Crowdsourcing & Optimal Budget Allocation in Crowd Labeling

Madhav Mohandas, Richard Zhu, Vincent Zhuang

May 5, 2016

Table of Contents

- 1. Intro to Crowdsourcing
- 2. The Problem
- 3. Knowledge Gradient Algorithm
- 4. Experiments

3 Knowledge Gradient Algorithm

Active learning

Semi-supervised learning!

- Learner makes queries and receives outputs, choosing which examples to learn from
- Effective when labels are expensive or difficult to obtain
- Examples:
 - Streaming-based active learning (IWAL, last Thursday)
 - Near-Optimal Bayesian Active Learning for Decision Making (NOBAL, this Tuesday)
- Fundamental assumption: ∃ "oracle" or perfect labeler
- Abstract away the process of actually obtaining data

Crowdsourcing

- In real life, no oracle exists
- Both passive/active learning require labeled data
- Data is naturally unlabeled
- Obtaining accurate labels is difficult and expensive
- Getting expert annotations is often infeasible

Crowdsourcing

- Query labels from the crowd (e.g. Amazon Mechanical Turk)
- Introduces further challenges
- Workers are unreliable...
- Maximize overall accuracy with the knowledge that workers are unreliable

Examples

Object labeling

Crowdsourcing issues

- Low-paid labeling (~\$0.01 / instance, \$1 \$5 / hour) usually very noisy
- Get an instance labeled several times by different workers
- Infer the true label by some clever aggregation of labels (oftentimes domain-specific techniques)
- How do you accurately estimate labeling difficulty for a given instance?

Varying label quality

- How can we deal with varying quality of crowdsourced labels in algorithms?
- Use redundancy and aggregation
- Naive: Majority voting heuristic (error-prone, all annotators are not equal)
- 2nd level: Generative probabilistic models, inference (EM algorithm)
- Modern day: Variational inference approaches
 - Belief propagation (BP)
 - Mean field (MF)
- Efficient and possess strong optimality guarantees

Budget Allocation vs. Active Learning

Both amenable to crowdsourcing, but seek to answer very different questions:

- Active learning: how many samples does it take for our algorithm to produce a good model?
- Budget allocation: given a fixed budget, how do we allocate it so that we get the best data/model possible?

Budget Allocation Problem

- Budget requires you to decide whether to spend more on ambiguous instances, or instead save money and label other instances.
- Balance exploration (labeling other instances) and exploitation (continue labeling ambiguous instances)
- Previous work on crowdsourcing addressed parts independently
- This paper addresses both budget allocation (selection of instances) and the label aggregation (inference of true label) in a general framework

Where we're going

- Bayesian statistics setup
- Problem formulated \rightarrow finite-horizon Markov Decision Process
- Optimal budget allocation π obtained using DP
- Computationally intractable! State space $\propto \exp(T)$
- Introduce efficient approximate algorithm optimistic knowledge gradient
- Experiments and applications

3 Knowledge Gradient Algorithm

4 Experiments

Problem Setting

- Binary labeling task
- *K* "coins" (instances) with true labels $Z_i \in \{-1, 1\}$, $1 \le i \le K$
- Positive set: $H^* = \{i : Z_i = 1\}$
- Goal is to predict true label of each instance using labels generated by crowd members

Problem Setting

- All workers are identical and noiseless (perfectly reliable)
- Accuracy of the worker label only depends on the inherent difficulty of categorizing the instance
- Ambiguity of instance *i* parameterized by $\theta_i \in [0, 1]$
- Equivalently, θ_i is the fraction of workers that will label instance *i* as +1 (ensemble average)
- In coin-flipping interpretation, θ_i is bias of the coin
- Assume soft-label is consistent with true label, i.e.

$$Z_i = 1 \iff \theta_i \ge 0.5$$

Problem Setting

Interpretation of θ_i . Adult +1, not adult -1:

Budget Allocation Challenge

- Total budget of T
- Costs 1 unit to get a worker to label some instance i
- How to spend money in a way that maximizes overall accuracy?

Budget Allocation Challenge

Can formulate as a finite horizon decision process:

- At each timestep $0 \le t \le T 1$, choose an instance $i_t \in A = \{1, \dots, K\}$ to label, and receive label y_{i_t} . (Budget Allocation Phase)
- After final step make inference of true label, estimate positive set *H* and gain reward |*H* ∩ *H*^{*}| + |*H^c* ∩ (*H*^{*})^c|. (Label Aggregation Phase)
- Best prediction strategy is majority vote (proof in paper), since all workers are assumed to be identical.
- This assumption relaxed later on
- Goal: determine optimal (adaptive) budget allocation policy π to label instances

Here we assume no prior knowledge about the θ_i s

Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

What instance should we label next?

Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

Consider instance 1.

- If we label instance 1, majority vote guarantees us to predict ²/_i → +1.
- No improvement in expected accuracy, regardless of whether θ_i > 0.5 or θ_i < 0.5

Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

Consider instance 2.

- If $\theta_2 > .5$, then true label for instance 2 will be 1
- Current expected accuracy: .5
- If received label is 1 ($P(y_2 = 1) = \theta_2$), accuracy will be 1. If received label is -1, accuracy will be 0.
- So, expected accuracy after receiving label is θ₂. Improvement is θ₂ - .5 > 0

Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

Consider instance 2.

- If $\theta_2 < .5$, then true label for instance 2 will be -1
- Current expected accuracy: .5
- If received label is 1 ($P(y_2 = 1) = \theta_2$), accuracy will be 0. If received label is -1, accuracy will be 1.
- So, expected accuracy after receiving label is 1 θ₂. Improvement is 0.5 - θ₂ > 0

Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

Consider instance 3.

- If $\theta_3 > .5$, then true label for instance 3 will be +1
- Current expected accuracy: 1
- If received label is 1 ($P(y_3 = 1) = \theta_3$), accuracy will be 1. If received label is -1, accuracy will be 0.5
- So, expected accuracy after receiving label is $\theta_3 + 0.5(1 \theta_3)$. Improvement is $0.5(\theta_3 1) < 0$

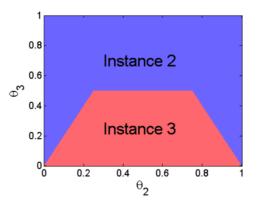
Instance	1st round label	2nd round label
Instance 1 (θ_1)	1	1
Instance 2 (θ_2)	1	-1
Instance 3 (θ_3)	1	

Consider instance 3.

- If $\theta_3 < .5$, then true label for instance 3 will be -1
- Current expected accuracy: 0
- If received label is 1 ($P(y_3 = 1) = \theta_3$), accuracy will be 0. If received label is -1, accuracy will be 0.5
- So, expected accuracy after receiving label is 0.5(1 θ₃). Improvement is 0.5(1 - θ₃) > 0

	Current Accuracy	y = 1	y = -1	Expected Accuracy	Improvement
$\theta_1 > 0.5$	1	1	1	1	0
$\theta_1 < 0.5$	0	0	0	0	0
$\theta_2 > 0.5$	0.5	1	0	θ_2	$\theta_2 - 0.5 > 0$
$\theta_2 < 0.5$	0.5	0	1	$1- heta_2$	$0.5 - \theta_2 > 0$
$\theta_3 > 0.5$	1	1	0.5	$\theta_3 + 0.5(1 - \theta_3)$	$0.5(\theta_3 - 1) < 0$
$\theta_3 < 0.5$	0	0	0.5	$0.5(1 - \theta_3)$	$0.5(1-\theta_3) > 0$

- Expected increase in accuracy for instance *i* is a function of the true value of θ_i
- No optimal choice in frequentist setting!



Decisi

Boundary

	Current Accuracy	y = 1	y = -1	Expected Accuracy	Improvement
$\theta_1 > 0.5$	1	1	1	1	0
$\theta_1 < 0.5$	0	0	0	0	0
$\theta_2 > 0.5$	0.5	1	0	θ_2	$\theta_2 - 0.5 > 0$
$\theta_2 < 0.5$	0.5	0	1	$1- heta_2$	$0.5-\theta_2>0$
$\theta_3 > 0.5$	1	1	0.5	$\theta_3 + 0.5(1 - \theta_3)$	$0.5(\theta_3 - 1) < 0$
$\theta_3 < 0.5$	0	0	0.5	$0.5(1 - \theta_3)$	$0.5(1-\theta_3) > 0$

- Originally made no assumptions on distributions of θ_i
- But if we assume θ_i are sampled from some prior distribution, we can compute the expected value of this improvement
- Optimal choice exists in Bayesian setting!

- K coin-flipping problem!
- The label $y_{i_t} \in \{-1, 1\}$ must follow $y_{i_t} \sim Bernoulli(\theta_{i_t})$
- We assumed all workers to be identical, so y_{it} depends only on θ_{it}
- Prior to any labels being collected, we assume that $\theta_i \sim Unif(0, 1) = Beta(1, 1)$
- Define a^t_i/b^t_i as 1+ the number of positive/negative labels we have gathered for instance *i* before time t. a⁰_i = b⁰_i = 1

- Define state of the decision process at (the start of) timestep t as S^t = {a^t_i, b^t_j}^K_{i=1} (K x 2 matrix)
- If we request a label for instance *i_t* in state S^t, our state will be updated according to:

$$S^{t+1} = \begin{cases} S^t + (\mathbf{e}_{i_t}, \mathbf{0}) & \text{if } y_{i_t} = 1; \\ S^t + (\mathbf{0}, \mathbf{e}_{i_t}) & \text{if } y_{i_t} = -1, \end{cases}$$

e_{it} is a *K* x 1 vector with 1 at the *i_t*-th entry and 0 at all other entries

Recall: $y_i \sim Bernoulli(\theta_i)$ $\theta_i \sim Unif(0, 1)$

So:

$$egin{aligned} \mathcal{P}(heta_i|\mathcal{S}^t) &= rac{\mathcal{P}(\mathcal{S}^t| heta_i)*\mathcal{P}(heta_i)}{\mathcal{P}(\mathcal{S}^t)} \ &\propto \mathcal{P}(\mathcal{S}^t| heta_i)*\mathcal{P}(heta_i) \ &\propto heta_i^{a_i^t-1}*(1- heta_i)^{b_i^t-1} \ &= Beta(a_i^t,b_i^t) \end{aligned}$$

Given state S^t and instance choice i_t , can transition to two different states S^{t+1} according to:

$$\Pr(y_{i_t} = 1 | S^t, i_t) = \mathbb{E}(\theta_{i_t} | S^t) = \frac{a_{i_t}^t}{a_{i_t}^t + b_{i_t}^t} \quad \text{and} \quad \Pr(y_{i_t} = -1 | S^t, i_t) = \frac{b_{i_t}^t}{a_{i_t}^t + b_{i_t}^t}.$$

7

Markov Decision Process

Starting to sound like a MDP:

- State: S^t , Action: instance i_t to label
- Next state is determined completely from previous state and action, according to transition probabilities
- Must develop notion of reward of taking action *i*_t in state *S*^t

Reward function

Define:

$$P_i^t = P(\theta_i \ge .5 | S_i^t) = P(\theta_i \ge .5 | a_i^t, b_i^t)$$

 $h(x) = max(x, 1 - x)$

Then:

 $h(P_i^t)$ = expected accuracy of the prediction (majority vote) for the label of instance *i* at time *t*

Reward function

$$R(S^t, i_t) = \mathbf{E}(h(P_{i_t}^{t+1}) - h(P_{i_t}^t)|S^t, i_t)$$

Reward for choosing action i_t in state S_t is the expected gain in accuracy of classifying instance *i* after receiving y_{i_t} .

Value function

$$V_{t_0}(S^{t_0}) = \sup_{\pi} \mathbf{E}^{\pi} (\sum_{t=t_0}^{T-1} R(S^t, i_t))$$

Value function

$$V(S^{t_0}) = \sup_{\pi} \mathbf{E}^{\pi} (\sum_{t=t_0}^{T-1} R(S^t, i_t))$$

$$V_t(S^t) = \max_i \Big(R(S^t, i) + \Pr(y_i = 1 | S^t, i) V_{t+1} \left(S^t + (\mathbf{e}_i, \mathbf{0}) \right) + \Pr(y_i = -1 | S^t, i) V_{t+1} \left(S^t + (\mathbf{0}, \mathbf{e}_i) \right) \Big),$$

Value function

$$V(S^{t_0}) = \sup_{\pi} \mathbf{E}^{\pi} (\sum_{t=t_0}^{T-1} R(S^t, i_t))$$

$$V_t(S^t) = \max_i \Big(R(S^t, i) + \Pr(y_i = 1 | S^t, i) V_{t+1} \left(S^t + (\mathbf{e}_i, \mathbf{0}) \right) + \Pr(y_i = -1 | S^t, i) V_{t+1} \left(S^t + (\mathbf{0}, \mathbf{e}_i) \right) \Big),$$

- If we know the value of every state, optimal policy follows
- Can derive value function using dynamic programming

Dynamic programming

- Downside: Number of possible states $|S^t|$ grows exponentially in *t*. (State is reachable at time *t* if $\sum_{i=1}^{K} (a_i^t + b_i^t) - (a_i^0 + b_i^0) = t)$
- Will develop computationally efficient approximate algorithm

Notation: $R(S^t, i_t) = R(a^t_{i_t}, b^t_{i_t})$ $R(a^t_{i_t}, b^t_{i_t}) = p_1 R_1(a^t_{i_t}, b^t_{i_t}) + p_2 R_2(a^t_{i_t}, b^t_{i_t})$

 R_1/R_2 is the reward if the received label y_{i_t} is 1/-1 p_1 and p_2 are the transition probabilities

MAB Approximation

Reformulate as finite-horizon Bayesian MAB problem:

- Arms are *K* instances
- Rewards R₁, R₂ are provided i.i.d from a fixed set of Bernoulli distributions

Bandit algorithms offer approximate solutions in the finite horizon

• e.g. Gittins index

Our ideal algorithm

Ideally, we want an approximation algorithm that is:

- computationally efficient
 - Gittins index is either O(T³) or O(T⁶), depending on if we want the exact index or not
- consistent
 - i.e. obtains 100% accuracy a.s. as $T \to \infty$

Knowledge Gradient

• Recall that we have two possible rewards for any given instance at each iteration:

$$R_1(a,b) = h(I(a+1,b)) - h(I(a,b))$$

$$R_2(a,b) = h(I(a,b+1)) - h(I(a,b))$$

• Greedily picks instance with largest expected reward:

$$i_t = \arg\max_i \left(R(a_i^t, b_i^t) = \frac{a_i^t}{a_i^t + b_i^t} R_1(a_i^t, b_i^t) + \frac{b_i^t}{a_i^t + b_i^t} R_2(a_i^t, b_i^t) \right)$$

- What happens if there is a tie?
 - Deterministic KG: pick smallest i
 - Randomized KG: pick randomly

Behavior of KG

- Deterministic KG is inconsistent
- Randomized KG performs badly empirically (behaves similarly to uniform sampling)

Optimistic Knowledge Gradient

• Optimistic KG greedily selects largest optimistic reward

$$i_t = \arg \max_i [R^+(a_i, b_i) = \max (R_1(a_i, b_i), R_2(a_i, b_i))]$$

- Runtime O(KT)
- Consistent!

Algorithm

- 1: Init *T* and prior parameters $\{a_i^0, b_i^0\}_{i=1}^K$
- 2: for t = 0, ..., T 1 do
- 3: Select the next instance i_t to label according to

$$i_t = rg\max_i \left[R^+(a_i, b_i) = \max(R_1(a_i, b_i), R_2(a_i, b_i)) \right]$$

4: Acquire label
$$y_i \in \{-1, 1\}$$

5: if $y_{i_t} = 1$ then
6: $a_{i_t}^{t+1} = a_{i_t}^t + 1$, $b_{i_t}^{t+1} = b_{i_t}^t$
7: else
8: $a_{i_t}^{t+1} = a_{i_t}^t$, $b_{i_t}^{t+1} = b_{i_t}^t + 1$
9: end if
10: end for

Consistency

Theorem

Assuming that a_i^0 and b_i^0 are positive integers, the optimistic KG is a consistent policy, i.e. as T goes to infinity, the accuracy will be 100% (i.e. $H_T = H^*$) almost surely.

Properties of R

Can write out *R*, *R*⁺ explicitly using Beta distribution. For example, if a > b, then $R^+(a, b) = R_1(a, b) = \frac{0.5^{a+b}}{aB(a,b)}$.

Lemma

1 R(a, b) is symmetric, i.e. $R^+(a, b) = R^+(b, a)$

2
$$\lim_{a\to\infty} R^+(a,a) = 0$$

- So For any fixed $a \ge 1$, $R^+(a+k, a-k) = R^+(a-k, a+k)$ is monotonically decreasing in k for k = 0, ..., a-1
- When a ≥ b, for any fixed b, R⁺(a, b) is monotonically decreasing in a. By the symmetry of R⁺(a, b), when b ≥ a, for any fixed a, R⁺(a, b) is monotonically decreasing in b.

Every instance labelled infinitely many times as $T \to \infty!$

- Let $\mathcal{I}(\omega)$ be set of all instances labelled only finitely many times for some infinite sample path ω
- Must exist some *T'* after which no instances in *I* will be labelled
- For any instance $j \notin I$, $R^+(a_j, b_j) \rightarrow 0$ (from lemma)
- Optimistic KG will select an instance in \mathcal{I} next, contradiction!

- Let $\eta_i(T) = a_i^T + b_i^T$ be number of times instance *i* has been picked before step *T*.
- Since each instance will be labelled infinitely many times as T → ∞, by the Strong Law of Large Numbers,

$$\lim_{T\to\infty}\frac{a_i^T-b_i^T}{\eta_i(T)}=2\theta_i-1$$

Recall that accuracy Acc(T) is defined as

$$rac{1}{K}|H\cap H^*|+|H^c\cap (H^*)^c|$$

where $H_T = \{i : a_i^T \ge b_i^T\}$ and $H^* = \{i : \theta_i \ge 0.5\}$. Then:

$$Pr\left(\lim_{T\to\infty} \operatorname{Acc}(T) = 1 \mid \{\theta_i\}_{i=1}^{K}\right)$$
$$= Pr\left(\lim_{T\to\infty} \frac{1}{K} \mid H \cap H^* \mid + \mid H^c \cap (H^*)^c \mid = 1 \mid \{\theta_i\}_{i=1}^{K}\right)$$
$$\geq Pr\left(\lim_{T\to\infty} \frac{a_i^T - b_i^T}{\eta_i(T)} = 2\theta - 1 \mid \{\theta_i\}_{i=1}^{K}\right)$$
$$= 1$$

Take expectation over all $\theta \neq 0.5$, since $\{\theta_i | \theta_i = 0.5\}$ has measure zero:

$$Pr(\operatorname{Acc}(T) = 1)$$

= $\mathbb{E}_{\{\theta_i:\theta_i\neq 0.5\}_{i=1}^{K}} \left[Pr\left(\lim_{T\to\infty} \operatorname{Acc}(T) = 1 \mid \{\theta_i\}_{i=1}^{K} \right) \right]$
= $\mathbb{E}_{\{\theta_i:\theta_i\neq 0.5\}_{i=1}^{K}} [1] = 1$

Basic intuition:

- Optimistic KG adequately explores all instances
- Given enough samples, we converge to the true θ 's

Worker Reliability

- Suppose we have *M* unreliable workers
- Let ρ_j be the probability of worker j getting the same label as a perfectly reliable noiseless worker and Z_{ij} be the label we receive from worker j on instance i
- Then we can parameterize the probability by ρ and θ :

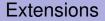
$$Pr(Z_{ij} = 1) = \rho_j \theta_i + (1 - \rho_j)(1 - \theta_i)$$

Assume Beta prior for ρ as well

- Note that the posterior is no longer a product of beta distributions
- Assume posterior factorizes (conditional independence):

$$p(heta_i,
ho_j | Z_{ij} = z) pprox p(heta_i | Z_{ij} = z) p(
ho_j | Z_{ij} = z) \ pprox Beta(a_i(z), b_i(z)) Beta(c_j(z), d_j(z))$$

 Must find a_i(z), b_i(z), c_j(z), d_j(z) using variational approximation (moment matching on marginals)



- features: apply Bayesian updates onto weights
- multiclass labelling: Dirichlet prior

- 2 The Problem
- 3 Knowledge Gradient Algorithm

First, consider identical, noiseless workers K = 21 instances, $(\theta_1, \theta_2, \theta_3...\theta_K) = (0, .05, .1, ...1)$

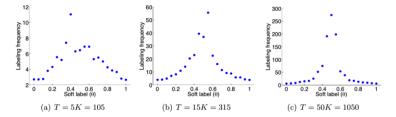


Figure 4: Labeling counts for instances with different levels of ambiguity.

- Averaged over 20 runs
- In general, more ambiguous instances get labeled more, but most ambiguous instance may not get most labels
- As budget grows, algorithm considers increasingly ambiguous instances

Experiments

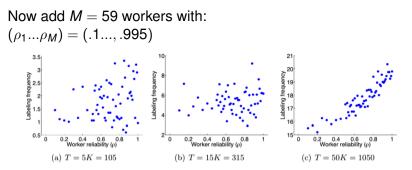
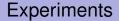


Figure 5: Labeling counts for workers with different levels of reliability.

As the budget increases, more reliable workers get more assignments.



How robust is Opt-KG under incorrect assumption of prior for θ ?

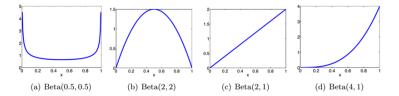


Figure 6: Density plot for different Beta distributions for generating each θ_i .

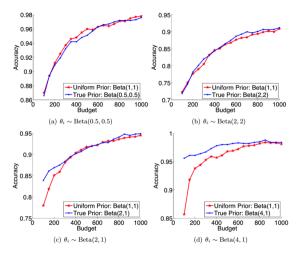


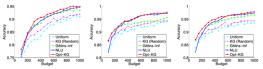
Figure 7: Comparison between Opt-KG using the uniform distribution and true generating distribution as the prior.

How does the accuracy of Opt-KG compare to the following algorithms:

- Uniform: Uniform sampling
- KG(Random): Randomized knowledge gradient (Frazier et al., 2008)
- **Gittins-Inf**: Gittins-indexed based policy for soliving infinite-horizon MAB problem with reward discounted by δ (Xie and Frazier, 2013)
- NLU: The "new labeling uncertainty" method (Ipeirotis et al., 2013)

Simulated Setting:

- Identical and noiseless workers
- K = 50 instances, with each $\theta_i \sim Beta(1, 1)$, $\theta_i \sim Beta(.5, .5)$, $\theta_i \sim Beta(4, 1)$
- Results show average of 20 runs on independently generated sets of {θ_i}^K_{i=1}



(a) $\theta_i \sim \text{Beta}(1,1)$ (True Prior) (b) $\theta_i \sim \text{Beta}(0.5, 0.5)$ (True Prior) (c) $\theta_i \sim \text{Beta}(0.5, 0.5)$ (Uni Prior)

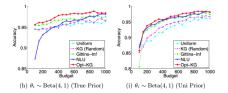
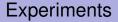


Figure 10: Performance comparison under the homogeneous noiseless worker setting.



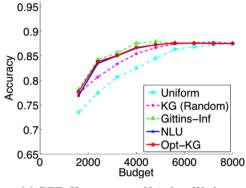
Test using real data set for recognizing textual entailment (RTE)

RTE task:

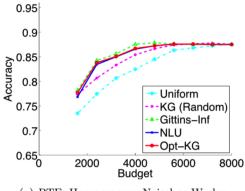
- Given ordered pair of sentences (s₁, s₂)
- Return 1 if s₂ can be inferred from s₁
- Example:
 - *s*₁: If you help the needy, God will reward you.
 - *s*₂: Giving money to a poor man has good consequences.

Data set:

- 800 instances (sentence pairs)
- Each instance labeled by 10 different workers
- 164 different workers
- First, consider homogeneous noiseless workers
- Results show average of 20 independent trials for each policy



(a) RTE: Homogeneous Noiseless Worker

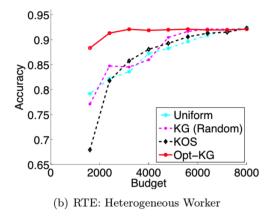


(a) RTE: Homogeneous Noiseless Worker

Budget T	2K = 1,600	4K=3,200	6K=4,800	10K = 8,000
Opt-KG	1.09	2.19	3.29	5.48
Gittins-inf	25.87	35.70	45.59	130.68

Table 4: Comparison in CPU time (seconds)

Now incorporate worker reliabilities: $\rho_j \sim Beta(4, 1)$ (i.e. workers behave reliably 80% of the time).



References

 Chen, Xi, Qihang Lin, and Dengyong Zhou. "Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing." *Proceedings of the 30th International Conference on Machine Learning (ICML-13).* 2013.