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MOTIVATION




Information retrieval: Ranking Problem

O How does Clickthrough Data Reflect Retrieval Quality?
[Radlinski 2008]

O Given a QUERY g and a collection D of documents that
match the QUERy, the problem is to rank the documents in
D according to some criterion so that the “best” results
appear early in the result list displayed to the user.



Example: Evaluation Search Rankings
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Evaluating retrieval functions

O Explicit tests
o Cranfield methodology
o Quality measure (recall, precision)
o Expensive
o Slow turnaround

O Implicit judgments

[¢]

Effectively no cost (no experts needed)
Real time

[¢]

(e]

Reflects values of users
Based on user behavior?

[e]

What measurements reflect retrieval quality?



Evaluation Methods

O Absolute Metrics

o AssumptION: retrieval quality impacts observable user
behavior in an “absolute sense’

o Abandonment rate Reformulation rate

o Queries per session Clicks per query

o Max reciprocal rank Mean reciprocal rank
o Time to first click Time to last click

O Paired Comparison Tests
o Assumption: Users can identify preferred alternative in
direct comparison
o Given, A, B, give preference A > B,or B > A
o Inspires dueling bandits bandits



Smaller scale: arXiv

N We gratefully acknowledge support from
Cornell University Sl imionalEoan dation

and California Institute of Technology

. Search or Article-id (Help | Adv d sex
arXiv.org > search

ch)

arXiv.org Search Results

Back to Search form

The URL for this search is http://arxiv.org:443/find/all/1/all:+ AND+dueling+bandits/0/1/0/all/0/1
Showing results 1 through 11 (of 11 total) for all:(dueling AND bandits)

1. arXiv:1605.01677 [pdf, other]
Copeland Dueling Bandit Problem: Regret Lower Bound, Optimal Algorithm, and Computationally Efficient
Algorithm
Junpei Komiyama, Junya Honda, Hiroshi Nakagawa
Subjects: Machine Learning (stat.ML); Learing (cs.LG)
2. arXiv:1604.07101 [pdf, other]

Double Thompson Sampling for Dueling Bandits
Huasen Wu, Xin Liu, R. Srikant

Comments: 27 pages, 5 figures

Subjects: Learning (cs.LG); Machine Learning (stat.ML)

3. arXiv:1602.02706 [pdf, other]
Indistinguishable Bandits Dueling with Decoys on a Poset
Julien Audiffren (CMLA), Ralaivola Liva (LIF)
Subjects: Learning (cs.LG); Artificial Intelligence (cs.Al)

4. arXiv:1601.03855 [pdf, other]

A Relative Exponential Weighing Algorithm for Adversarial Utility-based Dueling Bandits
Pratik Gajane, Tanguy Urvoy, Fabrice Clérot (FT R and D)

Ji I-ref: The 32nd on Machine Learning, Jul 2015, Lille, France. 37, pp.218-227, P i of The 32nd i C
on Machine Learning
Subijects: Learning (cs.LG)



Experimental Design

O Assumrtion: Click indicates user preference

O Method of presentation: interleaved rankings
o Two rankings should be:
o Blind to user
o Not substantially alter search experience
o Lead to clicks that reflect user’s preference
o More clicks from ranking A than B indicates preference for
A over B



Constructing Rankings

Comparison Triplets

O Orig > Flat > Rand

o Oric: Hand-tuned ranking function

o Frar: No field weights

o Ranp: Randomize top 11 results in Flat
Substantial distinction

[e]

O Orig > Swap2 > Swap4
o Swar2: Orig with 2 pairs swapped
o Swar4: Orig with 4 pairs swapped
o More subtle distinction



Presenting Rankings

O Balanced Interleaving
O Team-Draft Interleaving

o Analogous to sports captains choosing teammates
o At each time, a coin flip decides which captain can choose
his next teammate



Team-Draft Interleaving Example
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Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
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5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Computational
Complexity




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University

2. Guy falls asleep in CS159 lab Purdue -
YouTube




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University

2. Guy falls asleep in CS159 lab Purdue -
YouTube




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube

3. CS 159: Introduction to Parallel Processing |
People | San Jose




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube

3. CS 159: Introduction to Parallel Processing |
People | San Jose

4. CS159: Introduction to Parallel Processing - B
Info.sjsu.edu




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube

3. CS 159: Introduction to Parallel Processing |
People | San Jose

4. CS159: Introduction to Parallel Processing - A
Info.sjsu.edu




TeamDraft Interleaving

Ranking A

1. CS 159 Purdue University

2. CS 159: Introduction to Parallel Processing |
People | San Jose

3. CS159: Introduction to Parallel Processing -
Info.sjsu.edu

4. Guy falls asleep in CS159 lab Purdue -
YouTube

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue

6. CS 159: Introduction to Camnutational
Complexity Team-Draft Interleaved Ranking

1. CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube

3. CS 159: Introduction to Parallel Processing |
People | San Jose

4. CS159: Introduction to Parallel Processing - A
Info.sjsu.edu

5. CS 159: Advanced Topics in Machine
Learning - Yisong Yue




TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University

People | San Jose
Info.sjsu.edu
YouTube

Learning - Yisong Yue

6. CS 159: Introduction to Comnutational

CS 159: Introduction to Parallel Processing |
CS159: Introduction to Parallel Processing -
Guy falls asleep in CS159 lab Purdue -

CS 159: Advanced Topics in Machine

Complexity

Team-Draft Interleaved Ranking
CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube
CS 159: Introduction to Parallel Processing |
People | San Jose
CS159: Introduction to Parallel Processing -
Info.sjsu.edu
CS 159: Advanced Topics in Machine
Learning - Yisong Yue
CS 159: Introduction to Computational
Complexity




TeamDraft Interleaving

Ranking A
1. CS 159 Purdue University

People | San Jose
Info.sjsu.edu
YouTube

Learning - Yisong Yue

6. CS 159: Introduction to Comnutational

CS 159: Introduction to Parallel Processing |
CS159: Introduction to Parallel Processing -
Guy falls asleep in CS159 lab Purdue -

CS 159: Advanced Topics in Machine

Complexity

Team-Draft Interleaved Ranking
CS 159 Purdue University
Guy falls asleep in CS159 lab Purdue -
YouTube
CS 159: Introduction to Parallel Processing |
People | San Jose
CS159: Introduction to Parallel Processing -
Info.sjsu.edu
CS 159: Advanced Topics in Machine
Learning - Yisong Yue
CS 159: Introduction to Computational
Complexity




TeamDraft Interleaving

Algorithm 2 Team-Draft Interleaving
Input: Rankings A = (a1,a2,...) and B = (by,b,...)
Init: 7 «— ();Tea.mA — @; TeamB — @;
while (Fi: Ali] € I) A (37 : Blj] € I) do
if (|TeamA| < |TeamB|) vV
((|TeamA|=|TeamB|) A (RandBit()=1)) then

ke min{i: A g I}..... top result in A not yet in I
IT— T+ Ak append it to T
TeamnA — TeamAU {A[k]}...... clicks credited to A
else
ke—min;{i: Bli] & I}..... top result in B not yet in I
I—T+BE]. o append it to I
TeamB «— TearnB U {B[k]}...... clicks credited to B
end if
end while

Output: Interleaved ranking I, TeamA, TeamB

Radlinski et.al 2008



Absolute Metrics: Hypothesis

Description Hypothesized Change
as Quality Falls

% of queries with no click Increase

Abandonment Rate

Reformulation Rate

Queries per Session

Clicks per Query

Clicks @ 1

pSkip [Wang et al '09]
Max Reciprocal Rank*
Mean Reciprocal Rank*
Time to First Click*

Time to Last Click*

% of queries that are followed Increase
by reformulation

Session = no interruption of Increase
more than 30 minutes

Number of clicks Decrease
Clicks on top results Decrease
Probability of skipping Increase

1/rank for highest click Decrease
Mean of 1/rank for all clicks Decrease
Seconds before first click Increase

Seconds before final click Decrease

(*) only queries with at least one click count
[From Yisong Yue]



Absolute Metrics: Results

HORIG
W FLAT
® RAND
B ORIG
H SWAP2 ™~

SWAP4

[Radlinski et al. 2008]
[From Yisong Yue]

None of the metrics reliably reflect expected order.



Results: Pairwise Preferences

Comparison Pair Query Based User Based
A-B A wins | B wins | # queries | A wins | B wins | # users
Balanced Interleaving ORIG > FLAT 30.6% | 21.9% 857 33.3% | 23.8% 538

Frar > Ranp | 28.0% | 22.9% 907 31.8% | 23.3% 529
ORIG > RAND | 40.9% | 30.1% 930 41.0% | 27.1% 553
ORIG > SwAP2 | 18.1% | 14.6% 1035 23.1% | 17.1% 589
Swar2 > Sward | 33.6% | 27.5% 1061 35.1% | 30.0% 606
ORIG > SwaP4 | 32.1% | 24.5% 1173 37.7% | 26.7% 591
Team-Draft Interleaving ORIG > FLAT a7.7% | 37.3% 1272 49.6% | 36.0% 667
Frar > RAND | 46.7% | 39.7% 1376 46.3% | 36.8% 646
ORIG > RAND | 55.6% | 29.8% 1095 58.7% | 28.6% 622
ORIG > SwWAP2 44.4% | 40.3% 1170 44.7% | 37.4% 693
Swar2 > Sward | 44.2% | 40.3% 1202 451% | 39.8% 703
ORIG > SwaP4 | 47.7% | 37.8% 1332 47.2% | 35.0% 697

Radlinski et.al 2008

O RecarL: Orig > Flat > Rand. Orig > Swap2 > Swap4.

O Correct implications. Significant.

O Let Agp := wins(A) — wins(B). Note, for A > B > C,
Aac > max{Aap, Apc}, indicating Strong Stochastic
Transitivity



Comparing Two Ranking Functions

— 1

0.9

0.8r
0.7f

0.6F

e = Absolute Metrics

— E.g., #Clicks@1,
Total #Clicks, etc.

0.4~

BETTER

0.3

0.2r

&
. X Each ranking function
v 0.1} / > receives 50% traffic
-
0 L T L
10° / 10° 10" 10° 10°

. # Queries
Interleaving Q

Disagreement Probability

*Interleaving is more sensitive and more reliable

[Chapelle, Joachims, Radlinski & Yue, TOIS 2012]

[From Yisong Yue]



PROBLEM FORMULATION




Recall the Standard Multi-armed Bandit Problem

Definitions:

O T rounds
O A set of bandits {by, ..., b}

O Each bandit has a stationary reward distribution

Standard Multi-armed Bandits Procedure

O Cnoosk one bandit b; from {by, ..., bx} each round
O Receive REwarD drawn from b;’s distribution

O Receve FEepBack by being told your reward



Example: Retrieval Functions

Suppose Google has developed 10 new retrieval functions

GoatL: Interactivity learn the best retrieval function

What if we Apply Standard Multi-armed Bandits?

O Each function is a bandit
O Assumes clicks = explicit absolute feedback

O As described at the beginning of the talk, this won’t work



The Dueling Bandit Problem

Definitions:

O T rounds
O A set of bandits {by, ..., bx }
O The probability of b; beating b; depends only on i and j

Dueling Bandits Procedure

O Cnoosk two bandits b;, b from {by, ..., bx } each round

O Recerve REwarDp based on the (unknown) probabilities that
b; and b; individually beat the best bandit

O Receive Feepack by being told the winner of the duel
between b; and b;

(Maximum reward is if the best bandit always duels itself)



Example: Retrieval Functions

Suppose Google has developed 10 new retrieval functions

GoaL: Interactivity learn the best retrieval function

How to Apply Dueling Bandits

O {bq, ..., bx} = the set of retrieval functions

O For each user query, you interleave the results from two
ranking algorithms: bgt) and b;t) to present to the user to
elicit a pairwise comparison

O You want to present the best possible ranking. Hence the
necessity of the regret formulation to minimize:

T
Ry = Y avg{e(b’, b)), (b, b))}

t=1



Visualizing the Example

[From Yisong Yue]
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[From Yisong Yue]



Visualizing the Example

-
fid A

=
Sy, 3

Dueling Bandits Problem

Goal: Maximize total user utility

Exploit: run C
(interleave C with itself)

Explore: interleave A vs B
Best: A

(interleave A with itself)

How to interact optimally?

| Liehwins | migntwins
e PR
avc PR
. -

[From Yisong Yue]



Formal Framework and Notation

O Given
o {b1, ..., b} = the set of K bandits (aka. arms, actions)
o T =Time horizon (aka. number of rounds)

O Assume

o The probability that b; defeats b; in a duel depends only on
i, j and is unknown
o P(b; > bj)is denoted by e(b;, b;) + % ore;j+ %
o Can be interpreted as the fraction of users that prefer b; to b;
o Each duel is independent

o The strongest bandit is denoted b*
O For each round ¢
o Algorithm selects two bandits, bgt) and bg) to duel
o Add avc or {e(b*, b(t)), e(b*, b;t))} to our regret
o Algorithms is told the winner of the duel.

O Goal: minimize total regret at time T: Rt



What This Means: The ¢; ; Matrix

A | 0.03 |0.04 |0.06 [0.10 [0.11 | + Regrets
:11-0.03 |0 0.03 |0.05 |0.08 |0.11

¢1-0.04 (-0.03 |0 0.04 |0.07 (0.09

»11-0.06 |-0.05 (-0.04 |0 0.05 |0.07

31-0.10 |-0.08 (-0.07 (-0.05 |0 0.03

#1-0.11 |-0.11 (-0.09 |-0.07 |-0.03 (O

» Values are Pr(row > col) — 0.5
* BanditOrderrA>B>C>D>E>F

[From Yisong Yue]



Assumptions on €; ;

Recall €i,j= P(bi > b]‘) - %

O SYMMETRY €;,; = —€j,; (implicit in this is that €; ; = 0)
O TotaL OrpErING T an ordering where b; > bj =€;>0
O STRONG StocHASTIC TRANSITIVITY b; > bj = Vk €,k > €k

O SrocHastiC TRIANGLE INEQUALITY b; > b i= Vk €i,j <

. €ij .
€k + €,j (or the weaker condition: — kjr”ek - is bounded)
1, /]



What This Means: Strong Stochastic Transitivity

Monotonic

v

ALY 0.03 (0.04 |0.06 [0.10 |0.11
2 :11-0.03 |0 0.03 |0.05 |0.08 |0.11
‘g ¢1-0.04 (-0.03 |0 0.04 |0.07 (0.09
S »11-0.06 |-0.05 (-0.04 |0 0.05 |0.07

31-0.10 |-0.08 (-0.07 (-0.05 |0 0.03

#1-0.11 |-0.11 (-0.09 |-0.07 |-0.03 (O

» Values are Pr(row > col) — 0.5
* BanditOrderrA>B>C>D>E>F

[From Yisong Yue]



What This Means: Stochastic Triangle Inequality

The probability of a bandit winning will exhibit diminishing
returns as it becomes increasingly superior

& < &+ €k

Red < Blue + Green

o 003 (004 006 [0.10 |0.11
:11-0.03 [0 003 (005 |0.08 |0.11
o ]-0.04 |-003 |0 0.04 [0.07 |0.09
){-0.06 [-005 |-0.04 [0 0.05 [0.07
31-0.10 [-008 [-0.07 [-0.05 |0 0.03
#1-011 [-011 [-0.09 [-007 [-0.03 [0

» Values are Pr(row > col) — 0.5
* BanditOrderrA>B>C>D>E>F

[From Yisong Yue]



THE ALGORITHM




Explore then Exploit

Main algorithm has 2 phases:

1. ExprLorEe: Find best bandit, b

o If the algorithm works with probability > 1 — % there is
only a constant penalty in terms of expected regret

2. Exerorr: As long as there are rounds left, play (b, b)

o If the explore phase correctly found the best bandit (b), then
this phase has no regret



What if we Explored using a Tournament Bracket?

IpEA: Setup a tournament bracket. Each pair "duels" until the
winner has statistical significance

But if we have 2 bad but equal bandits, they will play each other

X]
Problem: two 0 }

Equally bad bandits >~ ¢

for a long time:

= large regret



Interleaved Filter (IF): A Better EXPLORE Algorithm

TN
00000

Each cycle is o arate
a “round” L JOX 1 ] J

¥y
00000

&Choose candidate bandit at random

<Make noisy comparisons (Bernoulli trial) against all other
bandits simultaneously
* Maintain mean and confidence interval for each pair

&...until another bandit is better
¢ With confidence 1-6

<Change our estimate of the best bandit
* Remove all empirically worse bandits

<Repeat above cycle until 1 candidate left

[From Yisong Yue]



Interleaved Filter (IF): A Better EXPLORE Algorithm

Input: B = {by, ..., bx}

Choose b € & randomly (best bandit found so far)

W « B\{b} (remaining potential best bandit)

while W # 0 do

Vb € W: run the duel (b, b) and add result to a running tally
Remove all b € W where b < b within a confidence interval

if A0’ € W s.t. b’ > b within a confidence interval then
Remove all b € W which lost more often than they won

bhe—b,WeW\{b}
Reset the running tally
end

end
return ZAJ

(The confidence interval = (empirical mean) ++/41og(TK?)/t)



Analysis of Algorithm

Theorem 1. Using IF as the EXPLORE Algorithm with
B ={by, -+ ,bg}, time horizon T (T > K), and IF incurs
expected regret bounded by

E[Rr] = O(E[R¥]) = O(i log T)
€12

We prove Theorem 1 by showing the following three lemmas.



Analysis of Algorithm

Lemma 1. The probability that IF makes a mistake resulting in
the elimination of the best bandit b, is at most %

Lemma 2. Assuming IF is mistake-free, then, with high
probability, RIf = O(KIOgI< log T).

Lemma 3. Assuming IF is mistake-free, then
E[R]=0O(X S log 7).



Analysis of Algorithm

Once we prove Lemma 1 and 3, Theorem 1 follows because IF
correctly returns the best bandit with probability at least 1 — 7.
Correspondingly, a suboptimal bandit is returned with
probability at most 1, in which case we can assume maximal
regret of O(T).

Then

EIRr] < (1~ DEIRY] + 20(T)
= O(E[R¥] +1)
= O(EIRY)

K
= O(—1logT)
€1,2



Analysis of Algorithm

To aid our analysis, we introduce

Confidence Intervals:

# b; wins
# comparisons
and b;. In the following presentation, we drop the subscripts

IF maintains a number P; j = in a match between b;

(i, j) and use D;, where t is the # of comparisons.
IF also maintains a confidence interval C; = (ﬁt —c, P+ Ct)

where ¢; = \/410*%(1/6) where 6 = 1/(TK?).



Analysis of Algorithm

Lemma 4.For 6 = the number of comparisons in a match

T KZ 7
between b; and b; is with high probability at most

O( 1 -log(TK)). Moreover the probability that the inferior

bandlt is declared the winner at some time t < T is at most 0.
Proof Sketch:

Stopping condition of a match between b; and b;:

at, Py — ¢ >3 (Corresponds to the confidence 1nterval
condition in the Algorithm)

Let n be the number of comparisons between b; and b;, then
P(n>t)<PPi—c; < 2)—P(Pt———€1] <cr—€ij) =
P(E[P]- Pt > €;,j — ct). Apply Hoeffding’s inequality to get the
desired result. Similar procedure applies to showing the
second part.m



Analysis of Algorithm

Lemma 4 bounds the number of comparisons in each match,
next we bound the resulting regret of each match.

Lemma 5. Assuming b; has not been removed and T > K, then
with high probability the accumulated regret from any match is
at most O( ~log T).

Proof Sketch

Suppose the candidate b = b j is playing a match against b;. By
Lemma 4, a match played by b;j contains at most

O( log(TK)) = O( log(TK)) comparisons.



Analysis of Algorithm

Since min{ey,j, €1,i} < €1,j, so the accumulated (weak) regret is
bounded by

1 1
€1,jO(€T log(TK)) = O(;j log(TK))
1, :

= O(—— log(TK))
€12

1
= O(—1logT)(since K < T)
€12



Analysis of Algorithm

We need one more lemma that bounds the probability that IF
makes a mistake.

Lemma 6. For all triples of bandits b, b’, b such that b > b’, the
probability that IF eliminates b in a pruning step in which b’
wins a match against the incumbent bandit b (i.e. P@lb, < %)

while b is found to be empirically inferior to b (ie. pB,b > %) is
1

at most 6 = T2

—-\"

\/
@
®

O‘\ \
o-

'I'

‘(\

@<
o-



Analysis of Algorithm

Recall Lemma 1: The probability that IF makes a mistake
resulting in the elimination of the best bandit b; is at most %
Proof of Lemma 1:

By Lemma 4, the probability that by loses to any b; in a direct
match is at most 6. By a union bound, the probability that b; is
eliminated in a direct match is at most (K — 1)6.

By Lemma 6, the probability that b; is eliminated in a pruning
step is at most 0. By a union bound, the probability that by is
eliminated in a pruning step is at most (K — 1)?6.

So the probability that IF eliminate b; is at most
S[K-1)+(K-12]<6K>=1m



Analysis of Algorithm

Next we sketch the proof for lemma 2, which states the
mistake-free executions of IF satisfy RY = O(Ki(l)—%K log T). The
key point in the proof is to obtain an upper bound on the
number of matches IF plays. To do this, we introduce a random
walk model.



Analysis of Algorithm

Definition (Random Walk Model). Define a random walk
graph with K nodes labeled b1, - - - , bk (these will correspond to
the similarly named bandits). Each node b;(j > 1) transitions to
b; for j > i > 1 with probability ]%1 The final node b; is an
absorbing node.

“@OOOOOO®
“HOOOOOO®
OHOOOOOO®
“OOOOOOOO

Fig. 1. An illustrative example of a sequence of candidate bandits. The incumbent candidate in each round is shaded in grey.



Analysis of Algorithm

A path in the Random Walk Model corresponds to a sequence
of candidate bandits taken by IF where €1,j = €3 = -+~ = €1,
forallj >1

It turns out that the number of rounds in the execution of IF is
stochastically bounded by the path length of a random walk in
the Random Walk Model, i.e. if S and S are random variables
corresponding to the two quantities, then

Vx : P(S > x) < P(S > x). Using this property, we can show
with high probability, a mistake-free execution of IF runs for
O(log K) rounds. And lemma 2 follows.



Analysis of Algorithm

We now prove Lemma 3, which claims that mistake-free
executions of IF satisfy E [RIF 1=0( eKZ log T).

Recall that by Lemma 5, for a mistake-free execution of IF and
T > K, with high probability the accumulated regret from any
match is at most O( ~log T).

Lemma 3 directly follows from Lemma 5 and the following;:
Lemma 9. Assuming IF is mistake-free, there are O(K) matches
in expectation.



Analysis of Algorithm

Proof Sketch:

Let B; be the number of matches played by b; when it is not the
incumbent. Furthermore, let A; be the number of matches
played by b; against b; for i > j, and G; be the number of
matches when i < j (b; is incumbent).

Then the expected number of matches is

K-1 K-1

‘21 E[Bj] = ‘21 E[Aj] + E[Gj].

J= =

Leveraging the Random Walk Model, it can be shown that
E[A;j] <1+ Hk-1 — Hj, where H; is the harmonic sum.



Analysis of Algorithm

Next, we show that E[G/] <= 2.

Quick justification: probability that b; is not pruned in a match
against a superior incumbent bandit b; is less than half. So, in
expectation, it takes two such matches for b; to get pruned. m
That completes the proof of Lemma 3, and thus Theorem 1.
The bound in Theorem 1 is in fact information theoretically
optimal upto constant factors, which is the content of Theorem
2.



Analysis of Algorithm

Theorem 2. For any fixed € > 0 and any algorithm ¢ for the
dueling bandits problem, there exists a problem instance such
that

) K
R? = Q(logT)

where € = miny,p-P(b* > b).



Analysis of Algorithm

The proof is similar to the lower bound proof for multi-armed
bandit problem and is omited.

However, here is a heuristic explanation for why we might
suspect the theorem to true: Given a bandit b, suppose we need
to determine with high probability whether b is the best bandit.
We know that given two bandits, we can identify the better
bandit with probability at least 1 — 1/T after O(logT/€?)
comparisons. Since there are K bandits, we can expect to take K
times O(logT/e?) comparions to determine whether bandit b is
the best.



EXTENSIONS



Other models

[ Preference-based (stochastic) MAB ]

Axiomatic approaches Voting bandits

o Preference-based racin,
el Therhs

Beat-the-mean PAC rank elicitation

RUCB
( Statistical models )

Utility functions

Gradient descent I
Reduction to value-based
MAB

Fig. 1. A taxonomy of (stochastic) PB-MAB algorithms

Busa-Fekete 2014

where Q;; is the probability arm i beats arm j.



RUCB (Zohgi 2014)

O AssumrtioN: There exists a Condorcet winner: a bandit
that beats all other bandits in expectation
O RUCB doesn’t require an input horizon T.

o Interleaved Filter, Beat-the-mean, SAVAGE require
finite-time horizon.

O No need to guess exploration horizon

o More useful in practice

O Finite-time regret bound of order O(log t)



RUCB Algorithm

Foreachtimet =1,...:

1. Put all arms in a pool of potential champions.
2. Compare each arm a; against all other arms optimistically:
o Compute u;j(t) = p;j(t) + c;j(t), where c;(t) is confidence
bound, p;(t) is estimate of p;; so far.
o If ujj < 1 for any j, remove a; from pool of champions.

o Randomly choose champion arm a. from remaining
potential champions

o InTurrion: Comparisons in 2. are optimistic, so 2. becomes
champion easily.
3. Perform regular UCB using a. as benchmark. Choose
d = argmax; uc
o INTUITION: Avoids comparing a. with itself unless a. is
Condorcet winner.

4. Choose (a.,a4) to compare.



RUCB Algorithm

Algorithm 1 Relative Upper Confidence Bound
Input: « > 3, T €{1,2,...} U{oo}
1: W = [w;;] < Opxx // 2D array of wins: w;; is
the number of times a; beat a;
2: fort=1,...,T do
3 U:i=luy] = WXVWT + Wﬂ%T // All oper-
ations are element-wise; § := 1 for any z.
4: ui”—%foreachi:l,“‘,K‘
5. Pick any c satisfying u.; > % for all 7. If no such
¢, pick ¢ randomly from {1, ..., K}.
6:  d <« argmax; u;c
7. Compare arms a. and a4 and increment w.4 or
wq. depending on which arm wins.
8: end for
Return: An arm a. that beats the most arms, i.e., ¢

with the largest count # {_]| o > %}
T

Zoghi 2014



cumulative regret

best ranker rate (acouracy)

RUCB Results

LETOR NP2004 Dataset with 16 rankers

LETOR NP2004 Dataset with 32 rankers

LETOR NP2004 Dataset with 64 rankers
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Copeland Bandits

O What if Condorcet winner doesn’t exist?

o Stochastic transitivity not satisfied (sports competitions)
o Copeland winner always exists

o Copeland score: Number of pairwise victories minus
number of pairwise defeats.

O O(KlogT) regret bound without restrictions
o Previous results: O(K?log T) or O(K log T) with restrictions



Other extensions

O Borda winner: arm a; that satisfies }}; py; > 2; pij for all
i=1,...,K
o When averaged across all arms, a; has the highest
probability of winning a given comparison
O von Neumann winner: has at least a %50 chance of
winning
o Allows for randomized policies
O Convex, continuous setting

o Actions are comparisons between w, w’ € I/, for compact,
convex set U/ .
o Sublinear regret O(T%/*)



Application: Personalized Clinical Treatment

(with Yanan Sui, Vincent Zhuang and Joel Burdick)

10 mm

——

Medtronic ]
human
array

Image source:
williamcapicottomd.com

Each patient is unique
10° possible configurations! SCI Patient

[From Yisong Yuel



Conclusion

O Absolute metrics are insufficient in comparing rankings

O Dueling bandits useful for pairwise comparisons
O Interleaved filter: explore, then exploit

o Achieves sublinear regret O(;K2 log T)

o Matches theoretical lower bound
O Extensions

o RUCB

o Copeland bandits

o Personalized Medical Treatment
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