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Introduction

e Interaction between humans
and most systems today:

o Userissues a command
o User receives a result

o User interacts with the
results

In this way, the user provides
implicit feedback about his/her
utility function




Web Search

User types the query
‘Who is Yisong Yue?”’

Search engine presents
the ranking to the right

User clicks on documents
B and D

Yisong Yue | Machine Learning Researcher @ Caltech @
www.yisongyue.com/

Yisong Yue is an assistant professor in the Computing and Mathematical Sciences Department at the
California Institute of Technology. His research interests lie ...

Research © About @

His research interests lie primarily in Yisong Yue is an assistant professor

the theory and application of ... in the Computing and ...

Please read before emailing® CS/CNS/EE 155: Machine ... ©
(please read before emailing) ... (CS/ICNS/EE 155) Machine ... in

please clearly state WHAT ... machine learning and data ...

More results from yisongyue.com »

Yisong Yue | LinkedIn ©

https:/fwww.linkedin.com/in/yisongyue ~

Pasadena, California - Assistant Professor at Caltech - Caltech

Join LinkedIn and access Yisong's full profile. ... Research in theory and application of statistical
machine learning. ... Bachelor of Science, Computer Science.

Random Ponderings ©

yyue.blogspot.com/ +

Jan 1, 2016 - by Taehwan Kim, Yisong Yue, Sarah Taylor, and lain Matthews I'll start with a shameless
piece of self-advertising. In collaboration with Disney ...

Yisong Yue - Google Scholar Citations
https://scholar.google.com/citations?7user=tEk4qoBAAAAJ ¥ Google Scholar

California Institute of Technology - caltech.edu

Interactively optimizing information retrieval systems as a dueling bandits problem. ¥ Yue, T Joachims.
Proceedings of the 26th Annual International Conference ...

Yisong Yue - Computing + Mathematical Sciences - Caltech ©
www.cms.caltech.edu/pecple/5388/profile ~ California Institute of Technology

Research Overview. Yisong Yue's research interests lie primarily in the theory and application of
statistical machine leaming. He is particularly interested in ...



Movie Recommendation
N[TF[IH > | Your Account & Help

Movies, TV shows, actors, directors, genres Q.

User watches a number of
movies

Watch Instantly ‘ Browse DVDs ‘ Your Queue Movies You'll ¥

Congratulations! Movies we think You will @

Add movies to your Queue, or Rate ones you've seen for even better suggestions.

Netflix makes
recommendations

Spider-Man 3 The Rundown

®RRR R R RS "R RRRR

5 Hot Interested S Not Interested S Mot Interestied 3 Mot Interested

User rents movie D after
viewing all options

Robot Chicken: Season 3
(2-Disc Series)

Las Vegas: Season 2
(6-Disc Series)

Star Wars: Episode Il
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Machine Translation

-
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e Userrequests an online | - | ,
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g = ;*:. Mever translate French
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Implicit Feedback

e In all the previous examples, the user provides implicit feedback

e Typically, this feedback is only an incremental improvement
o Web page B is better than web page A

e Often very difficult for a human to specify the optimal result/prediction
o Web pages should be ranked B,D,C,AE



Key Contributions

1.

Formalize Coactive Learning as a model of interaction between a learning
system and its user

o Define notion of regret

o Validate assumption of implicit user feedback

Derive learning algorithms for the Coactive Learning Model
o Linear utility models
o Convex cost functions
o Show 0<%) regret bounds
Provide empirical evaluations of algorithms
o Web search

Robotic Application
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The Coactive Learning Model bridges the gap between
two previously studied forms of feedback

o Multi-armed Bandit Model
m \We choose one arm and learn the utility of that
arm only

o Learning with Experts Model
m \We choose one arm, but learn the utility of all
arms

Our model reveals information about two arms at every
timestep

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
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Related Work
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Related Work

e Both the aforementioned models can be relaxed to the continuous setting

o Multi-armed Bandit Model
m  Online Convex Optimization in the Bandit Setting

o Learning with Experts Model
m Online Convex Optimization

e Our model explores the continuous case with the Convex Preference
Perceptron Algorithm

11



Related Work

The most closely related problem is the Dueling Bandits Problem

Recall that in this setting, the learning algorithm presents two arms to the user
in some interleaved format

The user gives implicit feedback that can be used to construct a pairwise
ordering of the arms

Our setting is different in that only one arm is given to the user

The other is implicitly determined from user feedback
o More details about this when we explain the model and experimental results

12



Comparison of Similar Frameworks

Dueling Bandits
Coactive Learning

pull two arms
pull an arm

Framework Algorithm Feedback
Bandits pull an arm observe cardinal reward for the arm pulled
Experts pull an arm observe cardinal rewards for all the arms

observe feedback on which one is better
observe another arm which is better

13
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Coactive Learning Model

e In the coactive learning model, both the human and the learning algorithm
have the same goal of obtaining good results

e Ineachround ¢
o Learning algorithm observes context x; € X

o Algorithm presents a structured object IN==;

o User “returns” an improved object y; € V

15



Coactive Learning Model - Utility

e The utility of ¥: within the context x; is given as the unknown function
U(Xta Yt)

e Generally, the learned feedback, 7; satisfies:

U(x,y:) > Ulx,y;)

e We will also allow violations of this condition through a-informative
user feedback

16



Coactive Learning Model - Regret

e Our algorithm should return objects with utility close to that of the optimal

e Thus, if our algorithm presents object ¥; under context I at time {, it suffers

a regret: T
Z U(xlb y:) o U(xta yt)
=l

e The average regret over T steps is:
1 T
REGr = t:zl U, y;) — Ulze, ye)

e (Goal of the algorithm is to minimize this average regret

17



Coactive Learning Model - User Feedback

User generates feedback ¥: through an approximate utility-maximizing
search over a subset ), of YV

Usually, the returned feedback is NOT the optimal (unobservable) label

y; = argmax, yU(X¢,y)

Thus, we model settings where:
O  The user searches using various tools (i.e. query reformulation, browsing)
O  The user cannot manually optimize the argmax

Model assumes that reliable preference feedback can be derived from
observable user behavior

18



Quantifying User Feedback

e Need to quantify how much improvement y; provides in the utility space

e Not needed for algorithm, but necessary for theoretical analysis

e Simplest case: strictly a-informative
o a € (0, 1] is an unknown parameter

U(xtv y_t) o U(th, yt) > &(U(xtv y:) o U(xta yt))

e Utility of u; is higher than that of ¥: by a fraction « of the max possible utility
range

19



Quantifying User Feedback

e Violations of the above feedback model are allowed by introducing slack
variables & > 0
o Quantifies to what extent the strict a-informative modeling assumption is violated

U(ze,gr) — Uy, y) 2 (U, yy) — U, ye)) — &

e Refer to this model as simply a-informative feedback

e Our regret bounds in the next sections will contain the term & and «
o Note that we can express feedback of any quality, even the strict case by choosing & = 0

20



Quantifying User Feedback

e Now we consider the expected a-informative feedback
o Even weaker feedback model
o Positive utility gain is only achieved in expectation over user actions

E Uz, ) — Uz, y0)| > (U2, y7) — Uz, i) — &

e Expectation is over the user’s choice of ¥: given ¥: under context ¢
o i.e.under adistribution P [y | y¢]

e Allows for analysis of expected regret

21



User Study: Preferences from Clicks

e Experimentally validate that users actually exhibit a preference for predictions
with higher utility (implicit feedback is reflective of changes in utility)

e Preference feedback is from clicks in web-search

e Asked subjects to answer 10 questions using Google search
o Google results: 'y
o User feedback (links clicked): y

o Relevance of each document: r(x,y[i])

m Manually ranked by assessors, reflects ground-truth utility of link

m r(x,d) €[0...5]

22



Who is Yisong Yue?

Yisong Yue | Machine Learning Researcher @ Caltech ©
www.ylsongyue.com/ v

Yisong Yue is an assistant professor in the Computing and Mathematical Sciences Department at the
California Institute of Technology. His research interests lie .
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Compare Utilities

DCGEQ10(x,y) = Z;,lgl ?&%

e Need to assess whether U(x,7;) > U(x, y;)

e Use standard metric of information retrieval quality (Manning et al., 2008)

Google (y) A B C D E

DCG =10.38
r(x,y|i]) 4 |5 |3 |2 |3
Feedback Vector (¥) B A |E |C D

DCG =10.82

r(x,y|i]) 5 4 3 3 2
24



Three Experimental Conditions

e Also check whether quality of feedback affected by quality of current prediction

o How y influences y

e Normal Google (Normal) A B C D E
o Top 10 google results in order (X, ¥yl[7]) 4 |5 |3 2 3

e Reversed
Google (Reversed) E D C B A

o Top results in reverse order .

P r(x,yli) 3 |2 |3 |5 |4

e Swapped
Google (Swapped) B A C D E

o Top 2 results switched
r(x, yli]) 5 |4 |3 |2 |3

25
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0.2} Swapped Condition -
‘ Reversed Condition
Sy All Conditions

Cumulative Distribution Function

0 .
-5 -4 -3 -2 -1 0 1 2 3 4
DCG(x,ybar)-DCG(x,y)

All CDF’s shifted to right

O

©)

Implicit feedback can indeed produce improvements in utility

Statistically significant
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e Additionally, the previous graph shows that users provide accurate preferences

across a range of retrieval qualities (normal, random, swapped)

e Intuitively, a worse retrieval system may make it harder to find good results, but it

also makes an easier baseline to improve upon

e This intuition is captured by a-informative feedback

e Tradeoff between ¢ and ¢ is application-specific

o The following algorithms do not require knowledge of v or & .
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U(z,y) = w, ¢(x,y)

e Linear function of ¢(z,y)parameterized by w?”
e o(z,y): feature map dependent on x (context) and y (prediction)

e w!: optimal weight vector

29



U(z,y) = w, ¢(x,y)

e Context (x): Environment (positions of other objects, etc)

e Prediction (y): Trajectory (list of waypoints)

o o(z,y)
o [Features such as distance from each waypoint to objects in environment
o Can capture interaction between x and y

30



Preference Perceptron

Algorithm 1 Preference Perceptron.

Initialize wi < O

fort=1to T do
Observe x;
Present y; < argmaxye-thT O(X¢,y)
Obtain feedback y;

Update: wyyy < Wi + (X4, ¥¢) — 0(Xt,¥¢)
end for

e Goal: learn optimal weight vector 7T

e Update weight vector using difference in feature representations

31



Regret Bound of Preference Perceptron

1« . v 2Rllw |
REGTZTZU(%,%)— (t; Yt ) S—TZ&

e (xis parameter governing assumption that user feedback is - informative

e Recall: User feedback is «-informative, with slack variables &;:

Uz, y) — Uz, y) > aU(xg,yl) — Uz, ye)) — &
e Risupperboundon [[¢f ([[¢(z,y)]| < R)

32



Interpreting the Regret Bound

Larger ¢ — more
informative feedback —
lower regret

33



Interpreting the Regret Bound

1 . 1 = 2R||w*||
REGT:TE:U(xtayt)_U('xtayt)S—E &+ /T

Larger ¢ — more Larger ft — Wworse
informative feedback — violations of Q~informative
lower regret assumption — higher

regret

34



Interpreting the Regret Bound

N 1 I, 2]
REGT:TZU(xt,yt)—U(xtayt) S e Z St +
t=1

Larger ¢ — more
informative feedback —
lower regret

a1

t=

Larger ft — worse Upper bound on
violations of O~informative Uz, y)
assumption — higher

regret

35



Interpreting the Regret Bound

T
1 3 . 1 2R||w”|
REGT:T U(xtayt)_U(xtayt)S&—TE &+ /T

1
e |Ifstrict (-informative assumption holds, slack terms vanish — O (ﬁ) regret

e Note: algorithm does not know ¢; it just factors into the analysis

36



Outline of Proof

1 , 1 ¢ 2R|Iw !
REGTZTZU(%,%)_ (¢, Yt) S—TZ&

1. Show ||wry1||* < 4R*T

T
2. Upper bound " U(xy, i) — Uz, i) in terms of ||wp.y4|

t=1
T

T
3. Upperbound N u(a,,y;) — Uy, y,) IN terms of > U, g0) = Ul o)

t=1

(using alpha-informative assumption)
37



1) Bounding||wr1]|

e Expanding |wr,,||* using our perceptron update
rule Wr41 = Wr + (¢($T, y_T) — ¢(.TT, yT)) giVGS us.:

W;+1WT+1 = W'_IT“WT + QW;(Cb(XTa }_’T) - qb(XT: YT))

I (QI)(XTa yT) o ';f)(XTa yT))T(gb(xTa yT) o ¢(XT3 yT)

38



1) Bounding||wr1]|

Wi Wit = Wpwr + 2wy (¢(x7, §7) — d(xX7, y7)) | From previous slide
+ (¢p(x7, 1) — P(%T, YT))T(Cb(XTa yr)— d(X1,¥yT)
< wpwr + 4R% < 4R?T.

Want to show this
inequality holds

39



1) Bounding||wr1]|

WC_]F—+1WT+1 = wiwrp + 2W;(¢(XT3 yr)— ¢(x7,¥71))

+ (¢(x7, §7) — d(x7,¥7)) ' (9(X7,¥7) — (X1, ¥T)
< wpwr + 4R% < 4R?T.

Negative because our
algorithm picked Yt
over Yt

40



1) Bounding [[wr1|?

- T T ~ Negative because our
Wr Wyl = WpWr + 2Wr (Cb(XT, YT) — Qﬁ(XT; YT)) algorithm picked Yt

+(6(xr, 1) — ¢(x1,¥1)) [($(%7, I7) — D(%T, ¥7) over
< wiwr +4R? < AR?T.

We have |¢(z,y)|| < R

S0 ||g(zr, yr) — ¢(zr,yr))|| < 2R
(triangle inequality)

41



1) Bounding [[wr1|?

- T T ~ Negative because our
Wr Wyl = WpWr + 2Wr (Cb(XT, YT) — Qﬁ(XT; YT)) algorithm picked Yt

+(6(xr, 1) — S(er,¥1)) [($(%7, I7) — D(%T, ¥7) over
<(wiwr +4R* < 4RT.

We have |¢(z,y)|| < R

S0 ||g(zr, yr) — ¢(zr,yr))|| < 2R
(triangle inequality)

From w; = 0 and repeated
application of the inequality

g5 5 2
W W41 < wpwr + 4R

42



2) Bounding > U(x.¥:) — Ulxe,yt)

T
Using our previous result, we can find a bound on ) U(x,y:) — U(xs, y¢)
t=1

— Update rul
Wr}__|_1W* = W'_—IEW* + (¢(xT, ¥1) — P (%X, yT))TW* m‘t)JItiapﬁercliJ Sy W

(U(xta )_rt) o U(xts yt)) . (9)

i i
=1

t

43



2) Bounding > U(x.¥:) — Ulxe,yt)

T
Using our previous result, we can find a bound on ) U(x,y:) — U(xs, y¢)
t=1

=
Wr+1 W

T

= Wr Wy + (¢(x7, ¥7) — d(XT, YT))TW*

Update rule
multiplied by w,

T

Z (U(xta )_rt) o U(xtayt)) I

t=1

(9)

ws@(xr,yr) isour true
utility function, summation
follows from iterating
equation on first line

44



2) Bounding > U(x.¥:) — Ulxe,yt)

From prev. slide

T )
D U@, g) — Uwe, ye) = wiqwa| < | |||
t=1

lwrial|* < 4R*T

T
Z Uz, ) — U, ye) < 2RVT ||lw. ||
t=1

45



2) Bounding > U(x.¥:) — Ulxe,yt)

Cauchy-Schwarz
inequality

T
D U@, g) — Uz, ye) = wiqwe < | |||
t=1

||’LUT+1||2 < 4R?*T From step 1

T
Z Uz, ) — U, ye) < 2RVT ||lw. ||
t=1

46



3) Bounding REG~y

Qv-informative

a(U(we,yr) — U, ye)) — & S Ulwe, 5t) — U, ye)

feedback
assumption
T
> U(e,5) — Ulwe, ) < 2RVT || From step 2
t—1

T

Q (e, yf) — Ulxe, yt)) &t < QR\FHU’*H
> (U Z
t=1

T *
REGr = ~ S Ulzy.yf) — U < b 2R|[w’]
T= 5 Z (¢, y; ) (@, yr) < th +

47



Comparison to Standard Perceptron

e Standard perceptron (for multi-class classification)
o Requires true label ¥,
o Analyzed in terms of number of mistakes made

e Preference perceptron

o Uses implicit feedback v:
o Analyzed in terms of utility

48



Batch Update

e Some applications have high volumes of feedback
o Might not be possible to do an update after every round

e Consider a variant of Algorithm 1 that makes an update every k iterations
o Uses w, obtained from the previous update until the next update

e Itis easy to show the following regret bound for batch updates:

2R||w. ||V

T
1

REG <—E +

T = aTt:1§t T

49



Expected a-informative Feedback

Corollary 3 Under expected a-informative feedback
model, the expected regret (over user behavior distri-
bution) of the preference perceptron algorithm can be
upper bounded as follows:

1 «—; 2R|w.|
E[REGT]gﬁZgﬁﬁ. (10)

t=1

e Follow the argument of Theorem 1, but take expectations over user feedback

50



Convex Loss Minimization

e \We can generalize our results to minimize convex losses defined on the linear
utility differences

e At every time step t, there is an (unknown) convex loss function ¢; : R — R
o Determines the loss c;(U(x¢,y:) — U(xg,y;))
o The functions C; are assumed to be non-increasing
o  Sub-derivatives of the C;‘s are assumed to be bounded
m () e[-G,0 foralltand forall § € R

e The vector w, which determines the utility of y, under context x,
o Assumed from a closed and bounded convex set B whose diameter is |B|

51



Convex Loss Minimization

Algorithm 2 Convex Preference Perceptron.
Initialize w; < O
fort=1to T do
Set n; < \/lg
Observe x;
Present y; < argmaxyeyth d(x¢,y)
Obtain feedback y;
Update: Wiy1 < Wy + 0:G(d(x¢, ¥¢) — ¢(X¢, Y1)
Project: Wy 1 < argmingeg ||[u — Wypq||?
end for

e Main differences from Algorithm 1
o There is a rate n, associated with the update at time t
o  After every update, the resulting vector w,,, is projected back to the set B

52



Theorem 4 For the convex preference perceptron, we
have, for any a € (0,1] and any w, € B,

Ut y) Ul i)) < 7 3t 0

26 BG |BIG  4R°G
tar 28ty G+t ﬁ) )

e Main differences from Theorem 1
o ¢/(0) is the minimum possible convex loss
o

|
[M]~

o Under strict a-informative feedback, average loss approaches best achievable loss:
m Larger constant factors than Theorem 1

)

35/~
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e Empirically evaluate Preference Perceptron
o Structured objects (rankings)

e Strong vs Weak Feedback
o See how regret of algorithm changes with feedback quality
o Different levels of a-informativity

e Noisy feedback

o Directly uses user feedback
o Compare to SVM

55



Learning to Rank

e Evaluated perceptron on Yahoo! Learning to rank dataset

e Query-url feature vectors
O x?for query g and URL j
O  Relevance rating ¥ € [0, 4]

O yi:index of URL at position i in the ranking

w xq
® Joint feature map: w q, :Zl

56



Procedure

e Queryq,attime t

e Perceptron presents ranking y{ that maximizes w; ¢(:,y)
T qt

o Equivalent to sorting URL’s by w; x,

o Ulility regret:

% ZE’:F:l Wﬂ—cl_ (@(Qta yQt*) - q'l)(qta y(h ))

57



Strong vs. Weak Feedback

e (Goal: see how regret of algorithm changes with feedback quality
o Different values of a

e Given predicted ranking Y, user goes down list until they find URL’s such that
resulting y; satisfies a-informativity

e Update w;1and repeat

58



Strong vs. Weak Feedback

avg. util regret

e Regret with a = 1.0 less than with a = 0.1

e Difference less than factor of 10

59



Noisy Feedback

e Previous experiment: feedback based on actual utility values from optimal W
e Goal: use actual relevance labels from users

e Produces noisy feedback
o No linear model can perfectly fit relevance labels

60



Noisy Feedback

1.6 @ SswM
' <] Pref. Perceptron

1.2

avg. util regret

=
2]
T

e Regret with Preference Perceptron significantly less than with SVM
e Preference Perceptron runs orders of magnitude more quickly
e Regret converges to non-zero value o



Comparison with Dueling Bandits

- —i — -
[ =
T

=i
T

avg. util regret
o o
o

o o
%] =N
T T

@ Dueling Bandit |1

4

Pref. Perceptron

o

10 10

-
=

e Performs better than dueling bandits
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ROBOTS!

e Teaching a robot to produce desired motions has been a long standing goal

e Past research has focused on mimicking expert’'s demonstrations
o Autonomous helicopter flights
o  Ball-In-A-Cup Experiment

e Applicable to scenarios when it is clear to an expert what constitutes a good
trajectory

o Extremely challenging in some scenarios, especially involving high DoF manipulators

o Users have to give
m End-effector’s location at each time-step
m  Full configuration of the arm in a way that is spatially and temporally consistent

64



Video - Robotic Application



http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA
http://www.youtube.com/watch?v=uLktpkd7ojA

Robots + Coactive Learning

e User never discloses optimal trajectory (or provides optimal feedback) to the robot

e Robot learns preferences from sub-optimal suggestions on how trajectory can be
improved

e Authors design appropriate features that consider

o Robot Configurations
o  Object-object relations
o Temporal behavior

e Learns score functions reflecting user preferences from implicit feedback

66



Robot Learning Model

Goal: Learn user preferences

67



Scoring Function

s}x, J{:\W) = qubo(x: y)|+ qubﬂ'(x: y)

Object-object Robot configuration
Interactions and

Environmentinteractions

ontext Trajecto

Connecting waypoints to
neighboring objects

Trajectory graph
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Features

Object attributes: {electronic, fragile, sharp, liquid, hot, ...}

E.g. Laptop: {electronic, fragile} Hermans et. al. ICRAw/s 2011
Knife: {sharp} ..... Koppula et.al. NIPS 2011

Object-object Interactions

Wg(p{}(x: y)

_ 1(edge, L, k)wj oo (x, y; edge)
= edges lkelabels W—/ T T

Trajectory graph

Distance features
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Features

s(x, y;w) =wd do (x, y)|+|Wi pp(x, y)

Features€ R7° Object-object Robot configuration
Interactions and

EnvironmentInteractions

1. Spectrogram
2. Object’s distance from horizontal and vertical surfaces
3. Object’s angle with vertical axis

4. Robot’swrist and elbow configuration in cylindrical co-ordinate
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Computing Trajectory Rankings

For a given task with context x, we would like to maximize the current

scoring function
%

y* = arg max s(z, y; wo, W)
Y

Trajectory space is continuous and needs to be discretized to maintain
argmax tractable
o We can sample trajectories from the continuous space
m Rapidly Exploring Random Tree (RRT)

We can sort the trajectories by their trajectory scores to find the argmax
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Trajectory Preference Perceptron (TPP)

Algorithm 1 Trajectory Preference Perceptron. (TPP)
Initialize w$’ < 0, w')) « 0
fort =1to7'do
Sample trajectories {y(), ..., y(™}
(t) (t))

Y = argmaz,s(c:, y; wy' , Wg
Obtain user feedback

wi — w® + do (e, 5t) — bo(xe, ye)
wgﬂ) — wg) + ¢e(zt, Ut) — OE(Tt, Yt)

end for

e Almost the same as algorithm in previous paper except we sample trajectories
e Proof can be adapted to show that the expected average regret is upper-bounded by

E[REGr] < O(ZLz + 5 ¥il, &)

72



e Evaluate approach on 16 pick-and-place robotic tasks in a grocery store checkout
setting

e For each task, train and test on scenarios with different objects being manipulated
and/or with a different environment

e An expert labeled 1300 trajectories on a Likert scale of 1-5 (where 5 is the best) on the
basis of subjective human preferences

e Evaluate quality of trajectories after robot has grasped the items and while it moves
them for checkout
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Baseline Algorithms

e Geometric: It plans a path, independent of the task, using a BiRRT planner
e Manual: It plans a path following certain manually coded preferences

e Oracle-svm: This algorithm leverages the expert’s labels on trajectories and is trained using SVM-
rank in a batch manner

e  MMP-online: This is an online implementation of Maximum margin planning (MMP)
e TPP: This is the algorithm from the paper

e Where applicable, algorithms are applied to two different settings
a. Untrained setting: algorithm learns preferences for the new task from scratch without observing any previous

feedback
b.  Pretrained setting: algorithms are pre-trained on other similar tasks, and then adapt to the new task
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Table 1:
of features in untrained setting. Table contains average
nDCG@1(nDCG@3) values over 20 rounds of feedback.

Comparison of different algorithms and study

Human

. Manipulation Environment

Algorithms centric centric centric Mean
Geometric 0.46 (0.48) 0.45(0.39) 0.31(0.30) 0.40(0.39)
Manual 0.61 (0.62) 0.77 (0.77) 0.33(0.31) 0.57 (0.57)
2 Obj-obj interaction  (0.68 (0.68) 0.80(0.79) 0.79 (0.73) 0.76 (0.74)
&5 Robot arm config 0.82 (0.77) 0.78 (0.72) 0.80 (0.69) 0.80(0.73)
Hg Object trajectory 0.85 (0.81) 0.88 (0.84) 0.85(0.72) 0.86(0.79)
& Object environment  0.70 (0.69) 0.75(0.74) 0.81 (0.65) 0.75 (0.69)
TPP (all features) 0.88 (0.84) 0.90 (0.85) 0.90 (0.80) 0.89 (0.83)
MMP-online 0.47 (0.50) 0.54 (0.56) 0.33 (0.30) 0.45 (0.46)

e TPP performs better than baseline algorithms
e All features combined together give the best performance
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(a)Same environment, different object (b)New Environment, same object (c)New Environment, different object

Figure 5: Study of generalization with change in object, environment and both. Manual, Oracle-SVM, Pre-
trained MMP-online (—), Untrained MMP-online (- -), Pre-trained TPP (—), Untrained TPP (- -).
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Experiment: User Study

e Five users used system to train Baxter for grocery checkout tasks
e A set of 10 tasks of varying difficulty level was presented to users one at a time

e Users were instructed to provide feedback until they were satisfied with the top ranked trajectory
o Zero-G was provided kinesthetically on the robot
o Re-rank was elicited in a simulator

e To quantify the quality of learning each user evaluated on a Likert scale of 1-5 (5 is the best)
o  Their own trajectories (self score)
o  The trajectories learned of the other users (cross score)
o  Those predicted by Oracle-svm

e Time a user took for each task was also recorded
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User Feedback
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Results: User Study

Table 2: Shows learning statistics for each user averaged over
all tasks. The number in parentheses is standard deviation.

* V\Slthi,?  feedbacks thg uslers were User T Reranking #Zero-G  Average Trajectory Quality
=12l b pteits @l lEtedEsatn feedback feedback time (min.) self Cross
1 54@4.1) 33(34) 78(49) 3.8(0.6) 4.0(1.4)

e Re-rank feedback was popular for
easier tasks

2 1.8 (1.0) 1.7 (1.3} 46(1.7) 43(1.2) 3.6(1.2
o 2.9 (0.8) 2.0 (2.0) 5029 440.7 3.2(1.2
4 3.2(2.0) 1.5 (0.9) 53019 30(0.2y 3.7(.9
e As difficulty increased the users relied 5 3.6(1.0) 1.9 (2.1) 5.02.3) 3.5(1.3) 3.3(0.0)

more on zero-G feedback

161 [ Zero-G Feedbac kJ [ Real Time 16
; 14{{= Re-Ranking Feedvack 14
e Each user took on average 5.5 minutes = G5
912 <
per-task 10 10 %
T 8 8
. . . . | -
e  Shows algorithm is realizable in £ 6 6 =
practice on high DoF manipulators g2-0 v e 3] ‘;[ii 4 ¢
wv 15 M-X Oracle-svm 2
! 0@ chance |
105 173 23 1 1 2 78 9 10°
#Feedback/#Total Feedback Task No

Figure 6: (Left) Average quality of the learned trajectory af-
ter every one-third of total feedback. (Right) Bar chart show-
ing the average number of feedback and time required for
each task. Task difficulty increases from 1 to 10. .



Conclusion

Any Questions?
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e Shivaswamy, P., Joachims, T. (2015). Coactive Learning

e Jain, A, et al. (2013). Learning Trajectory Preferences for Manipulators via
Iterative Improvement

e Cornell University Robotics Learning Lab ( )
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http://pr.cs.cornell.edu/coactive/

Extra Slides
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Robot Learning Model

e The robot is given a context x
o Describes the environment, the objects, and any other input relevant to the problem

e The robot has to figure out what is a good trajectory y for this context

e We assume that the user has a scoring function s*(x,y)

Reflects how much he values each trajectory y for context x

Higher score — better trajectory

Scoring function cannot be observed directly

User can provide us with preferences that reflect this scoring function

o

O O O

e The robot’s goal is to learn a function s(x, y; w)
o  Approximates the user’s true scoring function s*(x, y) as closely as possible
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Trajectory Features

e We compute features capturing robot’s arm configuration

o

Location of its elbow and wrist, w.r.t. to its shoulder, in cylindrical coordinate system, (r,0,z)

e Features to capture orientation and temporal behavior of the object to be manipulated

@)
@)
@)

Cosine of the object’s maximum deviation, along the vertical axis, from its final orientation at the goal location
Spectrogram for each one-third part for the movement of the object in x, y, z directions
Compute the average power spectral density in the low and high frequency part

e Features for object-environment

o

O O O O O

Captures temporal variation of vertical and horizontal distances from its surrounding surfaces

Minimum vertical distance from the nearest surface below it

Minimum horizontal distance from the surrounding surfaces

Minimum distance from the table, on which the task is being performed

Minimum distance from the goal location

Feature from time-frequency spectrogram of object’s vertical distance from the nearest surface below it
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Features for Object-Object Interactions

e \We enumerate waypoints of trajectory y as y,,..,y
e Objects in the environment as O = {o,, .., 0, }
e The robot manipulates the object6 € O

e A few of the trajectory waypoints would be affected by

the other objects in the environment
o We connect an object o, to a trajectory waypoint
m If the minimum distance to collision is less than a
threshold
m Ifo, lies below 6
o  The edge connecting Y, and o, is denoted as (yj,ok) eE
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Features for Object-Object Interactions

® Attributes of an object determine trajectory quality
o For every object o,, we consider a vector of M binary variables [ ", .., | ]
o Each| ™= {0, 1} indicating whether object o, possesses property m or not

e If the set of possible properties are {heavy, fragile, sharp, hot, liquid, electronic}, then
o Laptop can have labels [0, 1, 0, 0, 0, 1]
o Glass Table can have labels [0, 1, 0, 0, 0, 0]
e Forevery (yj,ok) edge, we extract following four features ¢_ 0(yJ.,ok):
o  Projection of minimum distance to collision along x, y and z (vertical) axis
o Binary variable, that is 1, if o, lies vertically below 0, O otherwise

e  We now define the score s(*) over this graph as follows:

M
sol@yswo) = Y, Y Blwpg - boo(ys,0k))

(yj,0r)€EE P,g=1
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Robot Scoring Function

e We model the user’s scoring function with the following parameterized family of functions
8(:17, Y w) = W~ é(wa y)

e We further decompose the score function in two parts
o s, - Objects the trajectory is interacting with
o s_- Object being manipulated and the environment

s(z,y; wo,wg) = so(z,y;wo) + se(z,y;wg) = wo - po(x,y) + wg - d¢r(z,y)
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Atomic Predictions

e Movie recommendations from MovieLens dataset
o 3090 movies rated by 6040 users
o Over 1 million pairs

e Split data in half
o First set:
m Obtain feature vector m, for each movie j using SVD
o Second set:
m Consider problem of recommending movies based on features m,

e Simulates recommending movies to new user based on movie features from
old users
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Procedure

e Foreach useri
o Best least-squares approximation w/ m;to user utility

e Ateacht
o Best available movie: m,,
o Recommended movie: m,
o User reveals preference
o Recommended movie and feedback movie removed from subsequent set
of candidate movies

e Ultility regret: oo
1 "
T Zt:l Wik (mf* _mt)
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Strong vs. Weak Feedback

e (Goal: see how regret of algorithm changes with feedback quality
o Different values of a

e We recommend movie with maximum utility from current w,
e User returns a movie with smallest utility that satisfies a-informativity
e Update w,, and repeat

e Regret calculated at each step and averaged over all users
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Strong vs. Weak Feedback

L |

(# 3]
T

T —T—TT

L#1
|

avg. util regret
w B

M
T

e Regretwitha=1.0less thanwitha=0.5and a=0.1
e Difference less than factor of 2 and 10, respectively

e Regret converges faster for higher values of a o



Noisy Feedback

e Previous experiment: feedback based on actual utility values from optimal w,
e Goal: use actual feedback from users
e User receives recommendation

e User returns a movie one rating higher

92



Noisy Feedback

@ SwM
<] Pref. Perceptron| |

4]
T

avg. util regret
w
T T
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T
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t

e Regret with Preference Perceptron significantly less than with SVM

e Preference Perceptron runs orders of magnitude more quickly o



