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Quick review: Active vs. Passive Learning

Passive learning: receive labeled training data, then train on supervised learning

set.
Data Passive oot | Model or
World a e
Learner Classifier

Active learning: (selective, supervised) receive unlabeled training examples,
choose which examples to get labeled and learn from

Query

Active ouput | Hypothesis

World J:[ Learner I—l (Classifier)
Response




Types of active learning

i . Hypothesis
World LAe(e;ltll\r:Zr = (Classifier/
Response DeCiSion)

Selective (supervised): Active learning for decision making:
query= choice of unlabelled sample query= experiment/test
response= corresponding label response= observation

given from training data . o
output= correct hypothesis, or decision

output= classifier corresponding to correct hypothesis



20 Questions

e Player 1 chooses an object/topic without revealing it
e Player 2 can ask up to 20 yes/no questions

e Goalis for player 2 to decide what object/topic player 1 chose after 20
questions (or fewer) have been asked



simplified setting: think of one of the following six animals




Is it an insect?

Bad strategy

Fruit fly
Mammal Aquatic Flies Insect Lays eggs
Fruit fly 0 0 1 1 1
Iguana 0 0 0 0 1
Pigeon 0 0 1 0 1
Platypus 1 1 0 0 1
Squirrel 1 0 0 0 0
Whale 1 1 0 0 0



Bad strategy

Iguana
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Whale

Mammal

- a4 a4 O O

Aquatic

- O = O O

Flies

o O o =+ O

Lays eggs

O O =4 a4 a
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Is it an insect?

Bad strategy /\N\

Can it fly?

Mammal  Aquatic Lays eggs

Iguana 0 0 1
Platypus 1 1 1
Squirrel 1 0 0
Whale 1 1 0



Is it an insect?

N

Bad strategy

Can it fly?

Is it a mammal?

Y

Is it aquatic?
Aquatic Lays eggs Y
Platypus 1 1

Squirrel 0
Whale




Is it an insect?

Bad strategy | /\
C

Can it fly?

Is it a mammal?

2N

Is it aquatic?

Lays eggs vy
Platypus 1
Whale 0

Does it lay eggs?




Good strategy s it a mammal?

(optimal decision tree problem)

Y N

Is it aquatic? Can it fly?

Y Y N

Is it an

Does it lay eggs? _
insect?

Fruit fly




Robotics

Query: localization trajectory
Response: distance until contact

Output: button-push trajectory

Javdani, Shervin. "Gathering Information For Decision Making In Touch Based Localization".
Presentation.



Setting






hypothesis space



hypothesis

hypothesis space



P ( h) hypothesis

prior probability

hypothesis space



true hypothesis



test

teT
outcome

oec (O

hypotheses map tests to outcomes

h:T —0O
h(t) =o
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run test tl

observe outcome 01

rule out inconsistent hypotheses
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L ®
run test t2

observe outcome 02

rule out inconsistent hypotheses



continue running tests...



run test tm

observe outcome Om

rule out inconsistent hypotheses



true hypothesis



evidence

S ={(t1,01),... (tm,0m)}

consistent hypotheses

V(S) = {h € H :Y(t,0) € S,h(t) = 0}



choose tests in a systematic way in order to maximally
reduce uncertainty in the hypothesis



7"

decision region



decision region space



single hypothesis per decision region, disjoint

optimal decision tree (ODT) problem — greedy binary search



multiple hypotheses per decision region, disjoint

beip=

equivalence class determination (ECD) problem




multiple hypotheses per decision region, non-disjoint

decision region determination (DRD) problem



Given:
e Hypotheses
e Tests
e Decision Regions
e Prior probability distributions over set
of hypotheses

All decisions are acceptable, one decision
is not preferred over the other



run test t 1

observe outcome 01

rule out inconsistent hypotheses



run test tz

observe outcome 02

rule out inconsistent hypotheses



continue running tests...



run test tm

observe outcome Om

rule out inconsistent hypotheses



make this decision

“



choose tests in a systematic way in order to drive
uncertainty in the hypothesis toward a single decision

use policy m to choose which tests to run

a policy maps the current evidence S to the next test to
run (or to stop running tests)



a feasible policy 7 eventually finds the decision region containing the
correct hypothesis; it drives all remaining uncertainty in the hypotheses
toward a single decision region

— V(S)Cr



expected cost of feasible policy 7

ZP )T (7, h)

heH

T(ﬂ-y h) is the set of tests chosen by policy 77 when h is the correct hypothesis

optimal policy w*

7 =argmin_ C(w)  s.t. Vh,3Ir: V(T (7, h)) Cr

(the policy satisfies feasibility)



Define a hypergraph (G = (X, E') where X is a set of nodes and F is a

collection of sets of X called hyperedges
a region hypergraph is defined as G’ = (7‘[, R) o ‘ S

i.e. each hypothesis is a node, and each decision region is a hyperedge

containing a set of hypotheses



A splitting hypergraph (3° — (g : £ ) can be constructed

Each subregion g € ( isanode



A splitting hypergraph (5 — (g : £ ) can be constructed

Each subregion g € ( isanode

g1




A splitting hypergraph (5 — (g : £ ) can be constructed

Each subregion g € ( isanode

91 g2




A splitting hypergraph (5 — (g : £ ) can be constructed

Each subregion g € ( isanode

gi g2 g3




A splitting hypergraph (3° — (g : £ ) can be constructed

Each subregion g € ( isanode



Hyperedges € = 8 are all multisets of k subregions such that one
decision region does not contain them all

1,1,3




Hyperedges € = 8 are all multisets of k subregions such that one
decision region does not contain them all

=~ L~

>1< all subregions are contained in the blue decision region




G =1{91,92,93}
E=1(1,1,3),(1,2,3),(1,3,3)}

1,1,3 | [ 1,2,3| |1,3,3

\

1 go gs3



Cardinality

k = mi h € g € 1
min (s (1 & ) maxlg:g € 7)) +

maximum number of
regions any hypothesis
lies in

—» 3

For proof, see Section 7.1 from the paper



Cardinality

k = mi :h € g € 1
min (I}?eaid{r T}|,I?¥l€a7§|{99 T}|)+

maximum number of
subregions in any
region

—> 4

For proof, see Section 7.1 from the paper



The Hyperedge Cutting (HEC) Algorithm



set of consistent hyperedges, given evidence S

E(S)={e€&:V(to) € S,VheEe,h(t) =o)

Theorem 1

All consistent hypotheses lie in some decision region if and only if all
hyperedges are cut, i.e.,

ES)=0<Ir:VS)Cr

— to make a decision, we need to cut all hyperedges in the splitting hypergraph



1,1,3

1,2,3

1,3,3

g3




run tests — rule out all hypotheses in g3

1,1,3 | [ 1,2,3| |1,3,3

1 go gs3



run tests — rule out all hypotheses in g3

]‘717 1727 17 ?

1 go gs



run tests — rule out all hypotheses in g3

g3



Goal:

find the policy that cuts all hyperedges with minimum cost
(by running the minimum number of tests)

choose the test that cuts the most hyperedges in expectation



weight of a subregion

P(g)=) P(h) s.t. Y(t,0) € S,h(t) =0

heg (consistent hypothesis)

for a subregion to be consistent, at least one of
g1 g2 g3 its hypotheses must be consistent



weight of a hyperedge € = {91, cee ,gk}

w(e) = [ Pl

1,1,3 1,2,3 1,3,3

for a hyperedge to be consistent, all of its
subregions must be consistent




weight of a collection of hyperedges

w({elv R en}) — Z?:l w(el)

1,1,3 1,2,3 1,3,3

total weight of a collection of hyperedges




weight of a subregion

P(g)=) P(h) s.t. Y(t,0) € S,h(t) =0

heg (consistent hypothesis)

weight of a hyperedge € = {91, cee ,gk}

w(e) = [ Pl

weight of a collection of hyperedges

w({elv R en}) — Z?:l w(el)



total weight of all hyperedges w(f,’ )

total weight of all consistent hyperedges W (8 (S ))

utility of evidence S
frec(S) = w(€) —w(€(S))

total weight of all edges cut by observing evidence S



utility of evidence S

fapc(S) = w(€) —w(&(S))

1,1,3

1,2,3

1,3,3

number of tests



greedy approach: iteratively choose the test ¢* that maximally increases utility

t* = argmax, A(t|S)

where A(%|S) is the expected marginal utility gain of test ¢

A(HS) = 3 P(WS) (fupe (S U (L A(O)) = fupe(S))
utility W'ith t utility wi'thout t

note that A(¢|S) = 0 for all tests when all hyperedges have been cut



Hyperedge Cutting (HEC) Algorithm
initialize S = ()
while £(S) # 0

run test [t© = argmax, A(t|8) greedy

observe outcome h(t")
add (t*,h(t*)) to S
retun 77 =71 : V(S) Cr

How does the greedy policy compare with the optimal policy?



A(t\S ) satisfies adaptive monotonicity and adaptive submodularity



A(t\S ) satisfies adaptive monotonicity and adaptive submodularity

adaptive monotonicity
A(t|S) >0 VteT,SCT xO

running a test can never introduce hyperedges, only remove them

For proof, see Lemma 2 in Section 7.3 of the paper.



A(t\S ) satisfies adaptive monotonicity and adaptive submodularity

adaptive monotonicity (in binary decision tree)

asking a question (i.e. going deeper in
the tree) cannot hurt you

worst case: gain no new information

can always recover previous

b :
op : (/:E(:/ classification, no matter what boundary

4 2k : we draw

+
I
e




A(t\S ) satisfies adaptive monotonicity and adaptive submodularity

adaptive submodularity
A(tlS) > AS) VYVteT,SCS CTxO

for a fixed test ¢ , the marginal utility gain cannot increase as we gain
additional evidence

For proof, see Lemma 3 in Section 7.3 of the paper.



A(t\S ) satisfies adaptive monotonicity and adaptive submodularity

adaptive submodularity (in binary decision tree)

same length shorter

A it . . | |
; g - we cannot gain more information from a

I
|
. uestion by moving it deeper in the tree
S _ 4 % | q y g Y
- : a classification boundary cannot get
e . | longer by adding other classification
s : boundaries first
+ C L
|
|
|




A(t\S ) satisfies adaptive monotonicity and adaptive submodularity

Golovin & Krause (2011) showed that for an objective satisfying both of
these conditions, a greedy policy 7T pc will be competitive with the
optimal policy T , With cost bounded by

C(ruec) < (KIn(1/pmin) + 1) C(7™)

where  Pmin = gg;{l P(h)

Golovin, Daniel, and Andreas Krause. "Adaptive submodularity: Theory and applications in active learning and stochastic optimization." Journal
of Artificial Intelligence Research (2011): 427-486.



Demo



http://mybinder.org/repo/gvanhorn38/nobal
http://mybinder.org/repo/gvanhorn38/nobal

Requirements

To run HEC you will need to define:

A discrete set of hypotheses.

Prior probabilities for the hypotheses.
A set of decision regions.

A discrete set of deterministic tests.



“Naive” Implementation

A(t|S) = ZP hS) (fupc (SU{ERE)}) — fupc(S))



“Naive” Implementation

This can be computed
once per iteration.

——

A(t|S) = ZP hS) (fupc (SU{ERE)}) — frpc(S))



“Naive” Implementation

This can be computed
once per iteration.

——

A(t|S) = ZP h|S) ({HEC (SU{(t,h(t ))}l) — fasc(S))
|

To compute this, you have to
construct the splitting hypergraph
for each test, hypothesis pair




“Naive” Implementation

A(t|S) = ZP (h|S) ({HEC (SU{(t,h(t ))}} — fasc(S))
Y

To compute this, you have to
construct the splitting hypergraph for
each test, hypothesis pair

fortin tests:
for h in hypotheses:
nodes, hyperedges = build_splitting_hypergraph(_..)
weight = compute_weight_of_hyperedges(...)



“Naive” Implementation

This requires enumerating every
multiset of order k and checking if
any decision region contains all

the subregions
O(g]")

fortin tests:
for h in hypotheses:

nodes, hyperedges = build_splitting_hypergraph(...)
weight = compute_weight_of_hyperedges(...)



“Efficient” implementation

Intuition:

Compute the weight of all multisets (i.e. hyperedges)
and iteratively subtract off the weight of invalid
multisets (i.e. hyperedges whose subregions are
contained within one decision region).



“Efficient” implementation

There is an algebraic structure that we can take advantage of when
computing the weight of a collection of hyperedges.

Computing a sum of multisets, where a multiset
corresponds to a product, is equivalent to computing a
complete homogeneous symmetric polynomial (CHP).



“Efficient” implementation

G C g <«—— Subregions (nodes of our splitting hypergraph)

Gi(G) ={{g1,---,9;3} € G}
\ }

|

All multisets over group G of cardinality'l\<



“Efficient” implementation

w(Gi(G) = > |[P)

g;;:(G) g



“Efficient” implementation

G.(G)={{g1,--.,9;} CG}
w(G; (@) = > | P9

/Q,;(G) g \

Computing a sum of multisets, where a multiset corresponds to a product,
is equivalent to computing a complete homogeneous symmetric
polynomial (CHP).




“Efficient” implementation

G.(G)={{g1,--.,9;} CG}
w(G; (@) = > | P9

Gs (G) g

w(G;(G)) = CHP;(G)



Efficient Implementation

CHP,(G) = CHP.({g1,---,9n})

— %ZCHP,%_j({gla ‘o agn})PSj({gla .3 9n})

j=1

PS;({g1,---, gn}) = ZP(gz)?’ \

O(k|G])




“Efficient” implementation

But we are not done yet. We just calculated the collective weight of
all hyperedges. We need to remove the weight due to hyperedges
whose subregions are all contained in one decision region.



“Efficient” implementation

But we are not done yet. We just calculated the collective weight of
all hyperedges. We need to remove the weight due to hyperedges
whose subregions are all contained in one decision region.

Intuition:
Compute the weight of all multisets. Iteratively subtract the weight
of increasing multiset cardinality while pruning away multisets that

whose subsets contain valid hyperedges.

Requirement:
Use hash tables to keep things speedy! We can precompute which

multisets are invalid.
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“Efficient” implementation

In the worst case, this algorithm is still O ( ‘ g ‘ k)

To see the benefit of this algorithm, we will need the number of regions
to be much larger than the cardinality of the multisets, k.



Computational Complexity

This algorithm is good at minimizing the number of tests, but at a high
computational cost. The computational bottleneck for HEC lies in the construction
of the hypergraph:

The computation is exponential in hyperedge cardinality k.

If your tests are expensive, then perhaps you are fine with waiting.

If your tests are cheap, then using a simpler algorithm that conducts more tests
could run much faster than HEC.



Computational Complexity

There is a follow up paper' where the authors attempt to mitigate this
computational cost:

“... our algorithm is exponentially faster than HEC in theory, significantly faster
(often by orders of magnitude) in practice, while offering similar empirical
performance.”

'Chen, Yuxin, et al. "Submodular Surrogates for Value of Information." AAAI. 2015.



Robotic Decision Making Application



Decision Making Task
m |

|

_—

Javdani, Shervin. "Gathering Information For Decision Making In Touch Based Localization".
Presentation.



Decision Making Setting
Hypotheses
Prior probability distribution over the set of hypotheses

Tests

Decision regions



Decision Making Setting

Hypotheses: object locations

Prior probability distribution over the set of hypotheses

Tests

Decision regions



Decision Making Setting
Hypotheses: object locations
Prior probability distribution over the set of hypotheses

Tests: guarded moves

Test outcomes: distance until contact

Decisions regions



Decision Making Setting

Hypotheses: object locations

Prior probability distribution over the set of hypotheses
Tests: guarded moves

Test outcomes: distance until contact

Decisions: button-push moves

Decision regions: sets of hypotheses on which decisions will succeed



Given: Hypotheses



true hypothesis

Given: Hypotheses



Given: Prior Probabilities

1
plhi)=5 @



Given: Decisions
















Given: Decision Regions



Hypergraph: Nodes



— ] :h i ]. =
k = min (%?%HT - r}|,Ig:lea,7%c|{g g€ r}|) + 3

Hypergraph: Cardinality



Hypergraph: Hyperedges



DRD: Tests






frec(S) = w(€) — w(E(S))
AS) = S P(RIS) (frpe (S U{(LAD)}) — fusc(S)) A(tS) =0

h
























make this decision



Hypotheses

Sample random
object locations (2000)

Uncertainty due to noise from
sensors, inaccurate models,
calibration error

Javdani, Shervin. "Gathering Information For Decision Making In Touch Based Localization".
Presentation.



Tests

Sample random start locations and orientations (150)
Move along path until contact is sensed

h(t) = o = distance travelled



Decisions

Set of start locations (50)

Javdani, Shervin. "Gathering Information For Decision Making In Touch Based Localization".
Presentation.



Decision Regions

Javdani, Shervin. "Gathering Information For Decision Making In Touch Based Localization".
Presentation.



EXEGY l“h.l(l'ﬂ""' G

Javdani, Saeed, Matthew Klingensmith, J. Andrew Bagnell, Nancy S. Pollard, and Siddhartha S. Srinivasa. "Efficient touch based localization
through submodularity." In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 1828-1835. IEEE, 2013.


http://www.youtube.com/watch?v=_HiyKKDStBE

End



Simon, Tong. Active Learning: Theory and Applications. Stanford, 2001.
http://www.robotics.stanford.edu/~stong/papers/tong_thesis.pdf



http://www.robotics.stanford.edu/~stong/papers/tong_thesis.pdf
http://www.robotics.stanford.edu/~stong/papers/tong_thesis.pdf
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