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Normal Regression: Squared Loss
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Normal Regression: Uncertainty

Regression residuals: y; — y; .
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Problems with normal regression

What is the uncertainty in parameter estimates?



Introduction: framework of Bayesian
Optimization

Current Experiments Posterior Model Select Experiment(s)
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Run Experiment(s)



Bayes’ Rule

P(D|6)P(8)

P(D)
P(0) the prior, the distribution of the parameter(s) before any
data is observed

P(0|D) =

P(6|D) the posterior, the distribution of the parameter(s) after
taking into account the observed data

L(8|D) = P(D|0) the likelihood function, the distribution of the
observed data conditional on its parameters

P(D) = [ ,P(D|6)P(8)d6 the marginal likelihood, the distribution
of the observed data marginalized over the parameter(s)



Difference between parametric and
non-parametric statistics

..e. finite set of weights + specified model class vs general
model class



Bayesian Regression

data D = {X,y}

Set P(6) and compute:

P(D|6)P(0)
P(D)

p(D|0) ~ N(u,0)
p(8) ~N(0,1)
P(D|6) = P({y;}l1xi},0)

P(D) = [,d6'P(D|6"P(6")

P(@|D) =




Bayesian Regression

Dataset: D = {(xi,%i)i=1} = (X,y)
New point (x,,y.)?

P(y.|x.,D) = [ P(.|x.,6,D)P(6|D)d6




Gaussian Processes

Random Process Definition:

Given a probability space (€2, F, P), an R%-valued stochastic process is a collec-
tion of R9-valued random variables on €2, indexed by a totally ordered set T
That is, a stochastic process X is a collection

{X;:teT}

where each X; is an R?-valued random variable on (2.

Gaussian Process Definition:

A Gaussian process is a stochastic process if for every finite set of indices
t1,...,t; in the index set T, Xy, 4, ¢, = (X4, Xy, --.,Xy,) is a multivari-
ate Gaussian random variable.



Gaussian Processes:

Alternative Gaussian Process Definition (Ghahramani):

A Gaussian process X : Q@ — f(R™ — RY) could be seen as a distribution
over functions f mapping from R" to RY, such that (f(z1), f(z2),..., f(xk)) is
a multivariate Gaussian for every finite set of x1,..., x.

e Compared to other definition R,, represents index set 1T’

e Notice that f(x) are random variables



Gaussian Processes:

f~GP(u(x), K(y,z)) denotes that f is sampled from a gaussian process and

[ T ] B T 7 _K(ZUl,ZI?l) K(ml,xg) K(azl,ajk)_
o) (e e s s
faw)_ \ 1) _K(le;,a?l) K(:E;;,:L’g) . K(:E;;,l’k)_ )

where p(x) is called mean function and K (y, z) is the kernel function !

e s(x) could be any function!

e K :R" x R" — RI need to be symmetric and satisfy Mercer’s condition]




Gaussian Processes: The Kernel function

o K (x,y) denotes covariance between random variables f(x) and f(y)

o K(x,y) = 0 implies random variable f(x) and f(y) are independent (be-
cause multivariate gaussian. . .)

o K(x,y) = \/K(z,2)y/K(y,y) implies f(z) and f(y) are linearly depen-
dent. (Proof: Determinant of Covariance Matrix vanishes)
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Gaussian Processes: Matern Kernels
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of

v, with £ = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.




Gaussian Processes: RQ Kernels
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Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with rational quadratic covariance functions, eq. (4.20), for differ-
ent values of a with £ = 1. The sample functions on the right were obtained using a
discretization of the z-axis of 2000 equally-spaced points.




Gaussian Process:
Prediction problem, known kernel

Problem Statement:

Assume we know, f is sampled from GP (0, K(x,y)), we have observed noisy
measurements y; = f(z;)+¢;, where ¢; ~ N'(0,02) i.i.d and we want to estimate
the function f at the location z*, i.e. we are interested in predicting f(z*).

1

What is p(f(x*)|{y_i}) ?
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Gaussian Process:
Prediction Problem Solution

Denote X = |z1;x9;...;2%| and K(X,Y); ; = K(z;,y;), then because of prop-
erties of multivariate gaussians (independence, sums of gaussians...) we yield

o]~ (0 [FR ™ K

Further, by using laws of conditional pdf’s for multivariate Gaussians, we obtain
finally the posterior distribution:

f@) {yi} ~ N (f(z"),07)
where

f@*) = K", X) (K(z*, X) +0°) 'Y

0% = K(z*,0*) — K(«*, X) (K(X, X) + 1) ' K(X,z")




* Minimum

Gaussian Process:
Prediction Problem Solution

Variance

estimator of f

* Uncertainty y
envelop

certifying

quality of

predictions




Gaussian Process:
Prediction problem, unknown kernel

Problem Statement:

Assume we know, f is sampled from GP (0, K(x,y,0)), we have observed noisy
measurements y; = f(x;)+¢;, where ¢; ~ N(0,02) i.i.d and we want to estimate
the function f at the location x*, i.e. we are interested in predicting f(z*). Also
I# is an unknown parameter on which the Kernel function depends.

1

What is p(f(x*)|{y_i}) ?
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Gaussian Process:
Unknown Kernel Parameter

Approach 1: Use point-estimate of theta

(Recall notation: X = [x1;x9;...52k], Y = [y1;y2; .- -3 Yk] )

Step 1: Estimate parameter from observations

ML approach
e We can compute px (Y|#) since Y0 ~ N (0, K(X, X, 0))
o Oy, = argmaxypx (Y0).

MAP approach

, Y[6)p(6
e posterior px(A|Y) = fgj((yﬂe))g((e))de

o [px(Y|0)p(#)dh only function of Y.

o Oyrap = argmaxgpx (Y]0)p(6).

Step 2: Compute p(f(x*)|{y_i},theta) as before




Gaussian Process:
Unknown Kernel Parameter

(Approach 2: Marginalize the parameter out)

(Recall notation: X = [x1;x9;...52k], Y = [y1;y2; .- -3 Yk] )

px (F(zx)]Y) = / px (F(24)]0, Y)p(6]Y)do

. px(Y[0)p(0)
- / px(f(wx)I6,Y) ( pr<Y\e>p<9>de> 0




Gaussian Process:
Kernel Parameter

Approach 1 (Point-estimation)

* Easier, gives direct analytical solutions,
everything remains Gaussian

* Can have problem with overfitting

Approach 2 (Marginalizing out the parameter)
e Difficultintegration,
analytical sol. only if you assume “right” prior for theta
* Better generalization, accounting for uncertainty in theta




Gaussian Processes: Applications

Nonlinear Regression

Classification

— y=+1
1 — y=-




Bayesian Optimization

General Purpose

Online Optimization of f when f is not a priori known and
evaluatingf is expensive. Naturally handles uncertainty.

e @)

Example Application:

(Today’s Paper)
Tuningof Hyperparameters of ML algorithms



Bayesian Optimization

General Idea:

Current Experiments Posterior Model Select Experiment(s)
O
® o
@
O
® o

Run Experiment(s)

Source: http://javad-azimi.com/



Bayesian Optimization

4 5

General procedure:

1. Estimateyourcurrent posterior
belief
about the function using GP
and observations

2. Usethis beliefand a strategyto
hypothesize about minimizer x*
1. Encoded via maximization of

acquisition function

3. Requestsampley*=f(x*)and go to

1.

Source: http://mlg.eng.cam.ac.uk/amar/pics/TPbayesopt.png




Bayesian Optimization

Assume, we have:

e noiseless observations y; = f(z;)
e fis sampled from a gaussian process f ~ GP(u(x,0), K(x,y,0)

e Do not know 6 but assume some prior p(6).

Objective: Find max f(z) and z* = argmax .y f(2):
UAS

General Procedure

for k=1,2,...

1. Select next sample point/ index xy1 based on maximizing a acquisition|
function «:

T+1 = argmaxma(%{%};{%};%ﬂ) (1)

2. query objective function to obtain yx11 = f(Tgy1)
3. augment data D, 11 = {Dy, (k+1,Yk+1)} and hyperparameter 7y

4. update statistical model of function/ posterior:

(a) (Estimate 6 through ML or MAP )

(b) Compute new process posterior
PXppr (Fl@x)[{y1, - yks1}, 0) )
(or just px,,, (f(@)[{y, - yks1},0))

lend for




Bayesian Optimization

o, GG ver1) . 0)

- \f(z

5 —4 —3 —2 —| 0 1 2 343 max, (2, {y:} , {Ti})

-5 -4 -3-2-1 0 1 2 3 4 5

|§k—|— 1/ Source: http://mlg.eng.cam.ac.uk/amar/pics/TPbayesopt.png




Bayesian Optimization

Acquisition fcn have often general form of

1. If marginalizing the parameter theta out:

Oé(CIZ‘, {yz} ) {CUZ} ) 7-) — E9|{yz}Ef(:c)|0,{yz} [U(CIJ, f(.fl?), 97 7-)]

is posterior derived from GP assumption!
A

2. If making point-estimate of theta:

a(@, {yi} {2}, 7) =By a1y |U(@ F(2),60,7)




Bayesian Optimization

Utility function give score, how good x is as a minimizer
candidate

Acquisition functions can be designed wrt.
Exploration/exploitation trade-off

Generalization of Multi-Arm Bandit Problem to the general
continuouscase




Bayesian Optimization
Acquisition Functions

Probability of Improvement

With U (x,y,0,7) = Iy > ) we get

Hf(z)|y,0 — T
Uf(x)|y,e($)

apr(®, Wiy \wiy,7) =P (f(x) > 7[{yi}, {z:}) .- (= B(

Tau is usually picked as the biggest f(x_i) so far!



Bayesian Optimization
Acquisition Functions

Expected Improvement

With U(z,y,0,7) = (y — 7)(y > 7) we get

apr(@,{yit . {z:}.7) =E(f(2) — 7[{yi} . {zi}, f(x) >=7)P(f(z) >=7)
Ff)ly,o — T Hf()y,0 — T
0f(x)|y,e(fl3) Uf(w)|y,e(flf)

(= (,uf(x)|Y,9 - 7') D( ) + Uf(m)IY,9(x)¢(

Tau is usually picked as the biggest f(x_i) so far!



Bayesian Optimization
Acquisition Functions

GP Upper Confidence Bound

Either point-estimated

aves(®,{yif,{xi},B) = Ft(2)Y,0 + Baf(m”y,é(x)

or marginalized

px (Y|0)p(0)
pr<Y|e>p<e>d9) w

avep(z, {yi},{zi},B) = / (1L r ) y.0 + Bopayy.e(T)) (

Beta Parameter trades off exploration vs. exploitation like in MAB



Bayesian Optimization
Acquisition Functions

Thompson Sample

ars(z,{yi},{zi}) = fryn

where

Froy ~ GP (. 0), K (w,9,0) [ {u:} {1}



Bayesian Optimization:
Comparison of Acquisition Functions

— Pl
— ElI
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Bayesian Optimization
Dealing with theta

1. Point-estimate of 6 via ML or MAP:
e casy and tractable to compute «, but can cause overfitting
2. Marginalizing 6 ”out of the o function”

e hard to do due to integration, but gives better generalization.
e Solution: Quadrature Approximation

e Solution: Monte Carlo techniques (SMC, MCMC), which try
sampling {0;}._, ,; ~p(0,Y) and
M
approximation Eg\y (F(0)) = - > F(6;)
i=1




Bayesian Optimization by

Snoek, Larochelle, Adams

1. Assume Gaussian prior of 6

for k=1,2....

1. Select next sample point/ index x4 1 based on maximizing a acquisition
function a:

Tp41 = argmax, oz, y;, T;) (1)

2. query objective function to obtain yx11 = f(xgr1)
3. augment data D11 = {Dy,, (Tk+1, Yr+1)}
4. update statistical model of function/ posterior:

(a) (Estimate 6)
(b) Gaussian process posterior p,. (f(x*)|{y;},0)

end for



Bayesian Optimization by

Snoek, Larochelle, Adams

2. Choice of Kernel for GP:
KM52(Xa X/) — 90 (1 + \/5712(X3X/) + 27’2(X, Xl)) exXp {_\/57‘2<X7X/)}

for k=1,2,...

1. Select next sample point/ index x4 based on maximizing a acquisition
function a:

Tpy1 = argmax oz, y;, T;) (1)

2. query objective function to obtain yiy+1 = f(zg+1)
3. augment data D, 11 = {Dp, (Tr+1,Yk+1)}
4. update statistical model of function/ posterior:

(a) (Estimate )
(b) Gaussian process posterior p,. (f(z*)|{y;},0)

end for



Bayesian Optimization by

Snoek, Larochelle, Adams

3. Choice of Acquisition function for GP:
1. Expected Improvement per second
2. Marginalizing out 0

agl(X; {Xn, Yn},0) = o(x; {Xn,yn}, 0) (v(x) P(v(x)) + N(v(x); 0,1))

&(X {men}) — /a(x {men},@)P(@ I {Xnayn 5:1)(19;



(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

—

(C) Integrated expected improvement



Bayesian Optimization by

Snoek, Larochelle, Adams

4. Computation:
1. Monte Carlo for parallelization and computation of alpha

&(X; {xnayn}aga {Xj}) —
AJ a(x; {Xn,yn}, 9, {Xj, y]})p({yj}jzl | {xj}jzl) {Xnayn}rr]:;l) dyl o dyJ



(@) Posterior samples after three data

NADN _

(b) Expected improvement under three fantasies

NS

(¢) Expected improvement across fantasies




Min function value

Bayesian Optimization by

Snoek, Larochelle, Adams

5. Comparison on 3 ML algorithms Hyper-parameter tuning
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