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Motivation

• Labeled training data for supervised learning is hard and expensive to 
obtain

• It is often the case that we have few labeled training examples, but 
many unlabeled training examples

• Given these constraints, we want to study how many labeled training 
examples we really need (under a possibly adaptive strategy) in order 
to get a “good enough” learner



Active Learning vs. Passive Learning

• In passive learning, the learner simply accepts labeled training 
examples and trains on them all at once

• By contrast, in active learning, the learner receives unlabeled training 
examples and can request labels for training examples it sees



The PAC Model

• Intuitively, our goal is to find active learners “as good” as passive 
learners

• We need a formal notion of “as good” so we can get rigorous 
guarantees

• We will work within the probably approximately correct (PAC) model



Definitions

• Let f: X → Y, the target function, be drawn from a family F known to 
the learning algorithm

• Our learner is given training examples (x1, f(x1)), …, (xm, f(xm)) drawn 
from X × Y drawn  i.i.d. from a probability distribution D

• Our learner produces a hypothesis h based on this data





Sample and Label Complexity

• We can then think of the sample complexity of a passive learning task 
as the number of training samples it takes to get a (ε, δ)-PAC learner

• Analogously, we can think of the label complexity of an active 
learning task to be the number of labels an active learning algorithm 
needs to request to get a (ε, δ) PAC-learner



Models of Active Learning

• In the membership query model, we are allowed to generate our 
own training examples are give them to the oracle to label

• In the streaming selective sampling model, we receive training 
examples one by one from a stream, and can choose whether to 
request a label or not

• In the pool-based sampling model, we have a small pool of labeled 
training examples and a large pool of unlabeled training examples, 
and we can choose unlabeled examples to label from the pool





















We get an improvement from O(1/e) to O(log(1/e)!



Realizable vs Agnostic

• We further need to distinguish between two settings: the realizable
setting and the agnostic setting

• In the realizable setting, we assume our hypothesis contains a 
hypothesis which perfectly categorizes the data

• In the agnostic setting, we have no guarantee that our hypothesis 
has a no-loss predictor



Agnostic Active Learning

• Finding algorithms which are consistent in the agnostic case is a 
central difficulty in active learning

• Some results in the agnostic setting are known, for example 
Hannecke 2007 for the A2 algorithm
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Notation

• We will stick to the notation of Beygelzeimer et al 2009.

• Let X be an input space, Y be the label space, and Z be a prediction 
space

• Training examples are drawn i.i.d. from X × Y according to a 
probability distribution D

• Learning algorithm outputs a hypothesis from the hypothesis class     
H = {h : X → Z}

• We have a loss function l: Z × Y → R+















Rejection-threshold

Recall from Algorithm 1:

















Analysis
The theoretical results of the paper



What do all the theorems mean?

Goal:
• Talk about the lower bound
• Sketch the proof for the upper bound
• Revisit some of the steps for the upper bound



Lower Bound on Requested Labels

What’s the best performance we can get?

Theorem 12 addresses this.
No matter the active learner, we can always create a dataset that:

• has L* > 0 optimal error
• must make at least TL* queries

The term that’s linear in T must always be there.
Lemma 13 is used to help this proof by construction.



Upper Bound on Label Complexity (Thm 11)

Querying the labels may be costly. We want algorithms that query 
as infrequently as possible, while still performing as well as passive 
learning (Theorem 2).

We see E[# requested] ≤ 4θKl(TL* + O(√T(ln(|H|T/δ))))

Here we walk through a sketch of the proof of Theorem 11. This will 
give us a probable upper bound on the expected number of 
requested labels in the IWAL algorithm.



Recall

There is a call to Algorithm 2 at 
each time step, giving a 
probability pt for every time 
step.

The expected number of 
requested labels is the sum of all 
pt.

Set of hypotheses Ht and 

optimal hypothesis h*

p1 = ...
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Recall

There is a call to Algorithm 2 at 
each time step, giving a 
probability pt for every time 
step.

The expected number of 
requested labels is the sum of all 
pt.

Set of hypotheses Ht and 

optimal hypothesis h*
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p2 = … 
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Upper Bound on pt

The value of pt comes from the 
maximum difference in loss 
between two hypotheses in Ht.

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]



Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the 

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]



Disagreement Coefficient

Define the metric ⍴(f,g) = E[maxy|l(f(x),y) - l(g(x),y)|]

This gives us the distance between two hypotheses.
If we pick an input at random, how bad can we expect the 
difference in loss to be?
Hypotheses that are close will usually have similar loss, no matter 
what the true label is.



Disagreement Coefficient

Smallest θ such that, for all r,
E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|] ≤ θr

Note that it’s similar to ⍴(h,h*), except for the suph∊B(h*,r) term.
Measure worst-case difference in loss over all hypotheses near h*.

Image source: 

http://hunch.net/~active_learning/active_learning_icml09.pdf



Disagreement Coefficient

Smallest θ such that, for all r,
E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|] ≤ θr

Conveniently, the upper bound for the LHS scales linearly with the radius 
of the ball. This will be useful for proving Theorem 11.

Lemma 10 bounds the disagreement coefficient for linear classifiers.

Image source: 

http://hunch.net/~active_learning/active_learning_icml09.pdf



Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the 
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Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the 

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Need to bound in terms of fixed h*

instead of g∊Ht



Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the 

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Need to make a ball around h* that

is a superset of Ht



Upper Bound on pt

Instead of considering pairs of 
hypotheses, just choose the one 
whose loss disagrees most from 
h*. By the triangle inequality, no 
two functions are separated by 
more than twice this difference.



Upper Bound on pt

Instead of considering pairs of 
hypotheses, just choose the one 
whose loss disagrees most from 
h*. By the triangle inequality, no 
two functions are separated by 
more than twice this difference.

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)] =

Ex[supf,g∈H_t, y∈Y| l(f(x),y) - l(g(x),y) |] ≤ 2Ex[supf∈H_t, y∈Y| l(f(x),y) - l(h*(x),y) |] 



Upper Bound on pt

All hypotheses in Ht are 
contained in some ball around 
h*.
According to Lemma 8, which we 
will prove, this ball has radius

r = 2Kl(L* + Δt-1)



Upper Bound on pt
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will prove, this ball has radius

r = 2Kl(L* + Δt-1)



Upper Bound on pt

We can now use the definition of 
the disagreement coefficient.



Upper Bound on pt

We can now use the definition of 
the disagreement coefficient.

2Ex[supf∈B(h*,r), y∈Y| l(f(x),y) - l(h*(x),y) |]

≤ 2θr = 4θKl(L* + Δt-1)



Upper Bound on Requested Labels

Combining this, we get
Ex[pt] ≤ 4θKl(L* + Δt-1)

We then sum over all t to get 
E[# requested] ≤ 4θKl(TL* + O(√T(ln(|H|T/δ))))

= O(TL*) + O(sublinear in T)



Creating a ball of the correct size

Here we explain how we got the radius 
of the ball around Ht



Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

We can pick two possible responses (z, z’). Depending on the true label 
(e.g. +1 or -1), the difference between the losses of our responses may 
be large or small, positive or negative. If the most negative difference 
has about the same magnitude as the most positive difference for all 
responses, the loss function has low asymmetry.



Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: 0-1 loss
We can pick any two responses. If they have the same sign, 

l(z,y)-l(z’,y)=0 for all y. If they have a different sign, l(z,y)-l(z’y)=±1.
Thus Kl=1, the lowest possible value.



Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: Hinge loss l(z,y) = max(0, 1-zy)
Say we have z>>0 and z’=0.

l(z,y)-l(z’,y) = z >> 0 when y = -1.
l(z,y)-l(z’,y) = -1 when y = +1.
Thus we can see that Kl=∞



Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: l(z,y) = ɸ(zy) for some differentiable ɸ
Assume the z∈[-B,+B], y∈{+1, -1}, and C0 ≤ |ɸ’(zy)| ≤ C1
Then Kl ≤ C1/C0 (Lemma 5)
Intuition: loss functions whose slope varies a lot with the label 

have high slope asymmetry.



Slope Asymmetry

Corollary 6 gives a bound for logistic loss on a bounded response 
space.

This is the loss function the authors used in their experiments.



Lemma 8

We now can find the distance between two hypotheses. How 
does this distance relate to the expected loss of the hypotheses? 
We want to create a ball around h* that contains Ht, but Ht
currently only has properties in terms of the expected loss.



Lemma 8 (Proof)

⍴(h,h*) = Ex[maxy|l(h(x),y) - l(h*(x),y)|]
≤ KlEx,y[| l(h(x),y) - l(h*(x), y) |]

≤Kl(Ex,y[l(h(x),y)]+Ex,y[l(h*(x),y)])

= Kl(L(h) + L(h*))

since Kl bounds how large the 
difference can be for all y

by △-ineq, def of loss function, 
and linearity of exp.

by the definition of expected 
loss.



Lemma 8 (Application)

⍴(h,h*) ≤ Kl(L(h) + L(h*))
≤ Kl(2L(h*) + 2Δt-1)

= 2Kl(L* + Δt-1)

for h∊Ht, L(h)≤L(h*) + 2Δt-1
(Lemma 2)

by definition.



Lemma 8 (Application)

⍴(h,h*) ≤ Kl(L(h) + L(h*))
≤ Kl(2L(h*) + 2Δt-1)

= 2Kl(L* + Δt-1)

for h∊Ht, L(h)≤L(h*) + 2Δt-1
(Lemma 2)

by definition.

This term is why the upper bound has a term linear in T.



Implementation



Implementation and Experiments

Theory is useless without computational feasibility and results!

Importance of this paper is that it has all three.

We never actually implemented Algorithm 2.



Experimental Setup

For experiment, hypothesis set is 
bounded-length linear 
separators along with a convex 
loss function.



Implementing Algorithm 2

Algorithm 2 features two 
optimization problems.

First, find optimal loss.
Then, find max loss-difference.



Implementing Algorithm 2

Both optimization problems are being solved over restricted hypothesis set.



First Optimization Problem

First optimization is just a convex program, which can be solved using 
known computationally feasible methods.



Second Optimization Problem

Second optimization problem is trickier. However, if 𝜙 is non-increasing,
(as in 0-1 loss, hinge loss, or logistic loss), it is equivalent to: 

where A(x) is the solution of a convex program:

This can be efficiently solved too!



Experimental Setup

So this method is feasible, but not fast. For experiment, introduce some 
modifications for speed and simplicity.

For first optimization, minimize over H rather than H_T.
For second optimization, instead of defining H_T by T-1 convex constraints, 
only enforce the last constraint. (Which corresponds to time T - 1)
May choose p_t conservatively, but still preserves consistency by Thm. 1!



MNIST Experiment

Produce a binary classifier for 3’s and 5’s from handwritten MNIST data.
Use PCA for dimensionality reduction.
1000 of each class for training, 1000 of each class for testing.



MNIST Experiment Results

Same accuracy as passive learning!
However, uses less than ⅓ of the labels!



Alternative Implementation (Bootstrap)
Results are promising, but algorithm only feasible for linear classifiers 
with convex loss functions. For other classifiers, what do we do?
Try an alternate rejection-threshold algorithm.
Will use a rough-and-tumble bootstrap method:
1. Ask for all labels in an initial batch of the training data.
2. Train a set of predictors on this bootstrap. This will serve as an 
approximation of the version space.
3. Given a new x_t, return

Note that this has been reduced to importance-weighted batch passive 
learning!



Bootstrap Experiments

Use 10 decision trees as H.
Bootstrap on first 10% of training set.
Use p_min = 0.1
Tested on some multiclass and binary classification problems.



Bootstrap Experiments Results

Same MNIST data as before.
Same accuracy as supervised learning, still!
Very speedy, and only used ⅔ of the labels!



Bootstrap Experiments Results

Bootstrap results on other standard benchmark datasets.

Same accuracy as passive learning, but significantly fewer labels! 



Conclusion

IWAL is very exciting.
Good theoretical bounds tied to good empirical accuracy that is 
computationally feasible and often applicable.
Reduces labels needed -> saves money!



Questions



Sources

• Yisong Yue
• S. Dasgupta and J. Langford. A tutorial on active learning 

Presentation at the 26th Conference on Machine Learning, 2009.



Extra Slides



Sample Complexity Results

• There are upper and lower bound results on the sample complexity of 
certain tasks

• For example, learning a half-space in n dimensions with respect to 
the uniform distribution has an upper bound of O(1/ε(n + log(1/δ))) 
and a matching lower bound (Long 2003).

• In general, such bounds depend on ε, δ, and the VC dimension of the 
model class





Definition of a 
generalization bound 
(tells us whether we 
are overfitting or not)



VC Dimension and Sample Complexity

• In the supervised learning case, if we want to achieve an ε-learner, 
we need at most d/ε2 examples, where d is the VC dimension

• The VC dimension of the hypothesis class also affects label 
complexity bounds, along with another parameter called the 
disagreement coefficient



Disagreement Coefficient

• Define a metric on hypotheses which is the probability that they 
differ:

• We will call the subset of X on which some hypotheses in a version 
space V disagree the disagreement region



Disagreement Coefficient cont’d.

• The disagreement coefficient measures how the probability that a 
random point in the disagreement region in a ball around the 
optimal hypothesis scales with r:

• Bounds or upper bounds for the disagreement coefficient are 
known in some cases; for example, for linear separators in Rd, θ ≤ 
√d, so the label complexity is O(d^(3/2)log(1/ε))




















