
Coactive Learning
Rohan Batra, Avishek Dutta, Nand Kishore, Siddharth Murching

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

2

3

Introduction

● Interaction between humans
and most systems today:

○ User issues a command

○ User receives a result

○ User interacts with the
results

● In this way, the user provides
implicit feedback about his/her
utility function

4

Web Search

● User types the query
‘Who is Yisong Yue?’

● Search engine presents
the ranking to the right

● User clicks on documents
B and D

A

B

C

D

E

5

Movie Recommendation

● User watches a number of
movies

● Netflix makes
recommendations

● User rents movie D after
viewing all options

6

Machine Translation

● User requests an online
machine translator to
translate a wiki page from
language A to B

● System returns translated
page

● User manually corrects
some of the translated text

Implicit Feedback

7

● In all the previous examples, the user provides implicit feedback

● Typically, this feedback is only an incremental improvement
○ Web page B is better than web page A

● Often very difficult for a human to specify the optimal result/prediction
○ Web pages should be ranked B,D,C,A,E

Key Contributions

8

1. Formalize Coactive Learning as a model of interaction between a learning
system and its user
○ Define notion of regret
○ Validate assumption of implicit user feedback

2. Derive learning algorithms for the Coactive Learning Model
○ Linear utility models
○ Convex cost functions
○ Show regret bounds

3. Provide empirical evaluations of algorithms
○ Web search

4. Robotic Application

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

9

Related Work

10

● The Coactive Learning Model bridges the gap between
two previously studied forms of feedback

○ Multi-armed Bandit Model
■ We choose one arm and learn the utility of that

arm only

○ Learning with Experts Model
■ We choose one arm, but learn the utility of all

arms

● Our model reveals information about two arms at every
timestep

Related Work

11

● Both the aforementioned models can be relaxed to the continuous setting

○ Multi-armed Bandit Model
■ Online Convex Optimization in the Bandit Setting

○ Learning with Experts Model
■ Online Convex Optimization

● Our model explores the continuous case with the Convex Preference
Perceptron Algorithm

Related Work

12

● The most closely related problem is the Dueling Bandits Problem

● Recall that in this setting, the learning algorithm presents two arms to the user
in some interleaved format

● The user gives implicit feedback that can be used to construct a pairwise
ordering of the arms

● Our setting is different in that only one arm is given to the user

● The other is implicitly determined from user feedback
○ More details about this when we explain the model and experimental results

Comparison of Similar Frameworks

13

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

14

Coactive Learning Model

15

● In the coactive learning model, both the human and the learning algorithm
have the same goal of obtaining good results

● In each round
○ Learning algorithm observes context

○ Algorithm presents a structured object

○ User “returns” an improved object

Coactive Learning Model - Utility

16

● The utility of within the context is given as the unknown function

● Generally, the learned feedback, satisfies:

● We will also allow violations of this condition through
user feedback

Coactive Learning Model - Regret

17

● Our algorithm should return objects with utility close to that of the optimal

● Thus, if our algorithm presents object under context at time , it suffers
a regret:

● The average regret over T steps is:

● Goal of the algorithm is to minimize this average regret

Coactive Learning Model - User Feedback

18

● User generates feedback through an approximate utility-maximizing
search over a subset of

● Usually, the returned feedback is NOT the optimal (unobservable) label

● Thus, we model settings where:
○ The user searches using various tools (i.e. query reformulation, browsing)
○ The user cannot manually optimize the argmax

● Model assumes that reliable preference feedback can be derived from
observable user behavior

19

● Need to quantify how much improvement provides in the utility space

● Not needed for algorithm, but necessary for theoretical analysis

● Simplest case: strictly α-informative
○ α ∈ (0, 1] is an unknown parameter

● Utility of is higher than that of by a fraction of the max possible utility
range

Quantifying User Feedback

20

● Violations of the above feedback model are allowed by introducing slack
variables

○ Quantifies to what extent the strict α-informative modeling assumption is violated

● Refer to this model as simply feedback

● Our regret bounds in the next sections will contain the term and
○ Note that we can express feedback of any quality, even the strict case by choosing

Quantifying User Feedback

21

● Now we consider the expected α-informative feedback
○ Even weaker feedback model
○ Positive utility gain is only achieved in expectation over user actions

● Expectation is over the user’s choice of given under context
○ i.e. under a distribution

● Allows for analysis of expected regret

Quantifying User Feedback

User Study: Preferences from Clicks

22

● Experimentally validate that users actually exhibit a preference for predictions
with higher utility (implicit feedback is reflective of changes in utility)

● Preference feedback is from clicks in web-search

● Asked subjects to answer 10 questions using Google search

○ Google results:

○ User feedback (links clicked):

○ Relevance of each document:

■ Manually ranked by assessors, reflects ground-truth utility of link

■

Who is Yisong Yue?

23

A

B

C

D

E

User Clicks B A E

Feedback Vector B A E C D

5 4 3 3 2

Google A B C D E

4 5 3 2 3

Compare Utilities

24

● Need to assess whether

● Use standard metric of information retrieval quality (Manning et al., 2008)

Google A B C D E

4 5 3 2 3

Feedback Vector B A E C D

5 4 3 3 2

DCG = 10.38

DCG = 10.82

Three Experimental Conditions

25

● Also check whether quality of feedback affected by quality of current prediction

○ How influences

● Normal

○ Top 10 google results in order

● Reversed

○ Top results in reverse order

● Swapped

○ Top 2 results switched

Google (Normal) A B C D E

4 5 3 2 3

Google (Reversed) E D C B A

3 2 3 5 4

Google (Swapped) B A C D E

5 4 3 2 3

Results

26

● All CDF’s shifted to right

○ Implicit feedback can indeed produce improvements in utility

○ Statistically significant

Results

27

● Additionally, the previous graph shows that users provide accurate preferences

across a range of retrieval qualities (normal, random, swapped)

● Intuitively, a worse retrieval system may make it harder to find good results, but it

also makes an easier baseline to improve upon

● This intuition is captured by feedback

● Tradeoff between and is application-specific

○ The following algorithms do not require knowledge of or

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

28

Modeling Utility

29

● Linear function of parameterized by

● : feature map dependent on x (context) and y (prediction)

● : optimal weight vector

Example: Robot Manipulation

30

● Context (x): Environment (positions of other objects, etc)

● Prediction (y): Trajectory (list of waypoints)

●
○ Features such as distance from each waypoint to objects in environment
○ Can capture interaction between x and y

Preference Perceptron

31

● Goal: learn optimal weight vector

● Update weight vector using difference in feature representations

32

● is parameter governing assumption that user feedback is - informative

● Recall: User feedback is -informative, with slack variables :

● R is upper bound on

Regret Bound of Preference Perceptron

33

Interpreting the Regret Bound

Larger → more
informative feedback →
lower regret

34

Interpreting the Regret Bound

Larger → more
informative feedback →
lower regret

Larger → worse
violations of -informative
assumption → higher
regret

35

Interpreting the Regret Bound

Larger → more
informative feedback →
lower regret

Larger → worse
violations of -informative
assumption → higher
regret

Upper bound on

36

Interpreting the Regret Bound

● If strict -informative assumption holds, slack terms vanish → regret

● Note: algorithm does not know ; it just factors into the analysis

Outline of Proof

37

1. Show

2. Upper bound in terms of

3. Upper bound in terms of

(using alpha-informative assumption)

1) Bounding

38

● Expanding using our perceptron update
rule gives us:

39

1) Bounding

From previous slide

Want to show this
inequality holds

40

1) Bounding

Negative because our
algorithm picked
over

41

We have
so
(triangle inequality)

1) Bounding

Negative because our
algorithm picked
over

42

We have
so
(triangle inequality)

From and repeated
application of the inequality

1) Bounding

Negative because our
algorithm picked
over

2) Bounding

43

Using our previous result, we can find a bound on

Update rule
multiplied by

2) Bounding

44

Using our previous result, we can find a bound on

 is our true
utility function, summation
follows from iterating
equation on first line

Update rule
multiplied by

45

2) Bounding

From prev. slide

46

2) Bounding

Cauchy-Schwarz
inequality

From step 1

3) Bounding

47

-informative
feedback
assumption

From step 2

● Standard perceptron (for multi-class classification)
○ Requires true label
○ Analyzed in terms of number of mistakes made

● Preference perceptron
○ Uses implicit feedback
○ Analyzed in terms of utility

Comparison to Standard Perceptron

48

49

● Some applications have high volumes of feedback
○ Might not be possible to do an update after every round

● Consider a variant of Algorithm 1 that makes an update every k iterations

○ Uses wt obtained from the previous update until the next update

● It is easy to show the following regret bound for batch updates:

Batch Update

50

● Follow the argument of Theorem 1, but take expectations over user feedback

Expected α-informative Feedback

Convex Loss Minimization

51

● We can generalize our results to minimize convex losses defined on the linear
utility differences

● At every time step t, there is an (unknown) convex loss function
○ Determines the loss
○ The functions are assumed to be non-increasing
○ Sub-derivatives of the ‘s are assumed to be bounded

■ for all t and for all

● The vector which determines the utility of yt under context xt
○ Assumed from a closed and bounded convex set B whose diameter is |B|

Convex Loss Minimization

52

● Main differences from Algorithm 1
○ There is a rate ηt associated with the update at time t
○ After every update, the resulting vector wt+1 is projected back to the set B

Theorem 4

53

● Main differences from Theorem 1
○ ct(0) is the minimum possible convex loss
○ Under strict α-informative feedback, average loss approaches best achievable loss:

■ Larger constant factors than Theorem 1

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

54

Testing

55

● Empirically evaluate Preference Perceptron
○ Structured objects (rankings)

● Strong vs Weak Feedback
○ See how regret of algorithm changes with feedback quality
○ Different levels of α-informativity

● Noisy feedback
○ Directly uses user feedback
○ Compare to SVM

Learning to Rank

56

● Evaluated perceptron on Yahoo! Learning to rank dataset

● Query-url feature vectors
○ for query q and URL i

○ Relevance rating

○ : index of URL at position i in the ranking

● Joint feature map:

Procedure

57

● Query qt at time t

● Perceptron presents ranking that maximizes
○ Equivalent to sorting URL’s by

● Utility regret:

Strong vs. Weak Feedback

58

● Goal: see how regret of algorithm changes with feedback quality
○ Different values of α

● Given predicted ranking , user goes down list until they find URL’s such that
resulting satisfies α-informativity

● Update and repeat

Strong vs. Weak Feedback

59

● Regret with α = 1.0 less than with α = 0.1

● Difference less than factor of 10

Noisy Feedback

60

● Previous experiment: feedback based on actual utility values from optimal

● Goal: use actual relevance labels from users

● Produces noisy feedback
○ No linear model can perfectly fit relevance labels

Noisy Feedback

61

● Regret with Preference Perceptron significantly less than with SVM
● Preference Perceptron runs orders of magnitude more quickly
● Regret converges to non-zero value

Comparison with Dueling Bandits

62

● Performs better than dueling bandits

Roadmap

1

Introduction

Related Work

Experiments

Robots

2 3 4 6

Coactive Learning
Model

5

Coactive Learning
Algorithms

63

ROBOTS!

64

● Teaching a robot to produce desired motions has been a long standing goal

● Past research has focused on mimicking expert’s demonstrations
○ Autonomous helicopter flights
○ Ball-In-A-Cup Experiment

● Applicable to scenarios when it is clear to an expert what constitutes a good
trajectory

○ Extremely challenging in some scenarios, especially involving high DoF manipulators
○ Users have to give

■ End-effector’s location at each time-step
■ Full configuration of the arm in a way that is spatially and temporally consistent

Video - Robotic Application

65

http://www.youtube.com/watch?v=uLktpkd7ojA

http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA

Robots + Coactive Learning

66

● User never discloses optimal trajectory (or provides optimal feedback) to the robot

● Robot learns preferences from sub-optimal suggestions on how trajectory can be

improved

● Authors design appropriate features that consider
○ Robot Configurations
○ Object-object relations
○ Temporal behavior

● Learns score functions reflecting user preferences from implicit feedback

Robot Learning Model

67

Scoring Function

68

Features

69

Features

70

Computing Trajectory Rankings

71

● For a given task with context x, we would like to maximize the current
scoring function

● Trajectory space is continuous and needs to be discretized to maintain
argmax tractable
○ We can sample trajectories from the continuous space

■ Rapidly Exploring Random Tree (RRT)

● We can sort the trajectories by their trajectory scores to find the argmax

Trajectory Preference Perceptron (TPP)

72

● Almost the same as algorithm in previous paper except we sample trajectories
● Proof can be adapted to show that the expected average regret is upper-bounded by

Experiment

73

● Evaluate approach on 16 pick-and-place robotic tasks in a grocery store checkout
setting

● For each task, train and test on scenarios with different objects being manipulated
and/or with a different environment

● An expert labeled 1300 trajectories on a Likert scale of 1-5 (where 5 is the best) on the
basis of subjective human preferences

● Evaluate quality of trajectories after robot has grasped the items and while it moves
them for checkout

Baseline Algorithms

74

● Geometric: It plans a path, independent of the task, using a BiRRT planner

● Manual: It plans a path following certain manually coded preferences

● Oracle-svm: This algorithm leverages the expert’s labels on trajectories and is trained using SVM-
rank in a batch manner

● MMP-online: This is an online implementation of Maximum margin planning (MMP)

● TPP: This is the algorithm from the paper

● Where applicable, algorithms are applied to two different settings
a. Untrained setting: algorithm learns preferences for the new task from scratch without observing any previous

feedback
b. Pretrained setting: algorithms are pre-trained on other similar tasks, and then adapt to the new task

Results

75

● TPP performs better than baseline algorithms
● All features combined together give the best performance

Results

76

Experiment: User Study

77

● Five users used system to train Baxter for grocery checkout tasks

● A set of 10 tasks of varying difficulty level was presented to users one at a time

● Users were instructed to provide feedback until they were satisfied with the top ranked trajectory
○ Zero-G was provided kinesthetically on the robot
○ Re-rank was elicited in a simulator

● To quantify the quality of learning each user evaluated on a Likert scale of 1-5 (5 is the best)

○ Their own trajectories (self score)
○ The trajectories learned of the other users (cross score)
○ Those predicted by Oracle-svm

● Time a user took for each task was also recorded

User Feedback

78

Results: User Study

79

● Within 5 feedbacks the users were
able to improve over Oracle-svm

● Re-rank feedback was popular for
easier tasks

● As difficulty increased the users relied
more on zero-G feedback

● Each user took on average 5.5 minutes
per-task

● Shows algorithm is realizable in
practice on high DoF manipulators

Conclusion

80

Any Questions?

Citations

81

● Shivaswamy, P., Joachims, T. (2015). Coactive Learning

● Jain, A., et al. (2013). Learning Trajectory Preferences for Manipulators via
Iterative Improvement

● Cornell University Robotics Learning Lab (http://pr.cs.cornell.edu/coactive/)

http://pr.cs.cornell.edu/coactive/

Extra Slides

82

Robot Learning Model

83

● The robot is given a context x
○ Describes the environment, the objects, and any other input relevant to the problem

● The robot has to figure out what is a good trajectory y for this context

● We assume that the user has a scoring function s∗(x,y)
○ Reflects how much he values each trajectory y for context x
○ Higher score → better trajectory
○ Scoring function cannot be observed directly
○ User can provide us with preferences that reflect this scoring function

● The robot’s goal is to learn a function s(x, y; w)
○ Approximates the user’s true scoring function s∗(x, y) as closely as possible

Trajectory Features

84

● We compute features capturing robot’s arm configuration
○ Location of its elbow and wrist, w.r.t. to its shoulder, in cylindrical coordinate system, (r,θ,z)

● Features to capture orientation and temporal behavior of the object to be manipulated
○ Cosine of the object’s maximum deviation, along the vertical axis, from its final orientation at the goal location
○ Spectrogram for each one-third part for the movement of the object in x, y, z directions
○ Compute the average power spectral density in the low and high frequency part

● Features for object-environment
○ Captures temporal variation of vertical and horizontal distances from its surrounding surfaces
○ Minimum vertical distance from the nearest surface below it
○ Minimum horizontal distance from the surrounding surfaces
○ Minimum distance from the table, on which the task is being performed
○ Minimum distance from the goal location
○ Feature from time-frequency spectrogram of object’s vertical distance from the nearest surface below it

Features for Object-Object Interactions

85

● We enumerate waypoints of trajectory y as y1,..,yN

● Objects in the environment as O = {o1, .., oK }

● The robot manipulates the object ō ∈ O

● A few of the trajectory waypoints would be affected by
the other objects in the environment

○ We connect an object ok to a trajectory waypoint
■ If the minimum distance to collision is less than a

threshold
■ If ok lies below ō

○ The edge connecting yj and ok is denoted as (yj,ok) ∈ E

Features for Object-Object Interactions

86

● Attributes of an object determine trajectory quality
○ For every object ok, we consider a vector of M binary variables [lk

1 , .., lk
M]

○ Each lk
m = {0, 1} indicating whether object ok possesses property m or not

● If the set of possible properties are {heavy, fragile, sharp, hot, liquid, electronic}, then
○ Laptop can have labels [0, 1, 0, 0, 0, 1]
○ Glass Table can have labels [0, 1, 0, 0, 0, 0]

● For every (yj,ok) edge, we extract following four features φoo(yj,ok):
○ Projection of minimum distance to collision along x, y and z (vertical) axis
○ Binary variable, that is 1, if ok lies vertically below ō, 0 otherwise

● We now define the score sO(·) over this graph as follows:

Robot Scoring Function

87

● We model the user’s scoring function with the following parameterized family of functions

● We further decompose the score function in two parts

○ sO - Objects the trajectory is interacting with
○ sE - Object being manipulated and the environment

Atomic Predictions

88

● Movie recommendations from MovieLens dataset
○ 3090 movies rated by 6040 users
○ Over 1 million pairs

● Split data in half
○ First set:

■ Obtain feature vector mj for each movie j using SVD
○ Second set:

■ Consider problem of recommending movies based on features mj

● Simulates recommending movies to new user based on movie features from
old users

Procedure

89

● For each user i
○ Best least-squares approximation to user utility

● At each t
○ Best available movie: mt*
○ Recommended movie: mt
○ User reveals preference
○ Recommended movie and feedback movie removed from subsequent set

of candidate movies

● Utility regret:

Strong vs. Weak Feedback

90

● Goal: see how regret of algorithm changes with feedback quality
○ Different values of α

● We recommend movie with maximum utility from current wt

● User returns a movie with smallest utility that satisfies α-informativity

● Update wt+1 and repeat

● Regret calculated at each step and averaged over all users

Strong vs. Weak Feedback

91

● Regret with α = 1.0 less than with α = 0.5 and α = 0.1
● Difference less than factor of 2 and 10, respectively
● Regret converges faster for higher values of α

Noisy Feedback

92

● Previous experiment: feedback based on actual utility values from optimal w*

● Goal: use actual feedback from users

● User receives recommendation

● User returns a movie one rating higher

Noisy Feedback

93

● Regret with Preference Perceptron significantly less than with SVM

● Preference Perceptron runs orders of magnitude more quickly

