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Normal	Regression:	Squared	Loss

𝐷 = {(𝑥&,𝑦&)}	&∈,

𝑦& = 𝑥& + 𝜖 𝑓0(𝑥)

Regression:	

argmin
0

∑
&
𝑦& − 𝑓0(𝑥&)	 9



Normal	Regression:	Uncertainty



Problems	with	normal	regression

What is the uncertainty in parameter estimates?



Introduction:	framework	of	Bayesian	
Optimization



Bayes’	Rule

𝑃 𝜃 𝐷 =
𝑃(𝐷|𝜃)P(θ) 

𝑃(𝐷)
P(θ) the prior, the distribution of the parameter(s) before any 
data is observed

𝑃 𝜃 𝐷 the posterior, the distribution of the parameter(s) after 
taking into account the observed data

𝐿 𝜃 𝐷 = 𝑃(𝐷|𝜃) the likelihood function, the distribution of the 
observed data conditional on its parameters

𝑃 𝐷 = ∫0𝑃(𝐷|𝜃)𝑃(𝜃)𝑑𝜃 the marginal likelihood, the distribution 
of the observed data marginalized over the parameter(s)



Difference	between	parametric	and	
non-parametric	statistics

i.e. finite set of weights + specified model class vs general 
model class



Set P(𝜃)	and compute:

𝑃 𝜃 𝐷 =
𝑃(𝐷|𝜃)P(θ) 

𝑃(𝐷)

𝑝 𝐷 𝜃 ~	𝒩(𝜇,𝜎)

𝑝(𝜃) ~ 𝒩(0,1)

𝑃 𝐷 𝜃 = 𝑃({𝑦&}| 𝑥& , 𝜃)

𝑃 𝐷 = ∫0𝑑𝜃
I𝑃 𝐷 𝜃I 𝑃(𝜃I)

Bayesian	Regression



Bayesian	Regression

Dataset:

New point (𝑥∗,𝑦∗)?

𝑃 𝑦∗ 𝑥∗,𝐷 = ∫ 𝑃 𝑦∗ 𝑥∗,𝜃, 𝐷 𝑃 𝜃 𝐷 𝑑𝜃



Gaussian	Processes		
Random	Process	Definition:

Gaussian	Process	Definition	:

A Gaussian process is a stochastic process if for every finite set of indices

t1, . . . , tk in the index set T , Xt1,t2,...,tk = (Xt1 , Xt2 , . . . , Xtk) is a multivari-

ate Gaussian random variable.

Given a probability space (⌦,F , P ), an Rq
-valued stochastic process is a collec-

tion of Rq
-valued random variables on ⌦, indexed by a totally ordered set T .

That is, a stochastic process X is a collection

{Xt : t 2 T}

where each Xt is an Rq
-valued random variable on ⌦.



Gaussian	Processes:		
Alternative	Gaussian	Process	Definition	(Ghahramani):

A Gaussian process X : ⌦ ! f(Rn ! Rq
) could be seen as a distribution

over functions f mapping from Rn
to Rq

, such that (f(x1), f(x2), ..., f(xk)) is

a multivariate Gaussian for every finite set of x1, . . . , xk.

Remark

• Compared to other definition Rn represents index set T

• Notice that f(x) are random variables



Gaussian	Processes:		

f ⇠ GP(µ(x),K(y, z)) denotes that f is sampled from a gaussian process and
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where µ(x) is called mean function and K(y, z) is the kernel function !

• µ(x) could be any function!

• K : Rn ⇥ Rn ! R+
0 need to be symmetric and satisfy Mercer’s condition!



Gaussian	Processes:	The	Kernel	function		
• K(x, y) denotes covariance between random variables f(x) and f(y)

• K(x, y) = 0 implies random variable f(x) and f(y) are independent (be-

cause multivariate gaussian. . . )

• K(x, y) =

p
K(x, x)

p
K(y, y) implies f(x) and f(y) are linearly depen-

dent. (Proof: Determinant of Covariance Matrix vanishes)

Different	Choices	of	
Kernels	make	the	GP	
emit	different	forms
and	levels	of	
smoothness	of	
sample	functions



Gaussian	Processes:	Matern Kernels



Gaussian	Processes:	RQ	Kernels



Gaussian	Process:	
Prediction	problem,	known	kernel

What	is	p(f(x*)|{y_i})	?

Problem Statement:

Assume we know, f is sampled from GP (0,K(x, y)), we have observed noisy

measurements yi = f(xi)+✏i, where ✏i ⇠ N (0,�

2
) i.i.d and we want to estimate

the function f at the location x

⇤
, i.e. we are interested in predicting f(x

⇤
).



Gaussian	Process:	
Prediction	Problem	Solution

Denote X = [x1;x2; . . . ;xk] and K(X,Y )i,j = K(xi, yj), then because of prop-

erties of multivariate gaussians (independence, sums of gaussians...) we yield


Y

f(x

⇤
)

�
⇠ N

✓
0,


K(X,X) + �I K(X,x⇤)

K(x⇤, X) K(x

⇤
, x

⇤
)

�◆

Further, by using laws of conditional pdf’s for multivariate Gaussians, we obtain

finally the posterior distribution:

f(x

⇤
)| {yi} ⇠ N

�
¯

f(x

⇤
),�

2⇤�

where

¯

f(x

⇤
) = K(x

⇤
, X)

�
K(x

⇤
, X) + �

2I
��1

Y

�

2⇤
= K(x

⇤
, x

⇤
)�K(x

⇤
, X)

�
K(X,X) + �

2I
��1

K(X,x

⇤
)



Gaussian	Process:	
Prediction	Problem	Solution

• Minimum	
Variance	
estimator	of	f

• Uncertainty	
envelop	
certifying	
quality	of	
predictions



Gaussian	Process:	
Prediction	problem,	unknown	kernel

What	is	p(f(x*)|{y_i})	?

Problem Statement:

Assume we know, f is sampled from GP (0,K(x, y, ✓)), we have observed noisy

measurements yi = f(xi)+✏i, where ✏i ⇠ N (0,�

2
) i.i.d and we want to estimate

the function f at the location x

⇤
, i.e. we are interested in predicting f(x

⇤
). Also

✓ is an unknown parameter on which the Kernel function depends.



Gaussian	Process:
Unknown	Kernel	Parameter

Approach	1:	Use	point-estimate	of	theta

(Recall notation: X = [x1;x2; . . . ;xk], Y = [y1; y2; . . . ; yk] )

Step	1:	Estimate	parameter	from	observations

ML approach

• We can compute pX(Y |✓) since Y |✓ ⇠ N (0,K(X,X, ✓))

• ˆ✓ML = argmax✓pX(Y |✓).

MAP approach

• posterior pX(✓|Y ) =

pX(Y |✓)p(✓)R
pX(Y |✓)p(✓)d✓

•
R
pX(Y |✓)p(✓)d✓ only function of Y .

• ˆ✓MAP = argmax✓pX(Y |✓)p(✓).

Step	2:		Compute	p(f(x*)|{y_i},theta)	 as	before



Gaussian	Process:
Unknown	Kernel	Parameter

(Approach	2:	Marginalize	the	parameter	out)

(Recall notation: X = [x1;x2; . . . ;xk], Y = [y1; y2; . . . ; yk] )

pX(f(x⇤)|Y ) =

Z
pX(f(x⇤)|✓, Y )p(✓|Y )d✓

=

Z
pX(f(x⇤)|✓, Y )

✓
pX(Y |✓)p(✓)R
pX(Y |✓)p(✓)d✓

◆
d✓



Gaussian	Process:
Kernel	Parameter

Approach	1	(Point-estimation)
• Easier,	gives	direct	analytical	solutions,

everything	remains	Gaussian
• Can	have	problem	with	overfitting

Approach	2	(Marginalizing	out	the	parameter)
• Difficult	integration,

analytical	sol.	only	if	you	assume	“right”	prior	for	theta
• Better	generalization,	accounting	for	uncertainty	in	theta



Gaussian	Processes:		Applications	
Nonlinear	Regression	

Classification	

!!Bayesian	Optimization!!



Bayesian	Optimization

General	Purpose		

max

x2X
f(x)

Online	Optimization	of	f	when	f	is	not	a	priori	known	and	
evaluating	f	is	expensive.	Naturally	handles	uncertainty.

(Today’s	Paper)
Tuning	of	Hyperparameters of	ML	algorithms

Example	Application:



Bayesian	Optimization

General	Idea:

Source:	http://javad-azimi.com/	



Bayesian	Optimization

Source:	http://mlg.eng.cam.ac.uk/amar/pics/TPbayesopt.png

General	procedure:
1. Estimate	your	current	posterior	

belief
about	the	function	using	GP
and	observations

2. Use	this	belief	and	a	strategy	to	
hypothesize	about	minimizer	x*
1. Encoded	via	maximization	of

acquisition	function
3. Request	sample	y*=f(x*)	and	go	to	

1.



Bayesian	Optimization
Assume, we have:

• noiseless observations y

i

= f(x

i

)

• f is sampled from a gaussian process f ⇠ GP(µ(x, ✓),K(x, y, ✓)

• Do not know ✓ but assume some prior p(✓).

Objective: Find max

x2X
f(x) and x

⇤
= argmax

x2X f(x):

General	Procedure
for k=1,2,...

1. Select next sample point/ index x

k+1 based on maximizing a acquisition

function ↵:

x

k+1 = argmax

x

↵(x, {y
i

} , {x
i

} , ⌧
k+1) (1)

2. query objective function to obtain y

k+1 = f(x

k+1)

3. augment data D
n+1 = {D

n

, (x

k+1, yk+1)} and hyperparameter ⌧

k

4. update statistical model of function/ posterior:

(a) (Estimate

ˆ

✓ through ML or MAP )

(b) Compute new process posterior

p

Xk+1 (f(x⇤)| {y1, . . . , yk+1} , ✓)
(or just p

Xk+1(f(x⇤)| {y1, . . . , yk+1} , ˆ✓))

end for



Bayesian	Optimization

Source:	http://mlg.eng.cam.ac.uk/amar/pics/TPbayesopt.png

f(x)

yi = f(xi) . . . (+✏i)

from pXk+1 (f(x⇤)| {y1, . . . , yk+1} , ✓)

xk+1

f(xk+1)

max

x

↵(x, {y
i

} , {x
i

})

↵(x, {yi} , {xi})



Bayesian	Optimization
Acquisition	fcn have	often	general	form	of

⇠ p{xi}(f(x)| {yi} , ✓)
is posterior derived from GP assumption!

↵(x, {y
i

} , {x
i

} , ⌧) = E
✓|{yi}Ef(x)|✓,{yi} [U(x, f(x), ✓, ⌧)]

1.	If	marginalizing	the	parameter	theta	out:

↵(x, {y
i

} , {x
i

} , ⌧) = E
f(x)|✓̂,{yi}

h
U(x, f(x), ✓̂, ⌧)

i2.	If	making	point-estimate	of	theta:



Bayesian	Optimization
• Utility	function	give	score,	how	good	x	is	as	a	minimizer	

candidate
• Acquisition	functions	can	be	designed	wrt.	

Exploration/exploitation	trade-off
• Generalization	of	Multi-Arm	Bandit	Problem	to	the	general	

continuous	case



Bayesian	Optimization
Acquisition	Functions

Probability	of	Improvement

Tau	is	usually	picked	as	the	biggest	f(x_i)	so	far!

With U(x, y, ✓, ⌧) = I(y > ⌧) we get

↵

PI

(x, {y
i

} , {x
i

} , ⌧) = P (f(x) > ⌧ | {y
i

} , {x
i

}) . . . (= �(
µ

f(x)|Y,✓ � ⌧

�

f(x)|Y,✓(x)
))



Bayesian	Optimization
Acquisition	Functions

Expected	Improvement

Tau	is	usually	picked	as	the	biggest	f(x_i)	so	far!

With U(x, y, ✓, ⌧) = (y � ⌧)I(y > ⌧) we get

↵

EI

(x, {y
i

} , {x
i

} , ⌧) = E (f(x)� ⌧ | {y
i

} , {x
i

} , f(x) >= ⌧)P (f(x) >= ⌧)

. . . (=
�
µ

f(x)|Y,✓ � ⌧

�
�(

µ

f(x)|Y,✓ � ⌧

�

f(x)|Y,✓(x)
) + �

f(x)|Y,✓(x)�(
µ

f(x)|Y,✓ � ⌧

�

f(x)|Y,✓(x)
))



Bayesian	Optimization
Acquisition	Functions

GP	Upper	Confidence	Bound

Either point-estimated

↵

UCB

(x, {y
i

} , {x
i

} ,�) = µ

f(x)|Y,✓̂ + ��

f(x)|Y,✓̂(x)

or marginalized

↵

UCB

(x, {y
i

} , {x
i

} ,�) =
Z �

µ

f(x)|Y,✓ + ��

f(x)|Y,✓(x)
�✓

p

X

(Y |✓)p(✓)R
p

X

(Y |✓)p(✓)d✓

◆
d✓

Beta	Parameter	 trades	off	exploration	vs.	exploitation	like	in	MAB



Bayesian	Optimization
Acquisition	Functions

Thompson	Sample

↵TS(x, {yi} , {xi}) = f{yi}

f{yi} ⇠ GP
⇣
µ(x, ✓̂),K(x, y, ✓̂)| {yi} , {xi}

⌘where



Bayesian	Optimization:
Comparison	of	Acquisition	Functions



Bayesian	Optimization
Dealing	with	theta

1. Point-estimate of ✓ via ML or MAP:

• easy and tractable to compute ↵, but can cause overfitting

2. Marginalizing ✓ ”out of the ↵ function”

• hard to do due to integration, but gives better generalization.

• Solution: Quadrature Approximation

• Solution: Monte Carlo techniques (SMC, MCMC), which try

sampling {✓i}i=1..M ⇠ p(✓, Y ) and

approximation E✓|Y (F (✓)) ⇡ 1
M

MP
i=1

F (✓i)



Bayesian	Optimization	by	
Snoek,	Larochelle,	Adams

for k=1,2,...

1. Select next sample point/ index x

k+1 based on maximizing a acquisition

function ↵:

x

k+1 = argmax

x

↵(x, y

i

, x

i

) (1)

2. query objective function to obtain y

k+1 = f(x

k+1)

3. augment data D
n+1 = {D

n

, (x

k+1, yk+1)}

4. update statistical model of function/ posterior:

(a) (Estimate ✓)

(b) Gaussian process posterior p

xi (f(x⇤)| {yi} , ✓)

end for

1.	Assume	Gaussian	prior	of	𝜃



Bayesian	Optimization	by	
Snoek,	Larochelle,	Adams

for k=1,2,...

1. Select next sample point/ index x

k+1 based on maximizing a acquisition

function ↵:

x

k+1 = argmax

x

↵(x, y

i

, x

i

) (1)

2. query objective function to obtain y

k+1 = f(x

k+1)

3. augment data D
n+1 = {D

n

, (x

k+1, yk+1)}

4. update statistical model of function/ posterior:

(a) (Estimate ✓)

(b) Gaussian process posterior p

xi (f(x⇤)| {yi} , ✓)

end for

2.	Choice	of	Kernel	for		GP:



Bayesian	Optimization	by	
Snoek,	Larochelle,	Adams

3.	Choice	of	Acquisition	function	for		GP:
1. Expected	Improvement	per	second
2. Marginalizing	out	𝜃





Bayesian	Optimization	by	
Snoek,	Larochelle,	Adams

4.	Computation:
1. Monte	Carlo	for	parallelization	and	computation	of	alpha





Bayesian	Optimization	by	
Snoek,	Larochelle,	Adams

5.	Comparison	on	3	ML	algorithms	Hyper-parameter	tuning


