
DUELING BANDITS
CS 159

Aman Agarwal, Kushal Agarwal,
Fabian Boemer, and Jialin Song

May 24, 2016

Overview

1. Motivation

2. Problem Formulation

3. The Algorithm

4. Extensions

MOTIVATION

Information retrieval: Ranking Problem

How does Clickthrough Data Reflect Retrieval Quality?
[Radlinski 2008]

Given a query q and a collection D of documents that
match the query, the problem is to rank the documents in
D according to some criterion so that the “best” results
appear early in the result list displayed to the user.

Example: Evaluation Search Rankings

Retrieval Function A Retrieval Function B

Example: Evaluation Search Rankings

Retrieval Function A Retrieval Function B

Click!

Click!

Click!

Example: Evaluation Search Rankings

Retrieval Function A Retrieval Function B

Click!

Click!

Click!

Which is better?

Evaluating retrieval functions

Explicit tests
◦ Cranfield methodology

◦ Quality measure (recall, precision)

◦ Expensive
◦ Slow turnaround

Implicit judgments
◦ Effectively no cost (no experts needed)
◦ Real time
◦ Reflects values of users
◦ Based on user behavior?

What measurements reflect retrieval quality?

Evaluation Methods

Absolute Metrics
◦ Assumption: retrieval quality impacts observable user

behavior in an ‘absolute sense’
◦ Abandonment rate Reformulation rate
◦ Queries per session Clicks per query
◦ Max reciprocal rank Mean reciprocal rank
◦ Time to first click Time to last click

Paired Comparison Tests
◦ Assumption: Users can identify preferred alternative in

direct comparison
◦ Given, A, B, give preference A � B, or B � A
◦ Inspires dueling bandits bandits

Smaller scale: arXiv

Experimental Design

Assumption: Click indicates user preference
Method of presentation: interleaved rankings

◦ Two rankings should be:
◦ Blind to user
◦ Not substantially alter search experience
◦ Lead to clicks that reflect user’s preference

◦ More clicks from ranking A than B indicates preference for
A over B

Constructing Rankings

Comparison Triplets

Orig � Flat � Rand
◦ Orig: Hand-tuned ranking function
◦ Flat: No field weights
◦ Rand: Randomize top 11 results in Flat
◦ Substantial distinction

Orig � Swap2 � Swap4
◦ Swap2: Orig with 2 pairs swapped
◦ Swap4: Orig with 4 pairs swapped
◦ More subtle distinction

Presenting Rankings

Balanced Interleaving
Team-Draft Interleaving

◦ Analogous to sports captains choosing teammates
◦ At each time, a coin flip decides which captain can choose

his next teammate

Team-Draft Interleaving Example

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1.

A

http://www.thefreedictionary.
com/flip

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University

A

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube

A

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube

B

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose B

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
B

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
A

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue

A

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

A

TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University
2. CS 159: Introduction to Parallel Processing |

People | San Jose
3. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
4. Guy falls asleep in CS159 lab Purdue -

YouTube
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

Ranking B
1. Guy falls asleep in CS159 lab Purdue -

YouTube
2. CS 159 Purdue University
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

ComplexityTeam-Draft Interleaved Ranking
1. CS 159 Purdue University
2. Guy falls asleep in CS159 lab Purdue -

YouTube
3. CS 159: Introduction to Parallel Processing |

People | San Jose
4. CS159: Introduction to Parallel Processing -

Info.sjsu.edu
5. CS 159: Advanced Topics in Machine

Learning - Yisong Yue
6. CS 159: Introduction to Computational

Complexity

TeamDraft Interleaving

Radlinski et.al 2008

Absolute Metrics: Hypothesis

Absolute Metrics: Results

None of the metrics reliably reflect expected order.

Results: Pairwise Preferences

Radlinski et.al 2008

Recall: Orig � Flat � Rand. Orig � Swap2 � Swap4.
Correct implications. Significant.
Let ∆AB :� wins(A) − wins(B). Note, for A � B � C,
∆AC > max{∆AB ,∆BC}, indicating Strong Stochastic
Transitivity

Deployment on Yahoo! Search Engine

PROBLEM FORMULATION

Recall the Standard Multi-armed Bandit Problem

Definitions:

T rounds

A set of bandits {b1 , ..., bK}
Each bandit has a stationary reward distribution

Standard Multi-armed Bandits Procedure

Choose one bandit bi from {b1 , ..., bK} each round

Receive Reward drawn from bi’s distribution

Receive Feedback by being told your reward

Example: Retrieval Functions

Suppose Google has developed 10 new retrieval functions

Goal: Interactivity learn the best retrieval function

What if we Apply Standard Multi-armed Bandits?

Each function is a bandit

Assumes clicks⇒ explicit absolute feedback

As described at the beginning of the talk, this won’t work

The Dueling Bandit Problem

Definitions:

T rounds
A set of bandits {b1 , ..., bK}
The probability of bi beating b j depends only on i and j

Dueling Bandits Procedure

Choose two bandits bi , b j from {b1 , ..., bK} each round

Receive Reward based on the (unknown) probabilities that
bi and b j individually beat the best bandit

Receive Feedback by being told the winner of the duel
between bi and b j

(Maximum reward is if the best bandit always duels itself)

Example: Retrieval Functions

Suppose Google has developed 10 new retrieval functions

Goal: Interactivity learn the best retrieval function

How to Apply Dueling Bandits

{b1 , ..., bK} � the set of retrieval functions

For each user query, you interleave the results from two
ranking algorithms: b(t)1 and b(t)2 to present to the user to
elicit a pairwise comparison

You want to present the best possible ranking. Hence the
necessity of the regret formulation to minimize:

RT �

T∑
t�1

avg{ε(b∗ , b(t)1), ε(b∗ , b(t)2)}

Visualizing the Example

…
Left wins Right wins

A vs B 0 1

A vs C 0 0

B vs C 0 0

Interleave A vs B

[From Yisong Yue]

Visualizing the Example

…
Left wins Right wins

A vs B 0 1

A vs C 0 1

B vs C 0 0

Interleave A vs C

[From Yisong Yue]

Visualizing the Example

…
Left wins Right wins

A vs B 0 1

A vs C 0 1

B vs C 0 1

Interleave B vs C

[From Yisong Yue]

Visualizing the Example

…
Left wins Right wins

A vs B 0 1

A vs C 1 1

B vs C 0 1

Interleave A vs C

[From Yisong Yue]

Visualizing the Example

Left wins Right wins

A vs B 0 1

A vs C 1 1

B vs C 0 1

Goal: Maximize total user utility

Exploit: run C
(interleave C with itself)

Explore: interleave A vs B

Best: A
(interleave A with itself)

How to interact optimally?

Dueling Bandits Problem

[From Yisong Yue]

Formal Framework and Notation

Given
◦ {b1 , ..., bK} = the set of K bandits (aka. arms, actions)
◦ T = Time horizon (aka. number of rounds)

Assume
◦ The probability that bi defeats b j in a duel depends only on

i , j and is unknown
◦ P(bi > b j) is denoted by ε(bi , b j) + 1

2 or εi , j +
1
2

◦ Can be interpreted as the fraction of users that prefer bi to b j
◦ Each duel is independent

◦ The strongest bandit is denoted b∗

For each round t
◦ Algorithm selects two bandits, b(t)1 and b(t)2 to duel
◦ Add avg of {ε(b∗ , b(t)1), ε(b∗ , b(t)2)} to our regret
◦ Algorithms is told the winner of the duel.

Goal: minimize total regret at time T: RT

What This Means: The εi , j Matrix

A B C D E F

A 0 0.03 0.04 0.06 0.10 0.11

B -0.03 0 0.03 0.05 0.08 0.11

C -0.04 -0.03 0 0.04 0.07 0.09

D -0.06 -0.05 -0.04 0 0.05 0.07

E -0.10 -0.08 -0.07 -0.05 0 0.03

F -0.11 -0.11 -0.09 -0.07 -0.03 0

Regrets

[From Yisong Yue]

• Values are Pr(row > col) – 0.5

• Bandit Order: 𝐴 > 𝐵 > 𝐶 > 𝐷 > 𝐸 > 𝐹

Assumptions on εi , j

Recall εi , j � P(bi > b j) − 1
2

Symmetry εi , j � −ε j,i (implicit in this is that εi ,i � 0)

Total Ordering ∃ an ordering where bi > b j ⇒ εi , j > 0

Strong Stochastic Transitivity bi > b j ⇒ ∀k εi ,k ≥ ε j,k

Stochastic Triangle Inequality bi > b j ⇒ ∀k εi , j ≤

εi ,k + εk , j (or the weaker condition: εi , j
εi ,k+εk , j

is bounded)

What This Means: Strong Stochastic Transitivity

A B C D E F

A 0 0.03 0.04 0.06 0.10 0.11

B -0.03 0 0.03 0.05 0.08 0.11

C -0.04 -0.03 0 0.04 0.07 0.09

D -0.06 -0.05 -0.04 0 0.05 0.07

E -0.10 -0.08 -0.07 -0.05 0 0.03

F -0.11 -0.11 -0.09 -0.07 -0.03 0

M
o

n
o

to
n

ic

Monotonic

[From Yisong Yue]

• Values are Pr(row > col) – 0.5

• Bandit Order: 𝐴 > 𝐵 > 𝐶 > 𝐷 > 𝐸 > 𝐹

What This Means: Stochastic Triangle Inequality

The probability of a bandit winning will exhibit diminishing
returns as it becomes increasingly superior

A B C D E F

A 0 0.03 0.04 0.06 0.10 0.11

B -0.03 0 0.03 0.05 0.08 0.11

C -0.04 -0.03 0 0.04 0.07 0.09

D -0.06 -0.05 -0.04 0 0.05 0.07

E -0.10 -0.08 -0.07 -0.05 0 0.03

F -0.11 -0.11 -0.09 -0.07 -0.03 0

[From Yisong Yue]

• Values are Pr(row > col) – 0.5

• Bandit Order: 𝐴 > 𝐵 > 𝐶 > 𝐷 > 𝐸 > 𝐹

Red ≤ Blue + Green

jkijik

THE ALGORITHM

Explore then Exploit

Main algorithm has 2 phases:

1. Explore: Find best bandit, b̂
◦ If the algorithm works with probability ≥ 1 − 1

T there is
only a constant penalty in terms of expected regret

2. Exploit: As long as there are rounds left, play (b̂ , b̂)
◦ If the explore phase correctly found the best bandit (b̂), then

this phase has no regret

What if we Explored using a Tournament Bracket?

Idea: Setup a tournament bracket. Each pair "duels" until the
winner has statistical significance

But if we have 2 bad but equal bandits, they will play each other
for a long time:

⇒ large regret

Interleaved Filter (IF): A Better EXPLORE Algorithm

←Choose candidate bandit at random

←Make noisy comparisons (Bernoulli trial) against all other
bandits simultaneously
• Maintain mean and confidence interval for each pair

←…until another bandit is better

• With confidence 1 – δ

←Change our estimate of the best bandit
• Remove all empirically worse bandits

←Repeat above cycle until 1 candidate left

[From Yisong Yue]

Each cycle is
a “round”

Interleaved Filter (IF): A Better EXPLORE Algorithm

Input: B� {b1 , ..., bK}
Choose b̂ ∈ B randomly (best bandit found so far)
W ← B\{b̂} (remaining potential best bandit)
while W , ∅ do
∀b ∈ W : run the duel (b̂ , b) and add result to a running tally
Remove all b ∈ W where b < b̂ within a confidence interval
if ∃b′ ∈ W s.t. b′ > b̂ within a confidence interval then

Remove all b ∈ W which lost more often than they won
b̂ ← b′, W ←W\{b′}
Reset the running tally

end
end
return b̂

(The confidence interval = (empirical mean) ±
√

4 log(TK2)/t)

Analysis of Algorithm

Theorem 1. Using IF as the EXPLORE Algorithm with
B� {b1 , · · · , bK}, time horizon T (T ≥ K), and IF incurs
expected regret bounded by

E[RT] � O(E[RIF
T]) � O(K

ε1,2
log T)

We prove Theorem 1 by showing the following three lemmas.

Analysis of Algorithm

Lemma 1. The probability that IF makes a mistake resulting in
the elimination of the best bandit b1 is at most 1

T .

Lemma 2. Assuming IF is mistake-free, then, with high
probability, RIF

T � O(K log K
ε1,2

log T).

Lemma 3. Assuming IF is mistake-free, then
E[RIF

T] � O(K
ε1,2

log T).

Analysis of Algorithm

Once we prove Lemma 1 and 3, Theorem 1 follows because IF
correctly returns the best bandit with probability at least 1 − 1

T .
Correspondingly, a suboptimal bandit is returned with
probability at most 1

T , in which case we can assume maximal
regret of O(T).
Then

E[RT] ≤ (1 − 1
T
)E[RIF

T] + 1
T

O(T)
� O(E[RIF

T] + 1)
� O(E[RIF

T])
� O(K

ε1,2
log T)

Analysis of Algorithm

To aid our analysis, we introduce
Confidence Intervals:
IF maintains a number P̂i , j �

bi wins
comparisons in a match between bi

and b j . In the following presentation, we drop the subscripts
(i , j) and use P̂t , where t is the # of comparisons.
IF also maintains a confidence interval Ĉt � (P̂t − ct , P̂t + ct)
where ct �

√
4 log(1/δ)

t where δ � 1/(TK2).

Analysis of Algorithm

Lemma 4.For δ �
1

TK2 , the number of comparisons in a match
between bi and b j is with high probability at most
O(1

ε2
i , j

log(TK)). Moreover, the probability that the inferior

bandit is declared the winner at some time t ≤ T is at most δ.
Proof Sketch:
Stopping condition of a match between bi and b j :
∃t , P̂t − ct > 1

2 . (Corresponds to the confidence interval
condition in the Algorithm)
Let n be the number of comparisons between bi and b j , then
P(n > t) ≤ P(P̂t − ct ≤

1
2) � P(P̂t −

1
2 − εi , j ≤ ct − εi , j) �

P(E[P̂t]− P̂t ≥ εi , j − ct). Apply Hoeffding’s inequality to get the
desired result. Similar procedure applies to showing the
second part.�

Analysis of Algorithm

Lemma 4 bounds the number of comparisons in each match,
next we bound the resulting regret of each match.
Lemma 5. Assuming b1 has not been removed and T ≥ K, then
with high probability the accumulated regret from any match is
at most O(1

ε1,2
log T).

Proof Sketch:
Suppose the candidate b̂ � b j is playing a match against bi . By
Lemma 4, a match played by b j contains at most
O(1

ε2
1, j

log(TK)) � O(1
ε2

1,2
log(TK)) comparisons.

Analysis of Algorithm

Since min{ε1, j , ε1,i} ≤ ε1, j , so the accumulated (weak) regret is
bounded by

ε1, jO(1
ε2

1, j
log(TK)) � O(1

ε1, j
log(TK))

� O(1
ε1,2

log(TK))

� O(1
ε1,2

log T)(since K ≤ T)

�

Analysis of Algorithm

We need one more lemma that bounds the probability that IF
makes a mistake.
Lemma 6. For all triples of bandits b , b′, b̂ such that b � b′, the
probability that IF eliminates b in a pruning step in which b′

wins a match against the incumbent bandit b̂ (i.e. P̂b̂ ,b′ <
1
2)

while b is found to be empirically inferior to b̂ (i.e. P̂b̂ ,b >
1
2) is

at most δ �
1

TK2 .

Analysis of Algorithm

Recall Lemma 1: The probability that IF makes a mistake
resulting in the elimination of the best bandit b1 is at most 1

T .
Proof of Lemma 1:
By Lemma 4, the probability that b1 loses to any bi in a direct
match is at most δ. By a union bound, the probability that b1 is
eliminated in a direct match is at most (K − 1)δ.
By Lemma 6, the probability that b1 is eliminated in a pruning
step is at most δ. By a union bound, the probability that b1 is
eliminated in a pruning step is at most (K − 1)2δ.
So the probability that IF eliminate b1 is at most
δ[(K − 1) + (K − 1)2] < δK2 �

1
T �

Analysis of Algorithm

Next we sketch the proof for lemma 2, which states the
mistake-free executions of IF satisfy RIF

T � O(K log K
ε1,2

log T). The
key point in the proof is to obtain an upper bound on the
number of matches IF plays. To do this, we introduce a random
walk model.

Analysis of Algorithm

Definition (RandomWalk Model). Define a random walk
graph with K nodes labeled b1 , · · · , bK (these will correspond to
the similarly named bandits). Each node b j(j > 1) transitions to
bi for j > i ≥ 1 with probability 1

j−1 . The final node b1 is an
absorbing node.

Analysis of Algorithm

A path in the RandomWalk Model corresponds to a sequence
of candidate bandits taken by IF where ε1, j � ε2, j � · · · � ε j−1, j

for all j > 1
It turns out that the number of rounds in the execution of IF is
stochastically bounded by the path length of a random walk in
the RandomWalk Model, i.e. if S and S̃ are random variables
corresponding to the two quantities, then
∀x : P(S ≥ x) ≤ P(S̃ ≥ x). Using this property, we can show
with high probability, a mistake-free execution of IF runs for
O(log K) rounds. And lemma 2 follows.

Analysis of Algorithm

We now prove Lemma 3, which claims that mistake-free
executions of IF satisfy E[RIF

T] � O(K
ε1,2

log T).
Recall that by Lemma 5, for a mistake-free execution of IF and
T ≥ K, with high probability the accumulated regret from any
match is at most O(1

ε1,2
log T).

Lemma 3 directly follows from Lemma 5 and the following:
Lemma 9. Assuming IF is mistake-free, there are O(K)matches
in expectation.

Analysis of Algorithm

Proof Sketch:
Let B j be the number of matches played by b j when it is not the
incumbent. Furthermore, let A j be the number of matches
played by b j against bi for i > j, and G j be the number of
matches when i < j (bi is incumbent).
Then the expected number of matches is
K−1∑
j�1

E[B j] �
K−1∑
j�1

E[A j] + E[G j].
Leveraging the RandomWalk Model, it can be shown that
E[A j] ≤ 1 + HK−1 − H j , where H j is the harmonic sum.

Analysis of Algorithm

Next, we show that E[G j] <� 2.
Quick justification: probability that b j is not pruned in a match
against a superior incumbent bandit bi is less than half. So, in
expectation, it takes two such matches for b j to get pruned. �
That completes the proof of Lemma 3, and thus Theorem 1.
The bound in Theorem 1 is in fact information theoretically
optimal upto constant factors, which is the content of Theorem
2.

Analysis of Algorithm

Theorem 2. For any fixed ε > 0 and any algorithm φ for the
dueling bandits problem, there exists a problem instance such
that

Rφ
T � Ω(K

ε
lo gT)

where ε � minb,b∗P(b∗ > b).

Analysis of Algorithm

The proof is similar to the lower bound proof for multi-armed
bandit problem and is omited.
However, here is a heuristic explanation for why we might
suspect the theorem to true: Given a bandit b, suppose we need
to determine with high probability whether b is the best bandit.
We know that given two bandits, we can identify the better
bandit with probability at least 1 − 1/T after O(lo gT/ε2)
comparisons. Since there are K bandits, we can expect to take K
times O(lo gT/ε2) comparions to determine whether bandit b is
the best.

EXTENSIONS

Other models

Busa-Fekete 2014

where Qi j is the probability arm i beats arm j.

RUCB (Zohgi 2014)

Assumption: There exists a Condorcet winner: a bandit
that beats all other bandits in expectation

RUCB doesn’t require an input horizon T.
◦ Interleaved Filter, Beat-the-mean, SAVAGE require

finite-time horizon.

No need to guess exploration horizon
◦ More useful in practice

Finite-time regret bound of order O(log t)

RUCB Algorithm

For each time t � 1, . . .:

1. Put all arms in a pool of potential champions.
2. Compare each arm ai against all other arms optimistically:

◦ Compute ui j(t) � µi j(t) + ci j(t), where ci j(t) is confidence
bound, µi j(t) is estimate of pi j so far.

◦ If ui j < 1
2 for any j, remove ai from pool of champions.

◦ Randomly choose champion arm ac from remaining
potential champions
◦ Intuition: Comparisons in 2. are optimistic, so ac becomes

champion easily.

3. Perform regular UCB using ac as benchmark. Choose
d � arg max j u jc

◦ Intuition: Avoids comparing ac with itself unless ac is
Condorcet winner.

4. Choose (ac , ad) to compare.

RUCB Algorithm

Zoghi 2014

RUCB Results

Zoghi 2014

Copeland Bandits

What if Condorcet winner doesn’t exist?
◦ Stochastic transitivity not satisfied (sports competitions)
◦ Copeland winner always exists

◦ Copeland score: Number of pairwise victories minus
number of pairwise defeats.

O(K log T) regret bound without restrictions
◦ Previous results: O(K2 log T) or O(K log T)with restrictions

Other extensions

Borda winner: arm ab that satisfies
∑

j pb j ≥
∑

j pi j for all
i � 1, . . . , K
◦ When averaged across all arms, ab has the highest

probability of winning a given comparison

von Neumann winner: has at least a %50 chance of
winning
◦ Allows for randomized policies

Convex, continuous setting
◦ Actions are comparisons between w , w′ ∈ W, for compact,

convex set W .
◦ Sublinear regret O(T3/4)

Application: Personalized Clinical Treatment

Conclusion

Absolute metrics are insufficient in comparing rankings

Dueling bandits useful for pairwise comparisons
Interleaved filter: explore, then exploit

◦ Achieves sublinear regret O(K
ε1,2

log T)
◦ Matches theoretical lower bound

Extensions
◦ RUCB
◦ Copeland bandits
◦ Personalized Medical Treatment

References

‘A Survey of Preference-Based Online Learning with
Bandit Algorithms’, Róbert Busa-Fekete and Eyke
Hüllermeier, 2014

‘Relative Upper Confidence Bound for the K-Armed
Dueling Bandit Problem’, Zoghi et. al, 2013.

‘Interactively Optimizing Information Retrieval Systems as
a Dueling Bandits Problem’, Yue & Joachims, 2009.

‘Contextual Dueling Bandits’, Dudik et. al., 2015.

	Motivation
	Problem Formulation
	The Algorithm
	Extensions

