
Adaptive Routing
Gaussian Process Dynamic Congestion Models

Tobias Bischoff, Brennan Young, Ivy Jiyun Xiao, Luciana
Cendon

Introduction: The Problem

Introduction: The Problem

I Collectively route fleet of vehicles through a city

I Goal: Minimize total travel time

I In the absence of traffic sensors becomes an
exploration-exploitation problem

I Must be done in real-time due to constantly changing traffic
conditions

Introduction: The Problem

Introduction: Today’s Approach

1 Build a probabilistic model of traffic conditions that can be
updated quickly using new data

2 Use a UCB-type algorithm to route vehicle fleet in real-time
using the canonical routes

3 Show that this heuristic algorithm is as good as omniscient
algorithms

Model: Input Space

Model: Requirements

What kind of requirements exist for our traffic model?

I Reliably captures uncertainty in traffic conditions with time

I Makes posterior (after data collection) predictions and can be
updated quickly with new data

I Can be evaluated quickly since we like real-time usability

Model: Gaussian Processes (GP)

Model the distribution of travel times as a GP with input points
x = (r , z), where r denotes a road segment and z a point in time.

I Use historical data to define a GP over travel times, which can
be easily updated using collected data fro routed vehicles.

I Basically an infinite-dimensional Gaussian distribution

I Given a set of points x1, . . . , xN (here street segments and
time), we have that p(f (x1), . . . , f (xN)) is jointly Gaussian
with mean µ(x) and covariance Σij = k(xi , xj) + σ2

yδij
I Can estimate µ(x) and Σ(x) from noisy observations

I Can make posterior predictions by conditioning on seen data

Foundations: Gaussian Processes Inference

I Get some data Y = [Y1, . . . ,YT] at
X = [(r1, z1), . . . , (rT , zT)]

I Calculate an estimate of the mean µ̂ and covariance Σ̂

I Realize that the joint distribution of unseen and seen data y∗
is

(ŷ , y∗) ∼ N
(

(µ̂, µ∗),

(
Σ̂ Σ∗

ΣT
∗ Σ∗∗

))
(1)

I Conditioning on data leads to posterior predictive PDF

I This approach allows for fast posterior prediction and
updating with new data (major advantage of GP)

Foundations: Gaussian Processes Inference

The estimation equations are given by

µ∗ = µ(X∗) + ΣT
∗ Σ−1(ŷ − µ̂) (2a)

Σ∗ = Σ∗∗ − ΣT
∗ Σ̂−1Σ∗ (2b)

What now?

I Need a framework for estimating µ̂ and Σ̂ quickly

I Main issue is smoothing procedure for time coordinate

Gaussian Process Dynamic Congestion Models

Recall:

I r ∈ R: Road segments

I z ∈ Z: Contexts (time)

I f (r , z): Travel speed of road r at time z

A Gaussian process prior is fully specified by:

I µ(r , z) = E[f (r , z)]

I k((r , z), (r ′, z ′)) = E[f (r , z)− µ(r , z))(f (r ′, z ′)− µ(r ′, z ′))]

Gaussian Process Dynamic Congestion Models

How should we compute µ and k?
Estimate them from historical data.

Estimating µ

Key assumption: Temporal regularity. µ(r , z) for
future times will be like µ(r , z) in the past.

Estimating µ

Example historical data set S :
Road Time Speed

1 2014-03-25 18:35:32 18
1 2014-03-25 18:43:13 15
1 2014-03-25 18:43:13 13
1 2014-03-25 18:43:13 12
1 2014-03-26 04:00:32 88
1 2014-03-26 04:01:19 96
1 2014-03-26 04:03:01 75
1 2014-03-26 17:10:12 15
2 2015-05-16 06:14:19 12
2 2015-05-17 00:01:54 80

...

Estimating µ: A Näıve Approach

µ(r , z) = mean{yr ,z ′ |(r , z ′, yr ,z ′) ∈ S} (for arbitrary z ′ ∈ Z)

In words: µ(r , z) is estimated as the mean of the
speeds observed for road r .

Estimating µ: A Näıve Approach

Road Time Speed
1 2014-03-25 18:35:32 18

µ(1, z) = 41.5

1 2014-03-25 18:43:13 15
1 2014-03-25 18:43:13 13
1 2014-03-25 18:43:13 12
1 2014-03-26 04:00:32 88
1 2014-03-26 04:01:19 96
1 2014-03-26 04:03:01 75
1 2014-03-26 17:10:12 15
2 2015-05-16 06:14:19 12
2 2015-05-17 00:01:54 80

...

Estimating µ: A Näıve Approach

E. Del Mar Blvd. at 17:41 E. Del Mar Blvd. at 23:02

Estimating µ: Slightly better

Define τ(z) to be the time of day associated with z , and then:
µ(r , z) = mean{yr ,z ′ |((r , z ′, yr ,z ′) ∈ S) ∧ (τ(z ′) = τ(z))}

In words: µ(r , z) is estimated as the mean of the speeds
observed for road r with time of day matching z .

Estimating µ: Slightly better

Example: τ(2016-07-12 13:14:18) = 13:14:18
µ(1, 2016-07-12 13:14:18) “=” µ(1, 13:14:18)

Remark: This choice of τ assumes that the temporal regularity
“period” is one day. We gain empirical data for which to make our
estimate at the cost of being unable to consider particular types of
days (e.g. weekends, holidays).

Estimating µ: Slightly better

Road Time Speed
1 2014-03-25 18:35:32 18

}
µ(1, 18:35:32) = 18

1 2014-03-25 18:43:13 15
µ(1, 18:43:13) = 13.331 2014-03-25 18:43:13 13

1 2014-03-25 18:43:13 12
1 2014-03-26 04:00:32 88

}
µ(1, 04:00:32) = 88

1 2014-03-26 04:01:19 96
}
µ(1, 04:01:19) = 96

1 2014-03-26 04:03:01 75
}
µ(1, 04:03:01) = 75

1 2014-03-26 17:10:12 15
}
µ(1, 17:10:12) = 15

2 2015-05-16 06:14:19 12
2 2015-05-17 00:01:54 80

...

Estimating µ: Even better

Use τ to partition time into intervals, e.g. 18:30-18:40.
Example: τ(2016-07-12 13:14:18) = 13:10-13:20
µ(1, 2016-07-12 13:14:18) “=” µ(1, 13:10-13:20)
Side remark: We made a similar partitioning for the roads earlier,
implicitly when defining R.

Estimating µ: Even better

Road Time Speed
1 2014-03-25 18:35:32 18

}
µ(1, 18:30-18:40) = 18

1 2014-03-25 18:43:13 15
µ(1, 18:40-18:50) = 13.331 2014-03-25 18:43:13 13

1 2014-03-25 18:43:13 12
1 2014-03-26 04:00:32 88

µ(1, 04:00-04:10) = 86.331 2014-03-26 04:01:19 96
1 2014-03-26 04:03:01 75
1 2014-03-26 17:10:12 15

}
µ(1, 17:10-17:20) = 15

2 2015-05-16 06:14:19 12
2 2015-05-17 00:01:54 80

...

Temporal Smoothing

We can use temporal smoothing to further-improve estimates µ.

Y
(t)
S (r) = {y |(r , z , y) ∈ S ∧ τ(z) = τ(t)}

H
(t)
S (y |r) = βH

(t−γ)
S (y |r) + (1− β)(1− CDF(y |Y (t)

S))
µ(r , z) = Ey∼H [y]

I Y
(t)
S (r): Empirical distribution of travel times

I β, γ, smoothing parameters

Estimating k

Main assumption: k can be decomposed by road and
context. All roads have the same temporal covariance.

k((r , z), (r ′, z ′)) = k1(r , r ′)k2(z , z ′)

Estimating k1

k1(r , r ′) = mean{(yr ,z − µ(r , z))(yr ′,z − µ(r ′, z)) :
(r , z , yr ,z), (r ′, z , yr ′,z) ∈ S}

Note: The observations (r , z , yr ,z) and (r ′, z , yr ′,z) should share
exactly the same context z . We can employ temporal smoothing
here, just as with µ.

Estimating k2

We make the additional assumption that k2(z , z ′)
depends only on the difference |z − z ′|.

k2(z , z ′) = mean{(yr ,z1 − µ(r , z1))(yr ,z2 − µ(r , z2)) :
(yr ,z1 , yr ,z2 ∈ S) ∧ (|z1 − z2| = |z − z ′|)}

Summary of Assumptions

I µ displays temporal regularity with respect to z (in the context
of this paper, the regularity period is assumed to be 1 day).

I Time can be partitioned into intervals of non-zero length (in
the context of this paper, into 10-minute intervals). Roads,
similarly, are partitioned into road segments.

I The covariance kernel can be decomposed;
k((r , z), (r ′, z ′)) = k1(r , r ′)k2(z , z ′)

I k2(z , z ′) depends only on |z − z ′|

Summary of Equations

I µ(r , z) = mean{yr ,z ′ |((r , z ′, yr ,z ′) ∈ S) ∧ (τ(z ′) = τ(z))}

I k((r , z), (r ′, z ′)) = k1(r , r ′)k2(z , z ′)

I k1(r , r ′) = mean{(yr ,z − µ(r , z))(yr ′,z − µ(r ′, z)) :
(r , z , yr ,z), (r ′, z , yr ′,z) ∈ S}

I k2(z , z ′) = mean{(yr ,z1 − µ(r , z1))(yr ,z2 − µ(r , z2)) :
(yr ,z1 , yr ,z2 ∈ S) ∧ (|z1 − z2| = |z − z ′|)}

Algorithm

Assumption: The road congestion conditions behave according to
GPDCM.
We’ll use this later when we get to the PCR algorithm.
Let’s start with the simplest algorithm.

Algorithm - Overall Structure

N trucks (N source locations and N destinations), 1 road map.

At each time step t:

The algorithm

1 Receive observations Yt = {yt,1, ..., yt,N}, yt,n is observed
speed of the roads, i.e., truck’s travel speed

2 Receive state of vehicles Lt = {lt,1, ..., lt,N}, lt,n = (r , τ), r is
a road, τ is the expected amount of time needed to travel r

3 Planner: Output (Routing) decisions
Ψt = {(r1, τ1), ..., (rN , τN)}

4 Gives decisions Ψt to the trucks

5 t ← t + 1

Trucks execute them.

Algorithm - Planner

Planner(Lt ,Yt) at each time step t:
Select route that:

I minimize expected travel time for each truck.

I maximize information gain of the road congestion situation

Exploitation vs. Exploration

Algorithm - Planner - Exploration

How to quantify exploration?

Use Information Gain:

IG (yψ, f) ≡ H(f)− H(f |yψ)

,where H is information entropy, f is our congestion model,
yψ = {yr ,τ}, (r , τ) ∈ Ψ are the observations made by road
segments traveled. Both f and yΨ are r.v.

The reduction in entropy of our congestion model f given
observations yΨ.

Algorithm - Planner - Exploration

I Simple greedy selection is effective in maximizing IG (yΨ, f)

I For each vehicle n = 1, 2, ...,N
Find the observation that maximizes Incremental Information
Gain

δIG (ŷ |yΨ, f) = IG (yΨ ∪ {ŷ}; f)− IG (yΨ; f)

Algorithm - Planner - Exploration

Why recompute information gain each iteration?

Information gain of routes change after the algorithm has
committed to a route.

Algorithm - Planner - Exploration

Account for long-term values in the exploration term

δIG (y~r |yΨ, f) = IG (yΨ ∪ {y~r}; f)− IG (yΨ; f)

, where ~r is an entire route.

Algorithm- Planner - Exploration

Two Approximations:
1. For each route ~r ∈ Ψ, approximate yr using y~r = {y(r ,τ)},where
r is a road, τ is expected travel time of the road.
2. f is a Gaussian process. Use GPDCM.

Algorithm- Planner - Exploration

Thus, the incremental variance reduction of running any route ~r
given intermediate solution Ψ and recent observations O ≡ (L,Y)
can be written as

δIG (y~r |yΨ, f) = k(~r , ~r |O,Ψ) =
∑

(r ,τ)∈E [~r]

k((r , τ), (r , τ)|O,Ψ,E [~r])

(Equation 10)

Algorithm - Planner - Balancing Exploration vs.
Exploitation

Utility Function

U(Ψ) =
N∑

n=1

cn(Ψ ∩ Pn) + αIG (yψ, f)

α is the tradeoff between exploration and exploitation
Pn are all feasible routes (any route that could end at the vehicle’s
destination)
cn is the exploitation term that measures the difference in expected
travel time between the selected route for vehicle n and the best
route ~rn

Algorithm - Planner - Balancing Exploration vs.
Exploitation

Maximize this Utility Function

Incremental utility gain!
For each n = 1, 2, ...,N, maximize

δUn(~r |Ψ) ≡ cn(~r) + αk(~r , ~r |O,Ψ), ∀~r ∈ Ψ ∩ Pn

Algorithm - Planner - Planning with Canonical Routes
(PCR)

Sample K traffic scenarios from GPDCM → get travel speed of all
routes at all times about each route (Complete Information) →
compute optimal routes ← Canonical Paths

On average 3.2 optimal(canonical) routes per vehicle.

Algorithm - Planner - Planning with Canonical Routes
(PCR)

Recall maximizing Incremental utility
For each n = 1, 2, ...,N, maximize

δUn(~r |Ψ) ≡ cn(~r) + αk(~r , ~r |O,Ψ), ∀~r ∈ Ψ ∩ Pn

Pn = is now set of canonical routes ≈ 3.2!

Experiments and Results

I Dataset:
I City 1: One year (from January 2008 to December 2008) of

GPS data from 15,000 taxis in Shenzhen, China.
I City 2: One year (from January 2006 to December 2006) of

GPS data from 5,600 taxis in Shanghai, China.

I Validation:

I Gaussian Process Dynamic Congestion Model (GPDCM)

I GP-UCB and PCR algorithm

I Performance Evaluation

I Preliminary Field Study

GPDCM Validation - Kolmogorov–Smirnov test

I K-S test: used in statistics to quantify the distance between
two distributions

I Measures how well the prediction of future traffic conditions
matches the real distribution observed in nature

I KS-Score:

GPDCM Validation - Kolmogorov–Smirnov test

Liu, Yue & Krishnan, TKDE 2015

I Macro-averaged KS score: computes KS score for each day
separately

I Micro-averaged KS score: aggregating all days into a single
day

I GPDCM is an effective model for predicting the distribution of
future traffic conditions given real-time observations

Routing Validation

GP-UCB and PCR algorithms were compared against conventional
baselines and omniscient lower bound

I Static Routing: routing based on prior mean. Routes are not
updated in response to real-time observations.

I Myopic Routing: routing based on posterior mean. Routes
are updated in response to real-time observations but value of
exploration is not considered.

I Omniscient Routing: routing according to perfect
information of traffic conditions.

Routing Validation

Liu, Yue & Krishnan, TKDE 2015

I PCR perform nearly as well as omniscient lower bound

I Both GP-UCB and PCR are effective at balancing the
exploration/exploitation trade-off

Performance Evaluation: Number of samples
I K should be large enough so all canonical paths are covered

I PCR tolerates small degree of under sampling of traffic
conditions

Liu, Yue & Krishnan, TKDE 2015

Performance Evaluation – Size Historical Data (S)

Liu, Yue & Krishnan, TKDE 2015

I GP-UCB and PCR relatively robust using smaller S

I GP-UCB 25% more efficient than PCR

I Approach is viable for real-time adaptive routing

Performance Evaluation – Number Recent Obs. (Y)

Liu, Yue & Krishnan, TKDE 2015

I Smaller Y leads to less reliable GPDCM posterior distributions
(trade-off computational cost)

I Both GP-UCB and PCR tolerate significant reduction in Y

Preliminary Field Study

Liu, Yue & Krishnan, TKDE 2015

Preliminary Field Study

Liu, Yue & Krishnan, TKDE 2015

I 30% median reduction in travel time!

Routing to Multiple Destinations

Liu, Yue & Krishnan, TKDE 2015

I GP-UCB and PCR can be extended to multi-destination
routing scenario (i.e Traveling Salesperson)

I GP-UCB and PCR perform better than static and myopic
approach no matter the heuristic algorithm chosen

Any Questions?

	Introduction and Gaussian Process Preliminaries

