
Active Learning
Matt Clark

Daniel Gu

Matt Morgan

Keegan Ryan

Motivation

• Labeled training data for supervised learning is hard and expensive to
obtain

• It is often the case that we have few labeled training examples, but
many unlabeled training examples

• Given these constraints, we want to study how many labeled training
examples we really need (under a possibly adaptive strategy) in order
to get a “good enough” learner

Active Learning vs. Passive Learning

• In passive learning, the learner simply accepts labeled training
examples and trains on them all at once

• By contrast, in active learning, the learner receives unlabeled training
examples and can request labels for training examples it sees

The PAC Model

• Intuitively, our goal is to find active learners “as good” as passive
learners

• We need a formal notion of “as good” so we can get rigorous
guarantees

• We will work within the probably approximately correct (PAC) model

Definitions

• Let f: X → Y, the target function, be drawn from a family F known to
the learning algorithm

• Our learner is given training examples (x1, f(x1)), …, (xm, f(xm)) drawn
from X × Y drawn i.i.d. from a probability distribution D

• Our learner produces a hypothesis h based on this data

Sample and Label Complexity

• We can then think of the sample complexity of a passive learning task
as the number of training samples it takes to get a (ε, δ)-PAC learner

• Analogously, we can think of the label complexity of an active
learning task to be the number of labels an active learning algorithm
needs to request to get a (ε, δ) PAC-learner

Models of Active Learning

• In the membership query model, we are allowed to generate our
own training examples are give them to the oracle to label

• In the streaming selective sampling model, we receive training
examples one by one from a stream, and can choose whether to
request a label or not

• In the pool-based sampling model, we have a small pool of labeled
training examples and a large pool of unlabeled training examples,
and we can choose unlabeled examples to label from the pool

We get an improvement from O(1/e) to O(log(1/e)!

Realizable vs Agnostic

• We further need to distinguish between two settings: the realizable
setting and the agnostic setting

• In the realizable setting, we assume our hypothesis contains a
hypothesis which perfectly categorizes the data

• In the agnostic setting, we have no guarantee that our hypothesis
has a no-loss predictor

Agnostic Active Learning

• Finding algorithms which are consistent in the agnostic case is a
central difficulty in active learning

• Some results in the agnostic setting are known, for example
Hannecke 2007 for the A2 algorithm

w

w

ww*

Notation

• We will stick to the notation of Beygelzeimer et al 2009.

• Let X be an input space, Y be the label space, and Z be a prediction
space

• Training examples are drawn i.i.d. from X × Y according to a
probability distribution D

• Learning algorithm outputs a hypothesis from the hypothesis class
H = {h : X → Z}

• We have a loss function l: Z × Y → R+

Rejection-threshold

Recall from Algorithm 1:

Analysis
The theoretical results of the paper

What do all the theorems mean?

Goal:
• Talk about the lower bound
• Sketch the proof for the upper bound
• Revisit some of the steps for the upper bound

Lower Bound on Requested Labels

What’s the best performance we can get?

Theorem 12 addresses this.
No matter the active learner, we can always create a dataset that:

• has L* > 0 optimal error
• must make at least TL* queries

The term that’s linear in T must always be there.
Lemma 13 is used to help this proof by construction.

Upper Bound on Label Complexity (Thm 11)

Querying the labels may be costly. We want algorithms that query
as infrequently as possible, while still performing as well as passive
learning (Theorem 2).

We see E[# requested] ≤ 4θKl(TL* + O(√T(ln(|H|T/δ))))

Here we walk through a sketch of the proof of Theorem 11. This will
give us a probable upper bound on the expected number of
requested labels in the IWAL algorithm.

Recall

There is a call to Algorithm 2 at
each time step, giving a
probability pt for every time
step.

The expected number of
requested labels is the sum of all
pt.

Set of hypotheses Ht and

optimal hypothesis h*

p1 = ...

Recall

There is a call to Algorithm 2 at
each time step, giving a
probability pt for every time
step.

The expected number of
requested labels is the sum of all
pt.

Set of hypotheses Ht and

optimal hypothesis h*

p1 = …

p2 = …

Recall

There is a call to Algorithm 2 at
each time step, giving a
probability pt for every time
step.

The expected number of
requested labels is the sum of all
pt.

Set of hypotheses Ht and

optimal hypothesis h*

p1 = …

p2 = …

p3 = …

Upper Bound on pt

The value of pt comes from the
maximum difference in loss
between two hypotheses in Ht.

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Disagreement Coefficient

Define the metric ⍴(f,g) = E[maxy|l(f(x),y) - l(g(x),y)|]

This gives us the distance between two hypotheses.
If we pick an input at random, how bad can we expect the
difference in loss to be?
Hypotheses that are close will usually have similar loss, no matter
what the true label is.

Disagreement Coefficient

Smallest θ such that, for all r,
E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|] ≤ θr

Note that it’s similar to ⍴(h,h*), except for the suph∊B(h*,r) term.
Measure worst-case difference in loss over all hypotheses near h*.

Image source:

http://hunch.net/~active_learning/active_learning_icml09.pdf

Disagreement Coefficient

Smallest θ such that, for all r,
E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|] ≤ θr

Conveniently, the upper bound for the LHS scales linearly with the radius
of the ball. This will be useful for proving Theorem 11.

Lemma 10 bounds the disagreement coefficient for linear classifiers.

Image source:

http://hunch.net/~active_learning/active_learning_icml09.pdf

Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Need to bound in terms of fixed h*

instead of g∊Ht

Upper Bound on pt

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)]

The RHS looks a lot like the LHS of the

definition of the disagreement coef.:

E[suph∊B(h*,r)supy|l(h(x),y) - l(h*(x),y)|]

Need to make a ball around h* that

is a superset of Ht

Upper Bound on pt

Instead of considering pairs of
hypotheses, just choose the one
whose loss disagrees most from
h*. By the triangle inequality, no
two functions are separated by
more than twice this difference.

Upper Bound on pt

Instead of considering pairs of
hypotheses, just choose the one
whose loss disagrees most from
h*. By the triangle inequality, no
two functions are separated by
more than twice this difference.

Ex[pt] = Ex[maxf,g∈H_t, y∈Yl(f(x),y) - l(g(x),y)] =

Ex[supf,g∈H_t, y∈Y| l(f(x),y) - l(g(x),y) |] ≤ 2Ex[supf∈H_t, y∈Y| l(f(x),y) - l(h*(x),y) |]

Upper Bound on pt

All hypotheses in Ht are
contained in some ball around
h*.
According to Lemma 8, which we
will prove, this ball has radius

r = 2Kl(L* + Δt-1)

Upper Bound on pt

2Ex[supf∈H_t, y∈Y| l(f(x),y) - l(h*(x),y) |]

≤ 2Ex[supf∈B(h*,r), y∈Y| l(f(x),y) - l(h*(x),y) |]

All hypotheses in Ht are
contained in some ball around
h*.
According to Lemma 8, which we
will prove, this ball has radius

r = 2Kl(L* + Δt-1)

Upper Bound on pt

We can now use the definition of
the disagreement coefficient.

Upper Bound on pt

We can now use the definition of
the disagreement coefficient.

2Ex[supf∈B(h*,r), y∈Y| l(f(x),y) - l(h*(x),y) |]

≤ 2θr = 4θKl(L* + Δt-1)

Upper Bound on Requested Labels

Combining this, we get
Ex[pt] ≤ 4θKl(L* + Δt-1)

We then sum over all t to get
E[# requested] ≤ 4θKl(TL* + O(√T(ln(|H|T/δ))))

= O(TL*) + O(sublinear in T)

Creating a ball of the correct size

Here we explain how we got the radius
of the ball around Ht

Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

We can pick two possible responses (z, z’). Depending on the true label
(e.g. +1 or -1), the difference between the losses of our responses may
be large or small, positive or negative. If the most negative difference
has about the same magnitude as the most positive difference for all
responses, the loss function has low asymmetry.

Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: 0-1 loss
We can pick any two responses. If they have the same sign,

l(z,y)-l(z’,y)=0 for all y. If they have a different sign, l(z,y)-l(z’y)=±1.
Thus Kl=1, the lowest possible value.

Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: Hinge loss l(z,y) = max(0, 1-zy)
Say we have z>>0 and z’=0.

l(z,y)-l(z’,y) = z >> 0 when y = -1.
l(z,y)-l(z’,y) = -1 when y = +1.
Thus we can see that Kl=∞

Slope Asymmetry

Definition 4: The slope asymmetry of a loss function l: Z x Y →[0,∞) is
Kl = supz,z’∈Z|maxy∈Y l(z,y)-l(z’,y) / miny∈Y l(z,y)-l(z’,y) |

Example: l(z,y) = ɸ(zy) for some differentiable ɸ
Assume the z∈[-B,+B], y∈{+1, -1}, and C0 ≤ |ɸ’(zy)| ≤ C1
Then Kl ≤ C1/C0 (Lemma 5)
Intuition: loss functions whose slope varies a lot with the label

have high slope asymmetry.

Slope Asymmetry

Corollary 6 gives a bound for logistic loss on a bounded response
space.

This is the loss function the authors used in their experiments.

Lemma 8

We now can find the distance between two hypotheses. How
does this distance relate to the expected loss of the hypotheses?
We want to create a ball around h* that contains Ht, but Ht
currently only has properties in terms of the expected loss.

Lemma 8 (Proof)

⍴(h,h*) = Ex[maxy|l(h(x),y) - l(h*(x),y)|]
≤ KlEx,y[| l(h(x),y) - l(h*(x), y) |]

≤Kl(Ex,y[l(h(x),y)]+Ex,y[l(h*(x),y)])

= Kl(L(h) + L(h*))

since Kl bounds how large the
difference can be for all y

by △-ineq, def of loss function,
and linearity of exp.

by the definition of expected
loss.

Lemma 8 (Application)

⍴(h,h*) ≤ Kl(L(h) + L(h*))
≤ Kl(2L(h*) + 2Δt-1)

= 2Kl(L* + Δt-1)

for h∊Ht, L(h)≤L(h*) + 2Δt-1
(Lemma 2)

by definition.

Lemma 8 (Application)

⍴(h,h*) ≤ Kl(L(h) + L(h*))
≤ Kl(2L(h*) + 2Δt-1)

= 2Kl(L* + Δt-1)

for h∊Ht, L(h)≤L(h*) + 2Δt-1
(Lemma 2)

by definition.

This term is why the upper bound has a term linear in T.

Implementation

Implementation and Experiments

Theory is useless without computational feasibility and results!

Importance of this paper is that it has all three.

We never actually implemented Algorithm 2.

Experimental Setup

For experiment, hypothesis set is
bounded-length linear
separators along with a convex
loss function.

Implementing Algorithm 2

Algorithm 2 features two
optimization problems.

First, find optimal loss.
Then, find max loss-difference.

Implementing Algorithm 2

Both optimization problems are being solved over restricted hypothesis set.

First Optimization Problem

First optimization is just a convex program, which can be solved using
known computationally feasible methods.

Second Optimization Problem

Second optimization problem is trickier. However, if 𝜙 is non-increasing,
(as in 0-1 loss, hinge loss, or logistic loss), it is equivalent to:

where A(x) is the solution of a convex program:

This can be efficiently solved too!

Experimental Setup

So this method is feasible, but not fast. For experiment, introduce some
modifications for speed and simplicity.

For first optimization, minimize over H rather than H_T.
For second optimization, instead of defining H_T by T-1 convex constraints,
only enforce the last constraint. (Which corresponds to time T - 1)
May choose p_t conservatively, but still preserves consistency by Thm. 1!

MNIST Experiment

Produce a binary classifier for 3’s and 5’s from handwritten MNIST data.
Use PCA for dimensionality reduction.
1000 of each class for training, 1000 of each class for testing.

MNIST Experiment Results

Same accuracy as passive learning!
However, uses less than ⅓ of the labels!

Alternative Implementation (Bootstrap)
Results are promising, but algorithm only feasible for linear classifiers
with convex loss functions. For other classifiers, what do we do?
Try an alternate rejection-threshold algorithm.
Will use a rough-and-tumble bootstrap method:
1. Ask for all labels in an initial batch of the training data.
2. Train a set of predictors on this bootstrap. This will serve as an
approximation of the version space.
3. Given a new x_t, return

Note that this has been reduced to importance-weighted batch passive
learning!

Bootstrap Experiments

Use 10 decision trees as H.
Bootstrap on first 10% of training set.
Use p_min = 0.1
Tested on some multiclass and binary classification problems.

Bootstrap Experiments Results

Same MNIST data as before.
Same accuracy as supervised learning, still!
Very speedy, and only used ⅔ of the labels!

Bootstrap Experiments Results

Bootstrap results on other standard benchmark datasets.

Same accuracy as passive learning, but significantly fewer labels!

Conclusion

IWAL is very exciting.
Good theoretical bounds tied to good empirical accuracy that is
computationally feasible and often applicable.
Reduces labels needed -> saves money!

Questions

Sources

• Yisong Yue
• S. Dasgupta and J. Langford. A tutorial on active learning

Presentation at the 26th Conference on Machine Learning, 2009.

Extra Slides

Sample Complexity Results

• There are upper and lower bound results on the sample complexity of
certain tasks

• For example, learning a half-space in n dimensions with respect to
the uniform distribution has an upper bound of O(1/ε(n + log(1/δ)))
and a matching lower bound (Long 2003).

• In general, such bounds depend on ε, δ, and the VC dimension of the
model class

Definition of a
generalization bound
(tells us whether we
are overfitting or not)

VC Dimension and Sample Complexity

• In the supervised learning case, if we want to achieve an ε-learner,
we need at most d/ε2 examples, where d is the VC dimension

• The VC dimension of the hypothesis class also affects label
complexity bounds, along with another parameter called the
disagreement coefficient

Disagreement Coefficient

• Define a metric on hypotheses which is the probability that they
differ:

• We will call the subset of X on which some hypotheses in a version
space V disagree the disagreement region

Disagreement Coefficient cont’d.

• The disagreement coefficient measures how the probability that a
random point in the disagreement region in a ball around the
optimal hypothesis scales with r:

• Bounds or upper bounds for the disagreement coefficient are
known in some cases; for example, for linear separators in Rd, θ ≤
√d, so the label complexity is O(d^(3/2)log(1/ε))

