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Introduction

● Interaction between humans 
and most systems today:

○ User issues a command

○ User receives a result

○ User interacts with the 
results 

● In this way, the user provides 
implicit feedback about his/her 
utility function
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Web Search

● User types the query  
‘Who is Yisong Yue?’

● Search engine presents 
the ranking to the right

● User clicks on documents 
B and D

A

B

C

D

E
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Movie Recommendation

● User watches a number of 
movies

● Netflix makes 
recommendations

● User rents movie D after 
viewing all options
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Machine Translation

● User requests an online 
machine translator to 
translate a wiki page from 
language A to B

● System returns translated 
page

● User manually corrects 
some of the translated text



Implicit Feedback
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● In all the previous examples, the user provides implicit feedback

● Typically, this feedback is only an incremental improvement
○ Web page B is better than web page A

● Often very difficult for a human to specify the optimal result/prediction
○ Web pages should be ranked B,D,C,A,E



Key Contributions
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1. Formalize Coactive Learning as a model of interaction between a learning 
system and its user
○ Define notion of regret
○ Validate assumption of implicit user feedback

2. Derive learning algorithms for the Coactive Learning Model
○ Linear utility models
○ Convex cost functions
○ Show            regret bounds

3. Provide empirical evaluations of algorithms
○ Web search

4. Robotic Application
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Related Work
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● The Coactive Learning Model bridges the gap between 
two previously studied forms of feedback

○ Multi-armed Bandit Model
■ We choose one arm and learn the utility of that 

arm only

○ Learning with Experts Model
■ We choose one arm, but learn the utility of all 

arms

● Our model reveals information about two arms at every 
timestep



Related Work
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● Both the aforementioned models can be relaxed to the continuous setting

○ Multi-armed Bandit Model
■ Online Convex Optimization in the Bandit Setting

○ Learning with Experts Model
■ Online Convex Optimization

● Our model explores the continuous case with the Convex Preference 
Perceptron Algorithm 



Related Work
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● The most closely related problem is the Dueling Bandits Problem

● Recall that in this setting, the learning algorithm presents two arms to the user 
in some interleaved format

● The user gives implicit feedback that can be used to construct a pairwise 
ordering of the arms

● Our setting is different in that only one arm is given to the user

● The other is implicitly determined from user feedback
○ More details about this when we explain the model and experimental results 



Comparison of Similar Frameworks
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Coactive Learning Model
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● In the coactive learning model, both the human and the learning algorithm 
have the same goal of obtaining good results

● In each round 
○ Learning algorithm observes context 

○ Algorithm presents a structured object

○ User “returns” an improved object 



Coactive Learning Model - Utility

16

● The utility of      within the context  is given as the unknown function

● Generally, the learned feedback,      satisfies:

● We will also allow violations of this condition through 
user feedback 



Coactive Learning Model - Regret
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● Our algorithm should return objects with utility close to that of the optimal

● Thus, if our algorithm presents object      under context       at time   , it suffers 
a regret:

● The average regret over T steps is:

● Goal of the algorithm is to minimize this average regret



Coactive Learning Model - User Feedback

18

● User generates feedback    through an approximate utility-maximizing 
search over a subset     of 

● Usually, the returned feedback is NOT the optimal (unobservable) label

● Thus, we model settings where:
○ The user searches using various tools (i.e. query reformulation, browsing)
○ The user cannot manually optimize the argmax

● Model assumes that reliable preference feedback can be derived from 
observable user behavior
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● Need to quantify how much improvement     provides in the utility space

● Not needed for algorithm, but necessary for theoretical analysis

● Simplest case: strictly α-informative
○ α ∈ (0, 1] is an unknown parameter

● Utility of     is higher than that of     by a fraction     of the max possible utility 
range 

Quantifying User Feedback
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● Violations of the above feedback model are allowed by introducing slack 
variables 

○ Quantifies to what extent the strict α-informative modeling assumption is violated 

● Refer to this model as simply                          feedback

● Our regret bounds in the next sections will contain the term     and 
○ Note that we can express feedback of any quality, even the strict case by choosing 

Quantifying User Feedback
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● Now we consider the expected α-informative feedback
○ Even weaker feedback model
○ Positive utility gain is only achieved in expectation over user actions

● Expectation is over the user’s choice of     given     under context 
○ i.e. under a distribution 

● Allows for analysis of expected regret

Quantifying User Feedback



User Study: Preferences from Clicks
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● Experimentally validate that users actually exhibit a preference for predictions 
with higher utility (implicit feedback is reflective of changes in utility)

● Preference feedback is from clicks in web-search

● Asked subjects to answer 10 questions using Google search

○ Google results: 

○ User feedback (links clicked): 

○ Relevance of each document: 

■ Manually ranked by assessors, reflects ground-truth utility of link

■



Who is Yisong Yue?

23

A

B

C

D

E

User Clicks B A E

Feedback Vector B A E C D

5 4 3 3 2

Google A B C D E

4 5 3 2 3



Compare Utilities
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● Need to assess whether

● Use standard metric of information retrieval quality (Manning et al., 2008)

Google A B C D E

4 5 3 2 3

Feedback Vector B A E C D

5 4 3 3 2

DCG = 10.38

DCG = 10.82



Three Experimental Conditions

25

● Also check whether quality of feedback affected by quality of current prediction 

○ How     influences 

● Normal

○ Top 10 google results in order

● Reversed

○ Top results in reverse order

● Swapped

○ Top 2 results switched

Google (Normal) A B C D E

4 5 3 2 3

Google (Reversed) E D C B A

3 2 3 5 4

Google (Swapped) B A C D E

5 4 3 2 3



Results
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● All CDF’s shifted to right

○ Implicit feedback can indeed produce improvements in utility

○ Statistically significant



Results

27

● Additionally, the previous graph shows that users provide accurate preferences 

across a range of retrieval qualities (normal, random, swapped)

● Intuitively, a worse retrieval system may make it harder to find good results, but it 

also makes an easier baseline to improve upon

● This intuition is captured by                         feedback

● Tradeoff between      and     is application-specific

○ The following algorithms do not require knowledge of      or 
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Modeling Utility

29

● Linear function of           parameterized by 

●         : feature map dependent on x (context) and y (prediction)

●      :  optimal weight vector



Example: Robot Manipulation
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● Context (x): Environment (positions of other objects, etc)

● Prediction (y): Trajectory (list of waypoints)

●
○ Features such as distance from each waypoint to objects in environment
○ Can capture interaction between x and y



Preference Perceptron

31

● Goal: learn optimal weight vector       

● Update weight vector using difference in feature representations 



32

●    is parameter governing assumption that user feedback is    - informative

● Recall: User feedback is     -informative, with slack variables    :

 
● R is upper bound on 

Regret Bound of Preference Perceptron
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Interpreting the Regret Bound

Larger       → more 
informative feedback → 
lower regret



34

Interpreting the Regret Bound

Larger       → more 
informative feedback → 
lower regret

Larger       → worse 
violations of    -informative 
assumption → higher 
regret
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Interpreting the Regret Bound

Larger       → more 
informative feedback → 
lower regret

Larger       → worse 
violations of    -informative 
assumption → higher 
regret

Upper bound on 
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Interpreting the Regret Bound

● If strict      -informative assumption holds, slack terms vanish →                   regret

● Note: algorithm does not know    ; it just factors into the analysis



Outline of Proof
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1. Show

2. Upper bound                     in terms of

3. Upper bound                                  in terms of 

(using alpha-informative assumption)



1) Bounding 
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● Expanding               using our perceptron update 
rule                 gives us:
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1) Bounding 

From previous slide

Want to show this 
inequality holds
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1) Bounding 

Negative because our 
algorithm picked      
over 
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We have 
so 
(triangle inequality)

1) Bounding 

Negative because our 
algorithm picked      
over 
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We have 
so 
(triangle inequality)

From              and repeated 
application of the inequality 

1) Bounding 

Negative because our 
algorithm picked      
over 



2) Bounding 
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Using our previous result, we can find a bound on 

Update rule 
multiplied by 



2) Bounding 
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Using our previous result, we can find a bound on 

                       is our true 
utility function, summation 
follows from iterating 
equation on first line

Update rule 
multiplied by 
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2) Bounding 

From prev. slide
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2) Bounding 

Cauchy-Schwarz 
inequality

From step 1



3) Bounding 
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-informative 
feedback 
assumption

From step 2



● Standard perceptron (for multi-class classification)
○ Requires true label 
○ Analyzed in terms of number of mistakes made

● Preference perceptron
○ Uses implicit feedback 
○ Analyzed in terms of utility

Comparison to Standard Perceptron

48
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● Some applications have high volumes of feedback
○ Might not be possible to do an update after every round

 
● Consider a variant of Algorithm 1 that makes an update every k iterations

○ Uses wt obtained from the previous update until the next update

● It is easy to show the following regret bound for batch updates:

Batch Update
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● Follow the argument of Theorem 1, but take expectations over user feedback

Expected α-informative Feedback



Convex Loss Minimization

51

● We can generalize our results to minimize convex losses defined on the linear 
utility differences

● At every time step t, there is an (unknown) convex loss function 
○ Determines the loss 
○ The functions      are assumed to be non-increasing
○ Sub-derivatives of the     ‘s are assumed to be bounded

■                          for all t and for all 

● The vector       which determines the utility of yt under context xt 
○ Assumed from a closed and bounded convex set B whose diameter is |B| 



Convex Loss Minimization

52

● Main differences from Algorithm 1
○ There is a rate ηt associated with the update at time t 
○ After every update, the resulting vector  wt+1 is projected back to the set B



Theorem 4
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● Main differences from Theorem 1
○ ct(0) is the minimum possible convex loss
○ Under strict α-informative feedback, average loss approaches best achievable loss: 

■ Larger constant factors than Theorem 1
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Testing

55

● Empirically evaluate Preference Perceptron
○ Structured objects (rankings)

● Strong vs Weak Feedback
○ See how regret of algorithm changes with feedback quality
○ Different levels of α-informativity

● Noisy feedback
○ Directly uses user feedback
○ Compare to SVM



Learning to Rank
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● Evaluated perceptron on Yahoo! Learning to rank dataset

● Query-url feature vectors
○      for query q and URL i

○ Relevance rating 

○     : index of URL at position i in the ranking

● Joint feature map:



Procedure
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● Query qt at time t

● Perceptron presents ranking      that maximizes 
○ Equivalent to sorting URL’s by 

● Utility regret:



Strong vs. Weak Feedback
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● Goal: see how regret of algorithm changes with feedback quality
○ Different values of α 

● Given predicted ranking     , user goes down list until they find URL’s such that 
resulting      satisfies α-informativity

● Update          and repeat



Strong vs. Weak Feedback
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● Regret with α = 1.0 less than with α = 0.1

● Difference less than factor of 10



Noisy Feedback
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● Previous experiment: feedback based on actual utility values from optimal 

● Goal: use actual relevance labels from users

● Produces noisy feedback
○ No linear model can perfectly fit relevance labels



Noisy Feedback
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● Regret with Preference Perceptron significantly less than with SVM
● Preference Perceptron runs orders of magnitude more quickly
● Regret converges to non-zero value



Comparison with Dueling Bandits
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● Performs better than dueling bandits
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ROBOTS!
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● Teaching a robot to produce desired motions has been a long standing goal

● Past research has focused on mimicking expert’s demonstrations 
○ Autonomous helicopter flights
○ Ball-In-A-Cup Experiment

● Applicable to scenarios when it is clear to an expert what constitutes a good 
trajectory

○ Extremely challenging in some scenarios, especially involving high DoF manipulators
○ Users have to give

■ End-effector’s location at each time-step
■ Full configuration of the arm in a way that is spatially and temporally consistent



Video - Robotic Application 
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http://www.youtube.com/watch?v=uLktpkd7ojA

http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA


Robots + Coactive Learning

66

● User never discloses optimal trajectory (or provides optimal feedback) to the robot

 
● Robot learns preferences from sub-optimal suggestions on how trajectory can be 

improved

● Authors design appropriate features that consider
○ Robot Configurations
○ Object-object relations 
○ Temporal behavior 

● Learns score functions reflecting user preferences from implicit feedback



Robot Learning Model

67



Scoring Function
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Features
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Features
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Computing Trajectory Rankings
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● For a given task with context x, we would like to maximize the current 
scoring function

● Trajectory space is continuous and needs to be discretized to maintain 
argmax tractable
○ We can sample trajectories from the continuous space

■ Rapidly Exploring Random Tree (RRT)

● We can sort the trajectories by their trajectory scores to find the argmax



Trajectory Preference Perceptron (TPP)
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● Almost the same as algorithm in previous paper except we sample trajectories
● Proof can be adapted to show that the expected average regret is upper-bounded by 



Experiment
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● Evaluate approach on 16 pick-and-place robotic tasks in a grocery store checkout 
setting

● For each task, train and test on scenarios with different objects being manipulated 
and/or with a different environment

● An expert labeled 1300 trajectories on a Likert scale of 1-5 (where 5 is the best) on the 
basis of subjective human preferences 

● Evaluate quality of trajectories after robot has grasped the items and while it moves 
them for checkout



Baseline Algorithms
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● Geometric: It plans a path, independent of the task, using a BiRRT planner

● Manual: It plans a path following certain manually coded preferences
 

● Oracle-svm: This algorithm leverages the expert’s labels on trajectories and is trained using SVM-
rank in a batch manner

● MMP-online: This is an online implementation of Maximum margin planning (MMP)

● TPP: This is the algorithm from the paper
 

● Where applicable, algorithms are applied to two different settings
a. Untrained setting: algorithm learns preferences for the new task from scratch without observing any previous 

feedback 
b. Pretrained setting: algorithms are pre-trained on other similar tasks, and then adapt to the new task 



Results
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● TPP performs better than baseline algorithms
● All features combined together give the best performance



Results

76



Experiment: User Study
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● Five users used system to train Baxter for grocery checkout tasks
 

● A set of 10 tasks of varying difficulty level was presented to users one at a time
 

● Users were instructed to provide feedback until they were satisfied with the top ranked trajectory
○ Zero-G was provided kinesthetically on the robot
○ Re-rank was elicited in a simulator

 
● To quantify the quality of learning each user evaluated on a Likert scale of 1-5 (5 is the best) 

○ Their own trajectories (self score)
○ The trajectories learned of the other users (cross score) 
○ Those predicted by Oracle-svm

● Time a user took for each task was also recorded



User Feedback

78



Results: User Study
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● Within 5 feedbacks the users were 
able to improve over Oracle-svm
 

● Re-rank feedback was popular for 
easier tasks
 

● As difficulty increased the users relied 
more on zero-G feedback
 

● Each user took on average 5.5 minutes 
per-task

● Shows algorithm is realizable in 
practice on high DoF manipulators



Conclusion

80

Any Questions?
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Robot Learning Model

83

● The robot is given a context x
○ Describes the environment, the objects, and any other input relevant to the problem

 
● The robot has to figure out what is a good trajectory y for this context 

● We assume that the user has a scoring function s∗(x,y)
○ Reflects how much he values each trajectory y for context x
○ Higher score → better trajectory 
○ Scoring function cannot be observed directly
○ User can provide us with preferences that reflect this scoring function

● The robot’s goal is to learn a function s(x, y; w) 
○ Approximates the user’s true scoring function s∗(x, y) as closely as possible



Trajectory Features

84

● We compute features capturing robot’s arm configuration 
○ Location of its elbow and wrist, w.r.t. to its shoulder, in cylindrical coordinate system, (r,θ,z)

● Features to capture orientation and temporal behavior of the object to be manipulated 
○ Cosine of the object’s maximum deviation, along the vertical axis, from its final orientation at the goal location
○ Spectrogram for each one-third part for the movement of the object in x, y, z directions
○ Compute the average power spectral density in the low and high frequency part

●  Features for object-environment
○ Captures temporal variation of vertical and horizontal distances from its surrounding surfaces
○ Minimum vertical distance from the nearest surface below it
○ Minimum horizontal distance from the surrounding surfaces
○ Minimum distance from the table, on which the task is being performed
○ Minimum distance from the goal location
○ Feature from time-frequency spectrogram of object’s vertical distance from the nearest surface below it 



Features for Object-Object Interactions

85

● We enumerate waypoints of trajectory y as y1,..,yN
 

● Objects in the environment as O = {o1, .., oK }
 

● The robot manipulates the object ō ∈ O
 

● A few of the trajectory waypoints would be affected by 
the other objects in the environment 

○ We connect an object ok to a trajectory waypoint
■ If the minimum distance to collision is less than a 

threshold
■ If ok lies below ō 

○ The edge connecting yj and ok is denoted as (yj,ok) ∈ E 



Features for Object-Object Interactions
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● Attributes of an object determine trajectory quality
○ For every object ok, we consider a vector of M binary variables [lk

1 , .., lk
M ] 

○ Each lk
m = {0, 1} indicating whether object ok possesses property m or not 

● If the set of possible properties are {heavy, fragile, sharp, hot, liquid, electronic}, then
○ Laptop can have labels [0, 1, 0, 0, 0, 1] 
○ Glass Table can have labels [0, 1, 0, 0, 0, 0]

● For every (yj,ok) edge, we extract following four features φoo(yj,ok): 
○ Projection of minimum distance to collision along x, y and z (vertical) axis
○ Binary variable, that is 1, if ok lies vertically below ō, 0 otherwise

● We now define the score sO(·) over this graph as follows:



Robot Scoring Function

87

● We model the user’s scoring function with the following parameterized family of functions

● We further decompose the score function in two parts 

○ sO - Objects the trajectory is interacting with 
○ sE - Object being manipulated and the environment 



Atomic Predictions

88

● Movie recommendations from MovieLens dataset
○ 3090 movies rated by 6040 users
○ Over 1 million pairs

● Split data in half
○ First set:

■ Obtain feature vector mj for each movie j using SVD
○ Second set:

■ Consider problem of recommending movies based on features mj

● Simulates recommending movies to new user based on movie features from 
old users



Procedure
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● For each user i
○ Best least-squares approximation           to user utility

● At each t
○ Best available movie: mt* 
○ Recommended movie: mt 
○ User reveals preference
○ Recommended movie and feedback movie removed from subsequent set 

of candidate movies

● Utility regret: 



Strong vs. Weak Feedback
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● Goal: see how regret of algorithm changes with feedback quality
○ Different values of α 

● We recommend movie with maximum utility from current wt

● User returns a movie with smallest utility that satisfies  α-informativity

● Update wt+1 and repeat

● Regret calculated at each step and averaged over all users



Strong vs. Weak Feedback
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● Regret with α = 1.0 less than with α = 0.5 and α = 0.1
● Difference less than factor of 2 and 10, respectively
● Regret converges faster for higher values of α 



Noisy Feedback
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● Previous experiment: feedback based on actual utility values from optimal w*

● Goal: use actual feedback from users

● User receives recommendation

● User returns a movie one rating higher



Noisy Feedback
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● Regret with Preference Perceptron significantly less than with SVM

● Preference Perceptron runs orders of magnitude more quickly


