
CMS/CS 159 Spring 2016

Active Learning Notes

April 26, 2016 Daniel Gu

1 Motivation

A lot of machine learning algorithms involve passive learners: learners who passively receive labeled
training data (typically in an offline fashion) and then train on this supervised learning set. By
contrast, an active learner receives unlabeled training examples (typically in an online fashion), and
gets to choose which examples it will have labeled and learn from. The motivation for considering
active learning is that of reducing the label complexity : the number of labeled examples needed to
obtain a learner of a given accuracy. In the real world, labeled training examples and difficult and
expensive to obtain, so learning could be done much more cheaply and efficiently if we extract the
maximum amount of information from each labeled example.

A simple example where an active learner achieves and exponential advantage over his passive
counterpart is in the problem of learning a 1D threshold. An active learner needs logarithmically
many samples as a passive learner to achieve the same accuracy, since he can pick his examples in
a ”binary search” fashion.

We define sample complexity (a passive analogue of label complexity) in the PAC model. In
this model, our learner is given learning examples (x1, f(x1)), . . . , (xm, f(xm)) with f (the target
function) drawn from a class F given to the learning algorithm and the xi are chosen independently
at random from f ’s domain according to a probability distribution D. The learning algorithm
produces a hypothesis h. We first define error in the PAC model.

Definition 1 Error in the PAC Model
The error with respect to the produced hypothesis h is defined as

E(h) =
∑

x∈h∆f

D(x)

where ∆ is the symmetric difference; that is, the error is the probability that h and f will disagree
on a sample randomly drawn from D.

Definition 2 (ε, δ)-PAC Learning
A learner achieves (ε, δ)-PAC Learning if the produced hypothesis h if with probability 1 − δ

(with respect to D) h achieves an error E(h) ≤ ε.

We then want to study the number of samples m that it takes for our algorithm to produce a
(ε, δ)-learner. For passive learners, results exist which lower bound the number of samples needed;
for example, in the problem of learning a halfspace against the uniform distribution on the unit ball
in Rd has been proven to be upper bounded by O(1

ε (n + log (1
δ))). In general, such upper bounds

are a function of ε, δ, and the VC dimension, which is the largest number of points that the model
f can shatter. In the label complexity setting, we want to do the same sort of analysis, except in
the active learning setting. Our goal is to try to get label complexities which are much lower (say,
exponentially lower) than their corresponding sample complexities.

1

There are 3 main settings in the active learning literature. They are membership query synthesis,
stream-based selective sampling, and pool-based sampling. Each of these settings assumes that we
make queries regarding an unlabeled training example to an oracle, which then labels it for us.
They will be discussed in more detail in Sections 3 and 4.

2 Realizable vs. Agnostic Learning

In general, in a realizable or noise-free setting, we assume that our hypothesis class H contains a
hypothesis h∗ which makes no mistakes; that is, it optimally classifies all training examples. By
contrast in the agnostic or noisy setting, we have no such assumption; we have no idea whether
our hypothesis class is capable of zero loss.

This distinction is especially important in active learning because many algorithms most al-
gorithms are only consistent in the realizable case. When there is noise, these algorithms do not
converge to an optimal predictor even given infinite time and training examples. None of the al-
gorithms we will survey in these notes have any theoretical guarantees in the agnostic setting, and
many perform poorly in the agnostic case, even though they perform well in the realizable case.

In the picture above, green represents + labels and red represents - labels. If the initial set of
labeled examples does not contain any representatives from the second group from left, and the
algorithm picks points it is most uncertain about, on even an infinite amount of training data it
will converge to a predictor in-between the third and fourth groups, which has 5% error. But the
optimal classifier in fact lies between the first and second groups, and has 2.5% error. This means
that in the inseparable case, the algorithm is inconsistent (a common situation in active learning),
and this is due to the sample bias we introduce by our querying strategy.

See [4] for more discussion of this and other examples.

3 Sampling Models

At a high level, our basic framework for our two common sampling models (stream-based and
pool-based) is as follows:

Algorithm 3 Sampling Framework
START with a pool of unlabeled data S ⊆ X (and possibly some labeled data as well)
PICK points from S and query for their labels
REPEAT:

FIT a classifier h ∈ H to the labels seen so far
QUERY an unlabeled point in S with some local optimality

Sampling models are prone to sampling bias. Each time we greedily pick a point with some
sort of local optimality (say, closest to the boundary of our current model), we depart from the

2

actual distribution of the training examples. This often means that our active learning algorithms
are inconsistent : even given infinite training examples, they converge to a suboptimal predictor.

3.1 Stream-Based Selective Sampling

In this model, our learner receives training examples from a stream of data. At each time step,
it receives a single training example, and can choose whether or not to ask the oracle to label the
sample. These approaches typically work by maintaining the space of hypotheses which are still
consistent with the data gathered so far, and then outputting a hypothesis still left in the space when
the algorithm terminates. However, calculating and maintaining this space of possible hypotheses
is generally computationally intractable, so in implementations approximations are used.

Algorithm 4 Stream Sampling Framework(H,S)
INITIALIZE V = H
FOR t = 1, 2, . . .

SEE stream element s ∈ S
CHOOSE whether to query oracle for label
IF QUERY

TRAIN classifier on current labeled examples
UPDATE V

RETURN h ∈ V

3.2 Pool-Based Sampling

In pool-based sampling, we have a small amount of labeled training examples and a large amount
of unlabeled training examples. We are then allowed to look at the entire pool of training data
before deciding which examples to query and label. Usually, we first preprocess the data using
unsupervised learning techniques such as clustering, and then pick training examples to query via
some greedy metric.

Algorithm 5 Pool Sampling Framework(L,U,H)
TRAIN classifier on labeled examples L
PREPROCESS the unlabeled examples U
REPEAT:

PICK an unlabeled example u ∈ U to label greedily
UPDATE classifier with new example

4 Membership Query Synthesis

In this model, the learning algorithm is allowed to ask for the labels of training examples it itself
generates, whether it has been sampled or not. More formally, let our domain be X. Define
a concept to be a subset of X; a concept class is then a set of concepts. We often represent the
domain X and concept class C by a matrix whose rows are indexed by concepts and whose columns
are indexed by domain elements; the (ci, xj)-entry is 1 if xj ∈ ci, and 0 otherwise. Our goal is to
learn a concept from the concept class.

3

Algorithm 6 Membership Query Framework(X,C,Q)
INITIALIZE P := C
WHILE |P | > 1:

MAKE a query from Q
UPDATE P

RETURN c ∈ P

We are allowed to make two types of queries to an oracle to learn more about a concept c. We
can make a membership query, in which we give a concept c and an element x to the oracle, and it
returns 1 if x ∈ c or 0 otherwise. We can also make an equivalence query, in which we give a two
concepts c and c′ to the oracle, and it outputs ”the same” if c = c′, or a non-deterministically chosen
counterexample x ∈ c∆c′, where ∆ represents the symmetric difference. We further distinguish
between proper queries, in which we compare our unknown concept c′ to a concept c ∈ C, and
extended queries, in which we compare it to an arbitrary subset of X (not necessarily in C).

A learning problem is given by the domain X, the concept class C, and types of permitted
queries. The goal is to learn some c ∈ C with the permitted queries. We can then think of a
learning algorithm as a rooted tree with two types of internal nodes. A membership query node is
labeled by some x ∈ X and has two outgoing edges, labeled 0 and 1. A equivalence query node
is labeled by a concept c ⊆ X and has |X| + 1 outgoing edges, one labeled 1 (for ”yes”) and the
others labeled by the elements of X (which may be produced as counterexamples).

The tree T is evaluated on a concept class C as follows. The root is assigned the entire hypothesis
class C. At a membership query node with label x, if we have the set C ′ assigned to it, we then
assign the 0-child the subset of C ′ such that x 6∈ C, and the 1-child the subset of C ′ the subset such
that x ∈ C. If we are instead at an equivalence query node with label c′, we assign the yes-child
the set {c′} if c′ ∈ C ′ or the empty set otherwise; at every x-node, we assign the subset of C ′

which consists of concepts c such that the symmetric difference of c and c′ contains x. A learning
algorithm is then successful on C if in the evaluation of T on C, every leaf l is assigned to at most
one concept in c, and every concept is assigned to some leaf.

The minimum over all successful trees for C of the maximum depth of the tree is then the label
complexity of the concept class C.

It turns out that in general, it is NP-complete to decide whether, given a binary relation
representing a concept class C and a depth bound, whether that relation has a membership query
algorithm with depth at most the depth bound. Nonetheless, query synthesis tends to be efficient
for finite problem domains. Furthermore, the framework can be extended to regression problems.

In the case that our oracle is a human, membership query synthesis algorithms may often fail,
because the algorithm may give the human oracle outputs to classify with no semantic meaning.

5 Query Strategies

The heart of active learning algorithms is the way in which they evaluate the ”informativeness” of
unlabeled training examples. We survey 3 common methods used here.

5.1 Uncertainty Sampling

The idea behind uncertainty sampling is to request the labels of training examples which the
learning algorithm is least certain about classifying correctly. The simplest way to measure uncer-

4

tainty is via maintaining probabilities; we then pick the training example whose best prediction
ŷ = argmaxyPrθ(y|x) has the lowest probability, i.e.

x∗ = argmaxx(1− Pr
θ

(ŷ|x))

This can be interpreted as choosing to label the training example with the highest expected 0/1
loss.

This naive approach doesn’t take into account the full distribution of labels that our model can
make. We can take into account more of the label distribution by instead looking at the margin,
which is the difference between our best prediction ŷ1 and our second best prediction ŷ2, with the
intuition that the smaller the margin, the more difficult it will be to correctly distinguish between
the labels for that example.

x∗ = argminxPr
θ

(ŷ1|x)− Pr
θ

(ŷ2|x)

However, this still throws away most of the label distribution. The most popular way to measure
uncertainty is via the entropy of the label distribution; the training example whose distribution has
the highest entropy holds the most uncertainty with regard to the true value of the label.

x∗ = argmaxx−
∑
i

Pr
θ

(ŷi|x) log Pr
θ

(ŷi|x)

5.2 Query by Committee

At any time, there is a set of hypotheses which are consistent with the (labeled) data seen so far
by our algorithm. Query-by-committee (QBC) strategies aim to reduce this space (often called
the version space) as much as possible. At each point in time, we maintain a list of competing
hypotheses; when we need a point to label next, we have all of the hypotheses classify all of the
training examples, and then choose the examples on which the models most disagree.

Studying the optimal committee size is still a matter of research, but even committee sizes of 2
or 3 work well in practice. As for a measure of the disagreement, vote entropy

x∗ = argmaxx−
∑
i

V (yi)

C
log V (yi)C

where V (yi) denotes the number of votes for label yi, or the average Kullback-Leibler divergence
of each model from the consensus

x∗ = argmaxx
1

C

C∑
c=1

D(Pθ(c) ||PC)

where PC is the consensus probability distribution, are used. The two previously described
schemes are hard voting schemes; we could also use soft voting schemes in which we use the
posterior probabilities instead.

5

5.3 Reducing the Generalization Error

We have two approaches to picking training examples to reduce the generalization error. We can
directly minimize the expected loss, by choosing to label the example with the smallest expected
future loss. This is a very computationally expensive task for which closed form solutions are
generally not known. An alternate way to try to reduce the generalization error is by minimizing
the variance. It can be shown that the expected squared loss of a model can be decomposed into
a noise term, a term which depends on the model class, and a variance term. Taking advantage
of this, we choose the example whose addition to the set minimizes the expected variance. This
can be done in a closed form format. This strategy is more efficient than directly reducing the
generalization error, but still slower than methods like uncertainty sampling.

6 The Disagreement Coefficient

For a passive learning algorithm using a hypothesis class of VC dimension d, we need about d
ε2

samples to get an ε-error predictor. For active learning algorithms, we are not only governed by the
VC dimension as the leading coefficient d, by another parameter called the disagreement coefficient.
Let H be a hypothesis class and h, h′ be hypotheses in H. Then we can define a metric on H which
is the probability that the two hypotheses differ:

d(h, h′) = Pr[h(X) 6= h′(X)]

Now imagine we are in a version space V ⊆ H, which we can imagine to represent the hypotheses
which are still consistent. Then the disagreement region of V is all points of the domain in which
some hypotheses of V disagree:

DIS(V) = {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}

Given two definitions, we can now define the disagreement coefficient:

Definition 7 Disagreement Coefficient
Given a minimum error hypothesis h∗, the disagreement coefficient is

θ = supr>0

Pr[DIS(B(h∗, r))]

r

Analogously to the sample complexity case, it can be shown that we need to query about
θd log 1

ε labels to get an ε-error learner. This quantity appears in our known general-purpose label
complexity bounds.

Disagreement coefficients are known or upper bounds are known for several simple cases. For
example, thresholds on a line in R have a disagreement coefficient of 2, which naturally corresponds
to a label complexity of O(log 1

ε), as we would expect from our 1D threshold case discussed earlier.
For linear separators passing through the origin in Rd under a uniform data distribution, it can
be shown that the disagreement coefficient is upper bounded by

√
d, so we have the corresponding

label complexity bound of O(d3/2 log 1
ε).

6

References

[1] B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, Uni-
versity of Wisconsin-Madison. 2009.

[2] P. M. Long. An Upper Bound on the Sample Complexity of PAC Learning Halfspaces with
Respect to the Uniform Distribution. Information Processing Letters, 87(5): 229-234, 2003.

[3] D. Angluin. Queries Revisited. Proceedings of the International Conference on Algorithmic
Learning Theory, pp. 12-31. Springer-Verlag, 2001.

[4] S. Dasgupta. Two Faces of Active Learning. Theoretical Computer Science, 412(19): 1761-1781,
2011.

[5] S. Hannecke. A Bound on the Label Complexity of Agnostic Active Learning. Proceedings of
the 20th Annual Conference on Learning Theory (COLT), 2007.

[6] S. Dasgupta and J. Langford. A Tutorial on Active Learning. Presentation at the 26th Interna-
tional Conference of Machine Learning, 2009.

7

