DUELING BANDITS CS 159

Aman Agarwal, Kushal Agarwal, Fabian Boemer, and Jialin Song

May 24, 2016

- 1. Motivation
- 2. Problem Formulation
- 3. The Algorithm

4. Extensions

MOTIVATION

- How does Clickthrough Data Reflect Retrieval Quality? [Radlinski 2008]
- Given a QUERY *q* and a collection *D* of documents that match the QUERY, the problem is to rank the documents in *D* according to some criterion so that the "best" results appear early in the result list displayed to the user.

Example: Evaluation Search Rankings

RETRIEVAL FUNCTION A

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ ~ Purdue University ~ Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159: Introduction to Parallel Processing | People | San Jo...

CS 159: Introduction to Parallel Processing - Info.sjsu.edu

info.sjsu.edu > ... > Courses ~ San Jose State University ~ CS 159. Introduction to Parallel Processing. Description Major parallel architectures: shared memory, distributed memory, SIMD, MIMD. Parallel algorithms: ...

Guy falls asleep in CS159 lab Purdue - YouTube https://www.youtube.com/watch?v=vVciOqZwLag

Mar 24, 2011 - Uploaded by james brand Guy falls asleep in our 7:30 am lab so we take his phone turn the volume up to full and call him.

CS 159: Advanced Topics in Machine Learning - Yisong Yue www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity

cs.brown.edu/courses/cs159/home.html

Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. An early model of parallel computation... Home Courses.

RETRIEVAL FUNCTION B

Guy falls asleep in CS159 lab Purdue - YouTube https://www.youtube.com/watch?v=vVciOgZwLag

Mar 24, 2011 - Uploaded by james brand Guy falls asleep in our 7:30 am lab so we take his phone turn the volume up to full and call him.

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ * Purdue University * Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159: Introduction to Parallel Processing | People | San Jo.

www.sjsu.edu > ... > Chun, Robert K > Courses ▼ San Jose State University ◄ Jan 20, 2015 - Description. A combination hardware architecture and software development class focused on multi-threaded, parallel processing algorithms ...

CS 159: Introduction to Parallel Processing - Info.sjsu.edu

info.sjsu.edu → ... → Courses ▼ San Jose State University ▼ CS 159. Introduction to Parallel Processing. Description Major parallel architectures: shared memory, distributed memory, SIMD, MIMD. Parallel algorithms: ...

CS 159: Advanced Topics in Machine Learning - Yisong Yue www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity

cs.brown.edu/courses/cs159/home.html + Brown University + Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. A early model of parallel computation... Home Courses.

Example: Evaluation Search Rankings

Retrieval Function A

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ ~ Purdue University ~ Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159: Introduction to Parallel Processing | Per

www.sjsu.edu > ... > Chun, Robert K > Courses
San Jos Click! Jan 20, 2015 - Description. A combination hardware architecture development class focused on multi-threaded, parallel processing algorith

CS 159: Introduction to Parallel Processing - Info.sjsu.edu

info.sjsu.edu) ...) Courses ~ San Jose State University ~ CS 159. Introduction to Parallel Processing. Description Major parallel architectures: shared memory, distributed memory, SIMD, MIMD, Parallel algorithms: ...

Guy falls asleep in CS159 lab Purdue - YouTube https://www.youtube.com/watch?v=vVciOgZwLag

Mar 24, 2011 - Uploaded by james brand Guy falls asleep in our 7:30 am lab so we take his phone turn the volume up to full and call him.

CS 159: Advanced Topics in Machine Learning www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Less course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity cs.brown.edu/courses/cs159/home.html Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. An early model of parallel computation... Home Courses.

RETRIEVAL FUNCTION B

Guy falls asleep in CS159 lab Purdue - YouTube

Mar 24, 2011 - Uploaded by james brand Guy falls asleep in our 7:30 am lab so we taky volume up to full and call him.

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ - Purdue University -

Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159: Introduction to Parallel Processing | People | San Jo.

www.sjsu.edu > ... > Chun, Robert K > Courses ~ San Jose State University * Jan 20, 2015 - Description. A combination hardware architecture and software development class focused on multi-threaded, parallel processing algorithms ...

CS 159: Introduction to Parallel Processing - Info.sjsu.edu

info.sjsu.edu → ... → Courses ▼ San Jose State University ▼ CS 159. Introduction to Parallel Processing. Description Major parallel architectures: shared memory, distributed memory, SIMD, MIMD. Parallel algorithms: ...

CS 159: Advanced Topics in Machine Learning - Yisong Yue www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity

cs.brown.edu/courses/cs159/home.html + Brown University + Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. A early model of parallel computation... Home Courses.

Example: Evaluation Search Rankings

RETRIEVAL FUNCTION A

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ ~ Purdue University ~ Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159: Introduction to Parallel Processing | Per

www.sjsu.edu > ... > Chun, Robert K > Courses
San Jos Click! Jan 20, 2015 - Description. A combination hardware architecture development class focused on multi-threaded, parallel processing algorith

CS 159: Introduction to Parallel Processing - Info.sjsu.edu

info.sjsu.edu > ... > Courses ▼ San Jose State University ▼ CS 159. Introduction to Parallel Processing. Description Major parallel shared memory, distributed memory, SIMD, MIMD. Parallel algorith

Guy falls asleep in CS159 lab Purdue - You

Mar 24, 2011 - Uploaded by james brand Guy falls asleep in our 7:30 am lab so we take his phe turn the volume up to full and call him.

CS 159: Advanced Topics in Machine Learning www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Uses course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity cs.brown.edu/courses/cs159/home.html Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. An early model of parallel computation... Home Courses.

Retrieval Function B

Guy falls asleep in CS159 lab Purdue - YouTube,

https://www.youtube.com/watch?v=vv/A Mar 24, 2011 - Uploaded by james brand C Guy falls asleep in our 7:30 am lab so we tak volume up to full and call him.

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ - Purdue University -

Aug 16, 2012 - CS 159 introduces the tools of software development that have become essential for creative problem solving in Engineering. Educators and ...

CS159:

oduction to Parallel Processing | People | San Jo.

Chun, Robert K → Courses ▼ San Jose State University ▼ tion. A combination hardware architecture and software d on multi-threaded, parallel processing algorithms ...

Which is better?

ectures:

Click!

CS 159: Advanced Topics in Machine Learning - Yisong Yue www.yisongyue.com/courses/cs159/ -

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This course will cover a mixture of the following topics: Online Learning ...

CS159: Introduction to Computational Complexity

cs.brown.edu/courses/cs159/home.html + Brown University + Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. A early model of parallel computation... Home Courses.

Evaluating retrieval functions

Explicit tests

- Cranfield methodology
 - Quality measure (recall, precision)
- Expensive
- Slow turnaround
- Implicit judgments
 - Effectively no cost (no experts needed)
 - Real time
 - Reflects values of users
 - Based on user behavior?

What measurements reflect retrieval quality?

Evaluation Methods

Absolute Metrics

- Assumption: retrieval quality impacts observable user behavior in an 'absolute sense'
- Abandonment rate
- Queries per session
- Max reciprocal rank
- Time to first click

- Reformulation rate
- Clicks per query
- Mean reciprocal rank
- Time to last click
- Paired Comparison Tests
 - Assumption: Users can identify preferred alternative in direct comparison
 - Given, *A*, *B*, give preference A > B, or B > A
 - Inspires dueling bandits bandits

Smaller scale: arXiv

arXiv.org Search Results

Back to Search form

The URL for this search is http://arxiv.org:443/find/all/1/all:+AND+dueling+bandits/0/1/0/all/0/1

Showing results 1 through 11 (of 11 total) for all:(dueling AND bandits)

1. arXiv:1605.01677 [pdf, other]

Copeland Dueling Bandit Problem: Regret Lower Bound, Optimal Algorithm, and Computationally Efficient Algorithm

Junpei Komiyama, Junya Honda, Hiroshi Nakagawa Subjects: Machine Learning (stat.ML); Learning (cs.LG)

2. arXiv:1604.07101 [pdf, other]

Double Thompson Sampling for Dueling Bandits Huasen Wu, Xin Liu, R. Srikant Comments: 27 pages, 5 figures Subieds: Learning (cs.Ld): Machine Learning (stat.ML)

3. arXiv:1602.02706 [pdf, other]

Indistinguishable Bandits Dueling with Decoys on a Poset Julien Audiffren (CMLA), Ralaivola Liva (LIF) Subjects: Learning (cs.LG); Artificial Intelligence (cs.AI)

4. arXiv:1601.03855 [pdf, other]

A Relative Exponential Weighing Algorithm for Adversarial Utility-based Dueling Bandits

Pratik Gajane, Tanguy Urvoy, Fabrice Clérot (FT R and D) Journal-ref: The 32nd International Conference on Machine Learning, Jul 2015, Lille, France. 37, pp.218-227, Proceedings of The 32nd International Conference on Machine Learning Subjects: Learning (s.LG)

- Assumption: Click indicates user preference
- Method of presentation: interleaved rankings
 - Two rankings should be:
 - Blind to user
 - Not substantially alter search experience
 - Lead to clicks that reflect user's preference
 - More clicks from ranking *A* than *B* indicates preference for *A* over *B*

Comparison Triplets

- \bigcirc Orig > Flat > Rand
 - ORIG: Hand-tuned ranking function
 - FLAT: No field weights
 - RAND: Randomize top 11 results in Flat
 - Substantial distinction
- \bigcirc Orig > Swap2 > Swap4
 - Swap2: Orig with 2 pairs swapped
 - Swap4: Orig with 4 pairs swapped
 - More subtle distinction

- Balanced Interleaving
- Team-Draft Interleaving
 - Analogous to sports captains choosing teammates
 - At each time, a coin flip decides which captain can choose his next teammate

Team-Draft Interleaving Example

Ranking A

- 1. CS 159 Purdue University
- 2. CS 159: Introduction to Parallel Processing | People | San Jose
- 3. CS159: Introduction to Parallel Processing -Info.sjsu.edu
- 4. Guy falls asleep in CS159 lab Purdue -YouTube
- 5. CS 159: Advanced Topics in Machine Learning - Yisong Yue
- 6. CS 159: Introduction to Computational Complexity

Ranking B

- 1. Guy falls asleep in CS159 lab Purdue -YouTube
- 2. CS 159 Purdue University
- 3. CS 159: Introduction to Parallel Processing | People | San Jose
- 4. CS159: Introduction to Parallel Processing -Info.sjsu.edu
- 5. CS 159: Advanced Topics in Machine Learning - Yisong Yue
- 6. CS 159: Introduction to Computational Complexity

1. 2. 3.	Ranking A CS 159 Purdue University CS 159: Introduction to Parallel Processing People San Jose CS159: Introduction to Parallel Processing -		1. 2. 3.	Ra Guy falls asleep i YouTube CS 159 Purdue U CS 159: Introduct	nking B n CS159 lab Purdue - Iniversity ion to Parallel Processing
4.	Guy falls asleep in CS159 lab Purdue -		4.	CS159: Introducti	on to Parallel Processing -
5.	CS 159: Advanced Topics in Machine Learning - Yisong Yue		5.	CS 159: Advance Learning - Yisong	ed Topics in Machine y Yue
6.	CS 159: Introduction to Computational Complexity Team-Draft In	nterlea	aved	CS 159: Introduct Ranking	tion to Computational
					A A http://www.thefreedictionea

	Ranking A				Ra	anking B			
1.	CS 159 Purdue University			1.	1. Guy falls asleep in CS159 lab Purdue -				
2.	CS 159: Introduction to Para	Illel Processing			YouTube				
	People San Jose			2.	CS 159 Purdue L	Iniversity			
3.	CS159: Introduction to Paral	lel Processing -		3.	CS 159: Introduc	tion to Parallel Processing			
	Info.sjsu.edu				People San Jos	e			
4.	Guy falls asleep in CS159 la	b Purdue -		4.	CS159: Introduct	ion to Parallel Processing -			
_	YouTube				Info.sjsu.edu				
5.	CS 159: Advanced Topics in	Machine		5.	CS 159: Advance	ed Topics in Machine			
~	Learning - Yisong Yue			_	Learning - Yisong	g Yue			
6.	CS 159: Introduction to Com	nutational		6	CS 159 ⁻ Introduc	tion to Computational			
	Complexity	Team-Draft Ir	nterlea	aved I	Ranking				
	1.	CS 159 Purdue U	nivers	ity					
						10			
						BY			
						201			

1. 2. 3. 4.	Ranking A 1. CS 159 Purdue University 2. CS 159: Introduction to Parallel Processing People San Jose 3. CS159: Introduction to Parallel Processing - Info.sjsu.edu 4. Guy falls asleep in CS159 lab Purdue - YouTube			1. 2. 3. 4.	Ra Guy falls asleep i You Tube CS 159 Purdue L CS 159: Introduct People San Jose CS 159: Introducti	Inking B n CS159 lab Purdue - Iniversity tion to Parallel Processing e ion to Parallel Processing -
5.	CS 159: Advanced Top	ics in Machine		5.	CS 159: Advance	d Topics in Machine
	Learning - Yisong Yue				Learning - Yisong	y Yue
6.	CS 159: Introduction to	Computational		6	CS 159 Introduct	tion to Computational
	Complexity	Team-Draft II 1. CS 159 Purdue U 2. Guy falls asleep i YouTube	nterlea Iniversi n CS15	ity 59 lat	Ranking	A

1. 2.	Ranking A 1. CS 159 Purdue University 2. CS 159: Introduction to Parallel Processing People San Jose 3. CS159: Introduction to Parallel Processing -			1. 2.	Ra Guy falls asleep i YouTube CS 159 Purdue L	anking B n CS159 lab Purdue - Jniversity	
э.	Info.sjsu.edu	Parallel Processing -		3. CS 159: Introduction to Parallel Processing People San Jose			
4.	Guy falls asleep in CS1 YouTube	59 lab Purdue -		4.	CS159: Introducti Info.sjsu.edu	ion to Parallel Processing -	
5.	CS 159: Advanced Top Learning - Yisong Yue	ics in Machine		5.	CS 159: Advance Learning - Yisong	ed Topics in Machine g Yue	
6.	CS 159: Introduction to	Computational		6	CS 159. Introduct	tion to Computational	
	Complexity	Team-Draft Ir 1. CS 159 Purdue U 2. Guy falls asleep i YouTube	nterleav Iniversit	ved f ty 9 lab	Ranking	B	

 CS 159 Purdue CS 159: Introdu People San J CS159: Introdu Info.sjsu.edu Guy falls aslee YouTube CS 159: Advar Learning - Yisc CS 159: Introdu 	tanking A University tion to Parallel Processing se tion to Parallel Processing - in CS159 lab Purdue - ed Topics in Machine g Yue ction to Computational	Ranking B 1. Guy falls asleep in CS159 lab Purdue - YouTube 2. CS 159 Purdue University 3. CS 159: Introduction to Parallel Processing People San Jose 4. CS159: Introduction to Parallel Processing - Info.sisu.edu 5. CS 159: Advanced Topics in Machine Learning - Yisong Yue 6. CS 159: Introduction to Computational
Complexity	Team-Draft 1. CS 159 Purdue 2. Guy falls asleep YouTube 3. CS 159: Introdu People San Jo	Interleaved Ranking University in CS159 lab Purdue - ction to Parallel Processing se B

1. 2. 3. 4. 5.	Ranking CS 159 Purdue Univers CS 159: Introduction to People San Jose CS159: Introduction to F Info.sjsu.edu Guy falls asleep in CS1: YouTube CS 159: Advanced Topi Learning - Yisong Yue	A ity Parallel Processing Parallel Processing - 59 lab Purdue - cs in Machine		1. 2. 3. 4. 5.	Ra Guy falls asleep in YouTube CS 159 Purdue U CS 159: Introduct People San Jose CS 159: Introducti Info.sjsu.edu CS 159: Advance Learning - Yisong CS 150: Letroduct	Inking B n CS159 lab Purdue - lniversity ion to Parallel Processing e on to Parallel Processing - id Topics in Machine Yue
6.	CS 159: Introduction to Complexity	Computational Team-Draft In 1. CS 159 Purdue U 2. Guy falls asleep ir YouTube 3. CS 159: Introduct People San Jose 4. CS159: Introduction Info.sjsu.edu	iterleave niversity n CS159 ion to Pa	ed F 9 lab arall	CS 159 Introduce Ranking Purdue - el Processing el Processing -	B

 CS 15 CS 15 People CS159 Info.sj Guy fa YouTu CS 155 	CS 159 Purdue University CS 159: Introduction to Parallel Processing People San Jose CS159: Introduction to Parallel Processing - Info.sjsu.edu Guy falls asleep in CS159 lab Purdue - YouTube CS 159: Advanced Topics in Machine Learning - Visong Yue			1. 2. 3. 4. 5.	Ra Guy falls asleep i YouTube CS 159 Purdue U CS 159: Introduct People San Jose CS159: Introducti Info.sjsu.edu CS 159: Advance	anking B n CS159 lab Purdue - Jniversity tion to Parallel Processing e ion to Parallel Processing - ed Topics in Machine
Learni 6. CS 15 Comp	ing - risong Yue 9: Introduction to lexity	Computational Team-Draft In 1. CS 159 Purdue L 2. Guy falls asleep i YouTube 3. CS 159: Introduct People San Jos 4. CS159: Introduct Info.sjsu.edu	nterleave Jniversity in CS159 tion to Pa e ion to Pa	6 ed F () lab aralle	CS 159: Introduct Ranking Purdue - el Processing el Processing -	A Computational

	Ranking	A			Ra	anking B
1.	CS 159 Purdue Univers	ity		1.	Guy falls asleep i	n CS159 lab Purdue -
2.	CS 159: Introduction to	Parallel Processing			YouTube	
	People San Jose			2.	CS 159 Purdue L	Iniversity
3.	CS159: Introduction to I	Parallel Processing -		3.	CS 159: Introduc	tion to Parallel Processing
	Info.sjsu.edu				People San Jos	e
4.	Guy falls asleep in CS1	59 lab Purdue -		4.	CS159: Introduct	ion to Parallel Processing -
	YouTube				Info.sjsu.edu	
5.	CS 159: Advanced Top	ics in Machine		5.	CS 159: Advance	ed Topics in Machine
	Learning - Yisong Yue				Learning - Yisong	g Yue
6.	CS 159: Introduction to	Computational		6	CS 159 Introduc	tion to Computational
	Complexity	Team-Draft I	nterlea	ved F	Ranking	
		1. CS 159 Purdue L	Iniversi	ty		
		2. Guy falls asleep i	n CS15	59 lab	Purdue -	
		YouTube				
		3. CS 159: Introduc	tion to F	Parall	lel Processing	
		People San Jos	е			•
		CS159: Introduct	ion to P	Paralle	el Processing -	A 🥏
		Info.sjsu.edu				"
		5. CS 159: Advance	ed Topic	cs in	Machine	
		Learning - Yisong	g Yue			
						S.T

					-				
	Ranking	A				Ra	anking B		
1.	CS 159 Purdue Univers	ity			1.	1. Guy falls asleep in CS159 lab Purdue -			
2.	CS 159: Introduction to	Paral	lel Processing			YouTube			
	People San Jose				2.	CS 159 Purdue L	Iniversity		
3.	CS159: Introduction to I	Parall	el Processing -		3.	CS 159: Introduc	tion to Parallel Processing		
	Info.sjsu.edu		Ŭ		People San Jose				
4.	Guy falls asleep in CS1	59 lat	Purdue -		4.	CS159: Introduct	ion to Parallel Processing -		
	YouTube					Info.sjsu.edu	Ŭ		
5.	CS 159: Advanced Top	ics in	Machine		5.	CS 159: Advance	ed Topics in Machine		
	Learning - Yisong Yue					Learning - Yisong	Yue		
6.	6. CS 159: Introduction to Computational			6	CS 159: Introduct	tion to Computational			
	Complexity		Team-Draft I	nterlea	aved	Ranking			
		1.	CS 159 Purdue U	Inivers	itv				
		2	Guy falls asleep i	n CS1	59 lal	o Purdue -			
			YouTube						
		3	CS 159: Introduct	tion to	Paral	lel Processina I			
			People San Jos	e		ion i rooodoonig j	_		
		4	CS159 ⁻ Introducti	ion to I	Parall	el Processing -			
		''	Info sisu edu		aran	o	10		
		5	CS 159: Advance	d Top	ics in	Machine	(9)		
		Ŭ.	Learning - Yisong	1 Yue					
		6	CS 159: Introduct	tion to	Com	outational			
		0.	Complexity		Com	Julutonui	The second		
			Complexity				20		
		1					1		

	Ranking	A			Ra	anking B		
1.	CS 159 Purdue Univers	ity		1.	1. Guy falls asleep in CS159 lab Purdue -			
2.	2. CS 159: Introduction to Parallel Processing				YouTube			
	People San Jose			2.	2. CS 159 Purdue University			
3.	CS159: Introduction to I	Parallel Processing -		3.	3. CS 159: Introduction to Parallel Processing I			
	Info.sjsu.edu	Ŭ			People San Jose	9		
4.	Guy falls asleep in CS1	59 lab Purdue -		4.	CS159: Introducti	on to Parallel Processing -		
	YouTube				Info.sjsu.edu	J		
5.	CS 159: Advanced Top	ics in Machine		5.	CS 159: Advance	d Topics in Machine		
	Learning - Yisong Yue				Learning - Yisono	Yue		
6.	6. CS 159: Introduction to Computational			6	CS 159 Introduct	ion to Computational		
	Complexity	Team-Draft Ir	ntorlos	avod R	anking	· · · · •		
		1 CS 159 Purdue L	Inivere	sity	anning			
		2 Guy falls asleen i		50 Jah	Durduo			
		Z. Guy laiis asieep i	1001	J 9 Iab	Fulue -			
		2 CC 150: Introduct	lion to	Derelle	ol Drococcing I			
		3. CS 159. Introduct		Paralle	er Processing			
		People San Jose		Develle	Decession			
		4. CS159: Introducti	on to i	Paralle	er Processing -			
		Info.sjsu.edu			to defen			
	5. CS 159: Advance			ed Topics in Machine				
		Learning - Yisong	rue	_				
		6. CS 159: Introduc			utational			
		Complexity						

Algorithm 2 Team-Draft Interleaving

Input: Rankings $A = (a_1, a_2, ...)$ and $B = (b_1, b_2, ...)$ **Init**: $I \leftarrow ()$; $TeamA \leftarrow \emptyset$; $TeamB \leftarrow \emptyset$; while $(\exists i : A[i] \notin I) \land (\exists j : B[j] \notin I)$ do if $(|TeamA| < |TeamB|) \lor$ $((|TeamA| = |TeamB|) \land (RandBit() = 1))$ then $k \leftarrow \min_i \{i : A[i] \notin I\} \dots$ top result in A not yet in I $I \leftarrow I + A[k]; \dots \dots append it to I$ $TeamA \leftarrow TeamA \cup \{A[k]\} \dots clicks credited to A$ else $k \leftarrow \min_i \{i : B[i] \notin I\} \dots$ top result in B not yet in I $I \leftarrow I + B[k] \dots append it to I$ TeamB \leftarrow TeamB $\cup \{B[k]\} \dots clicks credited to B$ end if end while **Output**: Interleaved ranking I, TeamA, TeamB

Radlinski et.al 2008

Absolute Metrics: Hypothesis

Name	Description	Hypothesized Change as Quality Falls
Abandonment Rate	% of queries with no click	Increase
Reformulation Rate	% of queries that are followed by reformulation	Increase
Queries per Session	Session = no interruption of more than 30 minutes	Increase
Clicks per Query	Number of clicks	Decrease
Clicks @ 1	Clicks on top results	Decrease
pSkip [Wang et al '09]	Probability of skipping	Increase
Max Reciprocal Rank*	1/rank for highest click	Decrease
Mean Reciprocal Rank*	Mean of 1/rank for all clicks	Decrease
Time to First Click*	Seconds before first click	Increase
Time to Last Click*	Seconds before final click	Decrease

(*) only queries with at least one click count [From Yisong Yue]

Absolute Metrics: Results

None of the metrics reliably reflect expected order.

Results: Pairwise Preferences

	Comparison Pair		Query Ba	sed	User Based			
	$A \succ B$	A wins	B wins	# queries	A wins	B wins	# users	
Balanced Interleaving	$Orig \succ Flat$	30.6%	21.9%	857	33.3%	23.8%	538	
_	$FLAT \succ RAND$	28.0%	22.9%	907	31.8%	23.3%	529	
	$Orig \succ Rand$	40.9%	30.1%	930	41.0%	27.1%	553	
	$Orig \succ Swap2$	18.1%	14.6%	1035	23.1%	17.1%	589	
	$SWAP2 \succ SWAP4$	33.6%	27.5%	1061	35.1%	30.0%	606	
	$Orig \succ Swap4$	32.1%	24.5%	1173	37.7%	26.7%	591	
Team-Draft Interleaving	$ORIG \succ FLAT$	47.7%	37.3%	1272	49.6%	36.0%	667	
	$FLAT \succ RAND$	46.7%	39.7%	1376	46.3%	36.8%	646	
	Orig ≻ Rand	55.6%	29.8%	1095	58.7%	28.6%	622	
	Orig \succ Swap2	44.4%	40.3%	1170	44.7%	37.4%	693	
	$SWAP2 \succ SWAP4$	44.2%	40.3%	1202	45.1%	39.8%	703	
	$Orig \succ Swap4$	47.7%	37.8%	1332	47.2%	35.0%	697	

Radlinski et.al 2008

- \bigcirc **Recall:** Orig > Flat > Rand. Orig > Swap2 > Swap4.
- Correct implications. Significant.
- Let $\Delta_{AB} := wins(A) wins(B)$. Note, for A > B > C, $\Delta_{AC} > \max{\{\Delta_{AB}, \Delta_{BC}\}}$, indicating Strong Stochastic Transitivity

Deployment on Yahoo! Search Engine

Comparing Two Ranking Functions

Interleaving is more sensitive and more reliable

[Chapelle, Joachims, Radlinski & Yue, TOIS 2012] [From Yisong Yue]

PROBLEM FORMULATION

Recall the Standard Multi-armed Bandit Problem

Definitions:

- \bigcirc T rounds
- \bigcirc A set of bandits { $b_1, ..., b_K$ }
- Each bandit has a stationary reward distribution

Standard Multi-armed Bandits Procedure

- \bigcirc Снооse one bandit b_i from $\{b_1, ..., b_K\}$ each round
- \bigcirc **Receive Reward** drawn from b_i 's distribution
- **Receive Feedback** by being told your reward

Suppose Google has developed 10 new retrieval functions

GOAL: Interactivity learn the best retrieval function

What if we Apply Standard Multi-armed Bandits?

- Each function is a bandit
- \bigcirc Assumes clicks \Rightarrow explicit absolute feedback
- As described at the beginning of the talk, this won't work

Definitions:

- \bigcirc T rounds
- \bigcirc A set of bandits { $b_1, ..., b_K$ }
- The probability of b_i beating b_j depends only on i and j

Dueling Bandits Procedure

- **CHOOSE** two bandits b_i , b_j from $\{b_1, ..., b_K\}$ each round
- **Receive Reward** based on the (unknown) probabilities that b_i and b_j individually beat the best bandit
- **RECEIVE FEEDBACK** by being told the winner of the duel between b_i and b_j

(Maximum reward is if the best bandit always duels itself)

Example: Retrieval Functions

Suppose Google has developed 10 new retrieval functions

GOAL: Interactivity learn the best retrieval function

How to Apply Dueling Bandits

 \bigcirc { b_1 , ..., b_K } = the set of retrieval functions

- For each user query, you interleave the results from two ranking algorithms: $b_1^{(t)}$ and $b_2^{(t)}$ to present to the user to elicit a pairwise comparison
- You want to present the best possible ranking. Hence the necessity of the regret formulation to minimize:

$$R_T = \sum_{t=1}^T \operatorname{avg}\{\epsilon(b^*, b_1^{(t)}), \epsilon(b^*, b_2^{(t)})\}$$

Visualizing the Example

Interleave A vs B

	Left wins	Right wins
A vs B	0	1
A vs C	0	0
B vs C	0	0

[From Yisong Yue]

Visualizing the Example

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	0

[From Yisong Yue]
Visualizing the Example

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	1

Visualizing the Example

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	1	1
B vs C	0	1

						-	
	D	ueling I	Bandits	Probler	n		
5	Goa	l: Maxim	nize tota	l user uti	ility	\mathcal{T}	
	Exp (inte	loit: run erleave C v	C with itself)	I			
	Ехр	lore: int	erleave A	a vs B			
	Bes (inte	Best: A (interleave A with itself)					
	How to interact optimally?						
			Left wins	Right wins			
		A vs B	0	1			
		A vs C	1	1			
		B vs C	0	1			

Formal Framework and Notation

⊖ Given

- $\{b_1, ..., b_K\}$ = the set of *K* bandits (aka. arms, actions)
- T = Time horizon (aka. number of rounds)
- Assume
 - The probability that b_i defeats b_j in a duel depends only on i, j and is unknown
 - $P(b_i > b_j)$ is denoted by $\epsilon(b_i, b_j) + \frac{1}{2}$ or $\epsilon_{i,j} + \frac{1}{2}$
 - Can be interpreted as the fraction of users that prefer b_i to b_j
 - Each duel is independent
 - The strongest bandit is denoted b^*
- \bigcirc For each round *t*
 - Algorithm selects two bandits, $b_1^{(t)}$ and $b_2^{(t)}$ to duel
 - Add AVG OF $\{\epsilon(b^*, b_1^{(t)}), \epsilon(b^*, b_2^{(t)})\}$ to our regret
 - Algorithms is told the winner of the duel.
- \bigcirc Goal: minimize total regret at time *T*: R_T

What This Means: The $\epsilon_{i,j}$ Matrix

	Α	В	С	D	Е	F	
Α	0	0.03	0.04	0.06	0.10	0.11	 Regrets
В	-0.03	0	0.03	0.05	0.08	0.11	
С	-0.04	-0.03	0	0.04	0.07	0.09	
D	-0.06	-0.05	-0.04	0	0.05	0.07	
Е	-0.10	-0.08	-0.07	-0.05	0	0.03	
F	-0.11	-0.11	-0.09	-0.07	-0.03	0	

- Values are Pr(row > col) 0.5
- Bandit Order: A > B > C > D > E > F

Recall $\epsilon_{i,j} = P(b_i > b_j) - \frac{1}{2}$

- **Symmetry** $\epsilon_{i,j} = -\epsilon_{j,i}$ (implicit in this is that $\epsilon_{i,i} = 0$)
- TOTAL ORDERING \exists an ordering where $b_i > b_j \Rightarrow \epsilon_{i,j} > 0$
- Strong Stochastic Transitivity $b_i > b_j \Rightarrow \forall k \ \epsilon_{i,k} \ge \epsilon_{j,k}$
- STOCHASTIC TRIANGLE INEQUALITY $b_i > b_j \Rightarrow \forall k \ \epsilon_{i,j} \le \epsilon_{i,k} + \epsilon_{k,j}$ (or the weaker condition: $\frac{\epsilon_{i,j}}{\epsilon_{i,k} + \epsilon_{k,j}}$ is bounded)

What This Means: Strong Stochastic Transitivity

		_	Monotonic				
						_	
		Α	В	С	D	E	F
•	Α	0	0.03	0.04	0.06	0.10	0.11
ic	В	-0.03	0	0.03	0.05	0.08	0.11
oto	С	-0.04	-0.03	0	0.04	0.07	0.09
δ	D	-0.06	-0.05	-0.04	0	0.05	0.07
	Е	-0.10	-0.08	-0.07	-0.05	0	0.03
	F	-0.11	-0.11	-0.09	-0.07	-0.03	0

Values are Pr(row > col) – 0.5

• Bandit Order: *A* > *B* > *C* > *D* > *E* > *F*

What This Means: Stochastic Triangle Inequality

The probability of a bandit winning will exhibit diminishing returns as it becomes increasingly superior

$$\mathcal{E}_{ik} \leq \mathcal{E}_{ij} + \mathcal{E}_{jk}$$

Red ≤ Blue + Green

	Α	В	С	D	E	F
Α	0	0.03	0.04	0.06	0.10	0.11
В	-0.03	0	0.03	0.05	0.08	0.11
С	-0.04	-0.03	0	0.04	0.07	0.09
D	-0.06	-0.05	-0.04	0	0.05	0.07
E	-0.10	-0.08	-0.07	-0.05	0	0.03
F	-0.11	-0.11	-0.09	-0.07	-0.03	0

- Values are Pr(row > col) 0.5
- Bandit Order: *A* > *B* > *C* > *D* > *E* > *F*

THE ALGORITHM

Main algorithm has 2 phases:

- 1. **EXPLORE:** Find best bandit, \hat{b}
 - If the algorithm works with probability $\geq 1 \frac{1}{T}$ there is only a constant penalty in terms of expected regret
- **2. EXPLOIT:** As long as there are rounds left, play (\hat{b}, \hat{b})
 - $\circ~$ If the explore phase correctly found the best bandit (\hat{b}), then this phase has no regret

IDEA: Setup a tournament bracket. Each pair "duels" until the winner has statistical significance

But if we have 2 bad but equal bandits, they will play each other for a long time:

Interleaved Filter (IF): A Better EXPLORE Algorithm

- \leftarrow Choose candidate bandit at random
- ← Make noisy comparisons (Bernoulli trial) against all other bandits simultaneously
 - · Maintain mean and confidence interval for each pair
- ←...until another bandit is better
 - With confidence 1δ
- ← Change our estimate of the best bandit
 - · Remove all empirically worse bandits
- ← Repeat above cycle until 1 candidate left

Interleaved Filter (IF): A Better EXPLORE Algorithm

Input: $\Re = \{b_1, ..., b_K\}$

Choose $\hat{b} \in \mathcal{B}$ randomly (best bandit found so far)

 $W \leftarrow \mathfrak{B} \setminus \{\hat{b}\}$ (remaining potential best bandit)

while $W \neq \emptyset$ do

 $\begin{aligned} \forall b \in W: \text{ run the duel } (\hat{b}, b) \text{ and add result to a running tally} \\ \text{Remove all } b \in W \text{ where } b < \hat{b} \text{ within a confidence interval} \\ \textbf{if } \exists b' \in W \text{ s.t. } b' > \hat{b} \text{ within a confidence interval$ **then** $} \\ & \text{Remove all } b \in W \text{ which lost more often than they won} \\ & \hat{b} \leftarrow b', W \leftarrow W \setminus \{b'\} \\ & \text{Reset the running tally} \\ \textbf{end} \end{aligned}$

end

return \hat{b}

(The confidence interval = (empirical mean) $\pm \sqrt{4 \log(TK^2)/t}$)

Theorem 1. Using IF as the EXPLORE Algorithm with $\mathcal{B} = \{b_1, \dots, b_K\}$, time horizon T ($T \ge K$), and IF incurs expected regret bounded by

$$E[R_T] = O(E[R_T^{IF}]) = O(\frac{K}{\epsilon_{1,2}} \log T)$$

We prove Theorem 1 by showing the following three lemmas.

Lemma 1. The probability that IF makes a mistake resulting in the elimination of the best bandit b_1 is at most $\frac{1}{T}$.

Lemma 2. Assuming IF is mistake-free, then, with high probability, $R_T^{IF} = O(\frac{K \log K}{\epsilon_{1,2}} \log T)$.

Lemma 3. Assuming IF is mistake-free, then $E[R_T^{IF}] = O(\frac{K}{\epsilon_{1,2}} \log T).$

Once we prove Lemma 1 and 3, Theorem 1 follows because IF correctly returns the best bandit with probability at least $1 - \frac{1}{T}$. Correspondingly, a suboptimal bandit is returned with probability at most $\frac{1}{T}$, in which case we can assume maximal regret of O(T).

Then

$$E[R_T] \le (1 - \frac{1}{T})E[R_T^{IF}] + \frac{1}{T}O(T)$$

= $O(E[R_T^{IF}] + 1)$
= $O(E[R_T^{IF}])$
= $O(\frac{K}{\epsilon_{1,2}}\log T)$

To aid our analysis, we introduce

Confidence Intervals:

IF maintains a number $\hat{P}_{i,j} = \frac{\# b_i \text{ wins}}{\# \text{ comparisons}}$ in a match between b_i and b_j . In the following presentation, we drop the subscripts (i, j) and use \hat{P}_t , where t is the # of comparisons. IF also maintains a confidence interval $\hat{C}_t = (\hat{P}_t - c_t, \hat{P}_t + c_t)$ where $c_t = \sqrt{\frac{4 \log(1/\delta)}{t}}$ where $\delta = 1/(TK^2)$. **Lemma 4.**For $\delta = \frac{1}{TK^2}$, the number of comparisons in a match between b_i and b_j is with high probability at most $O(\frac{1}{\epsilon_{i,j}^2} \log(TK))$. Moreover, the probability that the inferior bandit is declared the winner at some time $t \le T$ is at most δ . **Proof Sketch:**

Stopping condition of a match between b_i and b_j : $\exists t, \hat{P}_t - c_t > \frac{1}{2}$. (Corresponds to the confidence interval condition in the Algorithm)

Let *n* be the number of comparisons between b_i and b_j , then $P(n > t) \le P(\hat{P}_t - c_t \le \frac{1}{2}) = P(\hat{P}_t - \frac{1}{2} - \epsilon_{i,j} \le c_t - \epsilon_{i,j}) =$ $P(E[\hat{P}_t] - \hat{P}_t \ge \epsilon_{i,j} - c_t)$. Apply Hoeffding's inequality to get the desired result. Similar procedure applies to showing the second part. Lemma 4 bounds the number of comparisons in each match, next we bound the resulting regret of each match.

Lemma 5. Assuming b_1 has not been removed and $T \ge K$, then with high probability the accumulated regret from any match is at most $O(\frac{1}{\epsilon_{1,2}} \log T)$. **Proof Sketch:**

Suppose the candidate $\hat{b} = b_j$ is playing a match against b_i . By Lemma 4, a match played by b_j contains at most $O(\frac{1}{\epsilon_{1,j}^2} \log(TK)) = O(\frac{1}{\epsilon_{1,2}^2} \log(TK))$ comparisons. Since $\min{\{\epsilon_{1,j}, \epsilon_{1,i}\}} \le \epsilon_{1,j}$, so the accumulated (weak) regret is bounded by

$$\epsilon_{1,j}O(\frac{1}{\epsilon_{1,j}^2}\log(TK)) = O(\frac{1}{\epsilon_{1,j}}\log(TK))$$
$$= O(\frac{1}{\epsilon_{1,2}}\log(TK))$$
$$= O(\frac{1}{\epsilon_{1,2}}\log(TK))$$
$$= O(\frac{1}{\epsilon_{1,2}}\log T)(\text{ since } K \le T)$$

We need one more lemma that bounds the probability that IF makes a mistake.

Lemma 6. For all triples of bandits b, b', \hat{b} such that b > b', the probability that IF eliminates b in a pruning step in which b' wins a match against the incumbent bandit \hat{b} (i.e. $\hat{P}_{\hat{b},b'} < \frac{1}{2}$) while b is found to be empirically inferior to \hat{b} (i.e. $\hat{P}_{\hat{b},b} > \frac{1}{2}$) is at most $\delta = \frac{1}{TK^2}$.

Recall **Lemma 1:** The probability that IF makes a mistake resulting in the elimination of the best bandit b_1 is at most $\frac{1}{T}$. **Proof of Lemma 1:**

By Lemma 4, the probability that b_1 loses to any b_i in a direct match is at most δ . By a union bound, the probability that b_1 is eliminated in a direct match is at most $(K - 1)\delta$.

By Lemma 6, the probability that b_1 is eliminated in a pruning step is at most δ . By a union bound, the probability that b_1 is eliminated in a pruning step is at most $(K - 1)^2 \delta$.

So the probability that IF eliminate b_1 is at most

 $\delta[(K-1) + (K-1)^2] < \delta K^2 = \frac{1}{T} \blacksquare$

Next we sketch the proof for lemma 2, which states the mistake-free executions of IF satisfy $R_T^{IF} = O(\frac{K \log K}{\epsilon_{1,2}} \log T)$. The key point in the proof is to obtain an upper bound on the number of matches IF plays. To do this, we introduce a random walk model.

Definition (Random Walk Model). Define a random walk graph with *K* nodes labeled b_1, \dots, b_K (these will correspond to the similarly named bandits). Each node $b_j(j > 1)$ transitions to b_i for $j > i \ge 1$ with probability $\frac{1}{j-1}$. The final node b_1 is an absorbing node.

Fig. 1. An illustrative example of a sequence of candidate bandits. The incumbent candidate in each round is shaded in grey.

A path in the Random Walk Model corresponds to a sequence of candidate bandits taken by IF where $\epsilon_{1,j} = \epsilon_{2,j} = \cdots = \epsilon_{j-1,j}$ for all j > 1

It turns out that the number of rounds in the execution of IF is stochastically bounded by the path length of a random walk in the Random Walk Model, i.e. if *S* and \tilde{S} are random variables corresponding to the two quantities, then

 $\forall x : P(S \ge x) \le P(\tilde{S} \ge x)$. Using this property, we can show with high probability, a mistake-free execution of IF runs for $O(\log K)$ rounds. And lemma 2 follows.

We now prove Lemma 3, which claims that mistake-free executions of IF satisfy $E[R_T^{IF}] = O(\frac{K}{\epsilon_{1,2}} \log T)$. Recall that by Lemma 5, for a mistake-free execution of IF and $T \ge K$, with high probability the accumulated regret from any match is at most $O(\frac{1}{\epsilon_{1,2}} \log T)$. Lemma 3 directly follows from Lemma 5 and the following: Lemma 9. Assuming IF is mistake-free, there are O(K) matches in expectation.

Proof Sketch:

Let B_j be the number of matches played by b_j when it is not the incumbent. Furthermore, let A_j be the number of matches played by b_j against b_i for i > j, and G_j be the number of matches when i < j (b_i is incumbent).

Then the expected number of matches is $\sum_{j=1}^{K-1} E[B_j] = \sum_{j=1}^{K-1} E[A_j] + E[G_j].$ Leveraging the Random Walk Model, it can be shown that

 $E[A_j] \le 1 + H_{K-1} - H_j$, where H_j is the harmonic sum.

Next, we show that $E[G_j] \le 2$.

Quick justification: probability that b_j is not pruned in a match against a superior incumbent bandit b_i is less than half. So, in expectation, it takes two such matches for b_j to get pruned. That completes the proof of Lemma 3, and thus Theorem 1. The bound in Theorem 1 is in fact information theoretically optimal upto constant factors, which is the content of Theorem 2. **Theorem 2.** For any fixed $\epsilon > 0$ and any algorithm ϕ for the dueling bandits problem, there exists a problem instance such that

$$R_T^{\phi} = \Omega(\frac{K}{\epsilon} \log T)$$

where $\epsilon = min_{b \neq b^*} P(b^* > b)$.

The proof is similar to the lower bound proof for multi-armed bandit problem and is omited.

However, here is a heuristic explanation for why we might suspect the theorem to true: Given a bandit b, suppose we need to determine with high probability whether b is the best bandit. We know that given two bandits, we can identify the better bandit with probability at least 1 - 1/T after $O(logT/\epsilon^2)$ comparisons. Since there are *K* bandits, we can expect to take *K* times $O(logT/\epsilon^2)$ comparions to determine whether bandit b is the best.

EXTENSIONS

Fig. 1. A taxonomy of (stochastic) PB-MAB algorithms

Busa-Fekete 2014

where Q_{ij} is the probability arm *i* beats arm *j*.

- Assumption: There exists a Condorcet winner: a bandit that beats all other bandits in expectation
- \bigcirc RUCB doesn't require an input horizon *T*.
 - Interleaved Filter, Beat-the-mean, SAVAGE require finite-time horizon.
- No need to guess exploration horizon
 - More useful in practice
- \bigcirc Finite-time regret bound of order $O(\log t)$

RUCB Algorithm

For each time $t = 1, \ldots$:

- 1. Put all arms in a pool of potential champions.
- **2**. Compare each arm a_i against all other arms optimistically:
 - Compute $u_{ij}(t) = \mu_{ij}(t) + c_{ij}(t)$, where $c_{ij}(t)$ is confidence bound, $\mu_{ij}(t)$ is estimate of p_{ij} so far.
 - If $u_{ij} < \frac{1}{2}$ for any *j*, remove a_i from pool of champions.
 - Randomly choose champion arm *a_c* from remaining potential champions
 - **INTUITION:** Comparisons in 2. are optimistic, so a_c becomes champion easily.
- 3. Perform regular UCB using a_c as benchmark. Choose
 - $d = \arg \max_j u_{jc}$
 - **INTUITION:** Avoids comparing a_c with itself unless a_c is Condorcet winner.
- 4. Choose (a_c, a_d) to compare.

RUCB Algorithm

Algorithm 1 Relative Upper Confidence Bound

Input: $\alpha > \frac{1}{2}, T \in \{1, 2, ...\} \cup \{\infty\}$

- 1: $\mathbf{W} = [w_{ij}] \leftarrow \mathbf{0}_{K \times K}$ // 2D array of wins: w_{ij} is the number of times a_i beat a_j
- 2: for t = 1, ..., T do

3:
$$\mathbf{U} := [u_{ij}] = \frac{\mathbf{W}}{\mathbf{W} + \mathbf{W}^T} + \sqrt{\frac{\alpha \ln t}{\mathbf{W} + \mathbf{W}^T}}$$
 // All oper-
ations are element-wise; $\frac{x}{0} := 1$ for any x .

4:
$$u_{ii} \leftarrow \frac{1}{2}$$
 for each $i = 1, \dots, K$.

- 5: Pick any c satisfying $u_{cj} \ge \frac{1}{2}$ for all j. If no such c, pick c randomly from $\{1, \ldots, K\}$.
- 6: $d \leftarrow \arg \max_j u_{jc}$
- 7: Compare arms a_c and a_d and increment w_{cd} or w_{dc} depending on which arm wins.
- 8: end for

Return: An arm a_c that beats the most arms, i.e., c

with the largest count $\#\left\{j|\frac{w_{cj}}{w_{cj}+w_{jc}} > \frac{1}{2}\right\}$.

RUCB Results

Zoghi 2014
○ What if Condorcet winner doesn't exist?

- Stochastic transitivity not satisfied (sports competitions)
- Copeland winner always exists
 - Copeland score: Number of pairwise victories minus number of pairwise defeats.

 \bigcirc *O*(*K* log *T*) regret bound without restrictions

• Previous results: $O(K^2 \log T)$ or $O(K \log T)$ with restrictions

Other extensions

- Borda winner: arm a_b that satisfies $\sum_j p_{bj} \ge \sum_j p_{ij}$ for all i = 1, ..., K
 - When averaged across all arms, *a*^{*b*} has the highest probability of winning a given comparison
- von Neumann winner: has at least a %50 chance of winning
 - Allows for randomized policies
- Convex, continuous setting
 - Actions are comparisons between $w, w' \in \mathcal{W}$, for compact, convex set \mathcal{W} .
 - Sublinear regret $O(T^{3/4})$

Application: Personalized Clinical Treatment

(with Yanan Sui, Vincent Zhuang and Joel Burdick)

[From Yisong Yue]

- Absolute metrics are insufficient in comparing rankings
- Dueling bandits useful for pairwise comparisons
- Interleaved filter: explore, then exploit
 - Achieves sublinear regret $O(\frac{K}{\epsilon_{12}}\log T)$
 - Matches theoretical lower bound
- Extensions
 - RUCB
 - Copeland bandits
 - Personalized Medical Treatment

- 'A Survey of Preference-Based Online Learning with Bandit Algorithms', Róbert Busa-Fekete and Eyke Hüllermeier, 2014
- 'Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem', Zoghi et. al, 2013.
- 'Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem', Yue & Joachims, 2009.
- 'Contextual Dueling Bandits', Dudik et. al., 2015.