the reward, IPS forms an 

approximation Ƹ𝑝 𝑎 𝑥, 𝜋 of 𝑝(𝑎|𝑥, 𝜋), and uses this estimate to correct for the shift in 

action proportions between the data collection policy and the new policy

෠𝑉ℎ
𝐼𝑃𝑆 =

1

|𝑆|
෍

(𝑥,𝜋,𝑎,𝑟𝑎)∈𝑆

𝑟𝑎𝐼 ℎ 𝑥 = 𝑎

Ƹ𝑝 𝑎 𝑥, 𝜋

• If Ƹ𝑝 𝑎 𝑥, 𝜋 ≈ 𝑝 𝑎 𝑥, 𝜋 , then the IPS estimate will be approximately an unbiased 

estimate of 𝑉ℎ

• Since we typically have a good (or even accurate) understanding of the data 

collection policy, it is easier to get a good estimate Ƹ𝑝 making IPS less susceptible to 

problems with bias

• However, due to the range of the random variable increasing, suffers from variance 

issues, with the problem getting exacerbated when 𝑝 𝑎 𝑥, 𝜋 gets smaller



Approach
• Doubly Robust estimators take advantage of both, the estimate of the expected 

reward ො𝜌𝑎(𝑥) and the estimate of the action probabilities Ƹ𝑝 𝑎 𝑥, 𝜋

෠𝑉ℎ
𝐷𝑅 =

1

|𝑆|
෍

(𝑥,𝜋,𝑎,𝑟𝑎)∈𝑆

(𝑟𝑎−ො𝜌𝑎(𝑥))𝐼 ℎ 𝑥 = 𝑎

Ƹ𝑝 𝑎 𝑥, 𝜋
+ ො𝜌ℎ 𝑥 (𝑥)

• Informally, the estimator uses ො𝜌 as a baseline and if there is data available, a 

correction is applied

• It is shown that this estimator is accurate if at least one of the estimators, ො𝜌 and Ƹ𝑝 is 

accurate, hence the name doubly robust



Counterfactual Risk Minimization
• Uses clipped version of the IPS and regularization for reducing variance

෠ℎ𝐶𝑅𝑀 = argmin
ℎ∈𝐻

{𝑅𝑀 ℎ + 𝜆
𝑉𝑎𝑟ℎ 𝑢

𝑛
}

o 𝑅𝑀 ℎ is the clipped version of IPS

o Where the second term serves as a data-dependent regularizer

o Var is defined in terms of 𝑀, ℎ, 𝑝𝑖 , 𝛿𝑖𝑎𝑛𝑑 𝑛

• The results in the paper show that CRM is beneficial. They have derived a 

learning algorithm called POEM (Policy Optimizer for Exponential Models) 

for structured output prediction which is shown to work better than IPS. 
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