
Monte Carlo Tree Search 
and AlphaGo

Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar



Zero-Sum Games and AI
● A player’s utility gain or loss is exactly balanced by the combined gain or loss 

of opponents:
○ E.g. - Given a pizza with 8 slices to share between person A and B. 

■ A eats 1 slice.
● A experiences +1 net utility.
● B experiences -1 net utility.

● This is a powerful concept important to AI development for measuring the 
cost/benefit of a particular move. 

● Nash Equilibrium.



Games and AI

● Traditional strategy - Minimax:
○ Attempt to minimize opponent’s 

maximum reward at each state (Nash 
Equilibrium)

○ Exhaustive Search

Player 1

Player 2

Player 1

Player 2



Drawbacks
● The number of moves to be 

analyzed quickly increases in depth.
● The computation power limits how 

deep the algorithm can go.
Player 1

Player 2

Player 1

Player 2



Alternative Idea
● Bandit-Based Methods

○ Choosing between K actions/moves.

○ Need to maximize the cumulative reward by 
continuously picking the best move.

● Given a game state we can treat each 
possible move as an action.

● Some problems / Further 
improvements:

○ Once we pick a move the state of the game 
changes.

○ The true reward of each move depends on 
subsequently possible moves.
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Monte Carlo Tree Search 
● Application of the Bandit-Based Method.
● Two Fundamental Concepts:

○ The true value of any action can be approximated by running several random simulations.

○ These values can be efficiently used to adjust the policy (strategy) towards a best-first 
strategy.

● Builds a partial game tree before each move. Then selection is made.
○ Moves are explored and values are updated/estimated.



General Applications of Monte Carlo Methods
● Numerical Algorithms
● AI Games

○ Particularly games with imperfect information
○ Scrabble/Bridge
○ Also very successful in Go (We will hear more about this later)

● Many other applications
○ Real World Planning
○ Optimization
○ Control Systems



Understanding Monte Carlo 
Tree Search



MCTS Overview

● Iteratively building partial search tree
● Iteration

○ Most urgent node
■ Tree policy
■ Exploration/exploitation

○ Simulation
■ Add child node
■ Default policy

○ Update weights



Development of MCTS
● Kocsis and Szepesvári, 2006

○ Formally describing bandit-based method
○ Simulate to approximate reward

● Proved MCTS converges to minimax solution
● UCB1: finds optimal arm of upper confidence bound (UCT employed UCB1 

algorithm on each explored node)



Algorithm Overview



Policies
● Policies are crucial for how MCTS operates
● Tree policy

○ Used to determine how children are selected

● Default policy
○ Used to determine how simulations are run (ex. randomized)
○ Result of simulation used to update values



Selection
● Start at root node
● Based on Tree Policy select child
● Apply recursively - descend through tree

○ Stop when expandable node is reached
○ Expandable - 

■ Node that is non-terminal and has unexplored children



Expansion
● Add one or more child nodes to tree

○ Depends on what actions are available for the current position
○ Method in which this is done depends on Tree Policy



Simulation
● Runs simulation of path that was selected
● Get position at end of simulation
● Default Policy determines how simulation is run
● Board outcome determines value



Backpropagation
● Moves backward through saved path
● Value of Node

○ representative of benefit of going down that path from parent

● Values are updated dependent on board outcome
○ Based on how the simulated game ends, values are updated



Policies
● Tree policy

○ Select/create leaf node
○ Selection and Expansion
○ Bandit problem!

● Default policy
○ Play the game till end
○ Simulation

● Selecting the best child
○ Max (highest weight)
○ Robust (most visits)
○ Max-robust (both, iterate if none exists)



UCT Algorithm
● Selecting Child Node - Multi-Arm Bandit Problem
● UCB1 for each child selection
● UCT -

● n - number of times current(parent) node has been visited
● nj - number of times child j has been visited
● Cp - some constant > 0
● Xj - mean reward of selecting this position

○ [0, 1]



UCT Algorithm

● nj = 0 means infinite weight
○ Guarantees we explore each child node at least once

● Each child has non-zero probability of selection
● Adjust Cp to change exploration vs exploitation tradeoff



Advantages/disadvantages of MCTS
● Aheuristic

○ No need for domain-specific knowledge
○ Other algos may work better if heuristics exists

■ Minimax for Chess

■ Better because chess has strong 
heuristics that can decrease size of tree.

● Anytime
○ Can stop running MCTS at any time
○ Return best action

● Asymmetric
○ Favor more promising nodes

● Ramanujan et al.
○ Trap states = UCT performs worse

○ Can’t model sacrifices well (Queen Sacrifice in 
Chess)



Example - Othello



Rules of Othello 
● Alternating turns
● You can only make a move that sandwiches a 

continuous line of your opponent's pieces between yours
○ Color of sandwiched pieces switches to your color

● Ends when board is full
● Winner is whoever has more pieces



Example - The Game of Othello

root

m4m3m2m1
m1

m2

m3

m4

● nj - initially 0
○ all weights are initially infinity

● n - initially 0
● Cp - some constant > 0 

○ For this example 
○ C = (1 / 2√2)

● Xj - mean reward of selecting this 
position

○ [0, 1]
○ Initially N/A



Example - The Game of Othello cont.

root

m4m3m2m1

Xj n nj

m1 1 4 1

m2 1 4 1

m3 1 4 1

m4 0 4 1

m1

m2

m3

m4

After first 4 iterations: 
Suppose m1, m2, m3 
black wins in simulation 
and m4 white wins

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)



Example - The Game of Othello Iter #5
root

m4m3m2m1
m1m11

m12

m13

m13m12m11

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

(0, 4, 1)(1, 4, 1)(1, 4, 1)(1, 4, 1)

(N/A, 1, 0) (N/A, 1, 0) (N/A, 1, 0)

● First selection picks m1
● Second selection picks m11

Black’s Move

White’s Move



Example - The Game of Othello Iter #5
root

m4m3m2m1
m1

m11

(0, 5, 1)(1, 5, 1)(1, 5, 1)(.5, 5, 2)

(1, 2, 1)

● Run a simulation
● White Wins
● Backtrack, and update mean scores 

accordingly.

Black’s Move

White’s Move

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)



Example - The Game of Othello Iter #6
root

m4m3m2m1

m11

(0, 5, 1)(1, 5, 1)(1, 5, 1)(.5, 5, 2)

(1, 2, 1)

1.397
2.269

2.269

1.269

● Suppose we first select m2

Black’s Move

White’s Move

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)



Example - The Game of Othello Iter #6
root

m4m3m2m1

(0, 5, 1)(1, 5, 1)(1, 5, 1)(.5, 5, 2)

1.397
2.269

2.269

1.269

m23m22m21
(N/A, 1, 0) (N/A, 1, 0) (N/A, 1, 0)

● Suppose we pick m22

m23

m21 m22

White’s Move

Black’s Move

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

m11
(1, 2, 1)



Example - The Game of Othello Iter #6
root

m4m3m2m1

(0, 6, 1)(1, 6, 1)(1, 6, 2)(.5, 6, 2)

m22
(0, 2, 1)

● Run simulated game from this position.
● Suppose black wins the simulated game.
● Backtrack and update values

Black’s Move

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

m11
(1, 2, 1)

White’s Move



Example - The Game of Othello Iter #6
root

m4m3m2m1

(1, 6, 2)(.5, 6, 2)

m23m22m21
(N/A, 2, 0) (0, 2, 1) (N/A, 2, 0)

White’s Move

Black’s Move

m13m11
(1, 2, 1) (N/A, 2, 0)

1.447
2.339

1.339

(1, 6, 1) (0, 6, 1)

1.947

∞ ∞ ∞
1.833

0.833

● This is how our tree looks after 6 iterations.
● Red Nodes not actually in tree 
● Now given a tree, actual moves can be made using max, robust, max-

robust, or other child selection policies.
● Only care about subtree after moves have been made

(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

∞

m12
(N/A, 2, 0)



MCTS - Algorithm Recap
● Applied to solve Multi-Arm Bandit problem in a tree structure

○ UCT = UCB1 applied at each subproblem

● Due to tree structure same move can have different rewards in 
different subtrees

● Weight to go to a given node:
○ Mean value for paths involving node
○ Visits to node
○ Visits to parent node
○ Constant balancing exploration vs exploitation

● Determines values from Default Policy
● Determines how to choose child from Tree Policy
● Once you have acomplete tree - number of ways to pick moves 

during game - Max, Robust, Max-Robust, etc.



Analysis of UCT Algorithm



UCT Algorithm Convergence

● UCT is an application of the bandit algorithm (UCB1) for Monte Carlo search
● In the case of Go, the estimate of the payoffs is non-stationary (mean payoff 

of move shifts as games are played)
● Vanilla MCTS has not been shown to converge to the optimal move (even 

when iterated for a long period of time) for non-stationary bandit problems
● UCT Algorithm does converge to optimal move at a polynomial rate at the root 

of a search tree with non-stationary bandit problems
● Assumes that the expected value of partial averages converges to some 

value, and that the probability that experienced average payoff is a              
factor off of the expected  average is less than delta if we play long enough



UCT Algorithm Convergence

● Builds on earlier work by Auer (2002) who proved UCB1 algorithm converged 
for stationary distributions

● Since UCT algorithm views each visited node as running a separate UCB1 
algorithm, bounds are made on expected number of plays on suboptimal 
arms, pseudo-regret measure, deviation from mean bounds, and eventually 
proving that UCB1 algorithm plays an suboptimal arm with 0 probability giving 
enough time

● Kocsis and Szepesvári’s work was very similar, with additions of ε-δ type 
arguments using the convergence of payoff drift to remove the effects of drift 
in their arguments, especially important in their regret upper bounds



UCT Algorithm Convergence

● After showing UCB1 correctly converges to the optimal arm, the convergence 
of UCT follows with an induction argument on search tree depth

● For a tree of depth D, we can consider the all children of the root node and 
their associated subtrees. 

● Induction hypothesis gives probability of playing suboptimal arm goes to 0 
(base case is just UCB1), and the pseudo-regret bounds and deviation from 
partial mean bounds ensures the drift is accounted for

● The most important takeaway is when a problem can be rephrased in terms of 
multi-armed bandits (even with drifting average payoff), similar steps can be 
used to show failure probability goes to 0



Variations to MCTS
Applying MCTS to different game domains



Go and other Games
● Go is a combinatorial game.

○ Zero-sum, perfect information, deterministic, discrete and sequential.

● What happens when some of these aspects of the game change?



Multi-player MCTS
● The central principle of minimax search:

○ The searching player seeks to find the move to maximize their reward while their opponent 
seeks to minimize it.

○ In the case of two players: each player seeks to maximize their own reward.

● Not necessarily true in the case of more than two players.
○ Is the loss of player 1 and gain of player 2 necessarily a gain for player 3?



Multi-player MCTS
● More than 2 players does not guarantee zero-sum game.
● No perfect way to model reward/loss among all players
● Simple suggestion - maxn idea:

○ Nodes store a vector of rewards.
○ UCB then seeks to maximize the value using the appropriate vector component depending.
○ Components of vector used depend on the current player.
○ But how exactly are these components combined?



MCTS in Multi-player Go
● Cazenave applies several variants of UCT to Multi-player Go.

○ Because players can have common enemies he considers the possibility of “coalitions”

● Uses maxn, but takes into account the moves that may be adversarial towards 
coalition members.

● Changes scoring to include the coalition stones as if they were the player’s 
own.



MCTS in Multi-player Go
● Different ways to treat coalitions:

○ Paranoid UCT: player assumes all other players are in coalition against him.
■ Coalition Reduction
■ Usually better than Confident.

○ Confident UCT: searches are completed with the possibility of coalition with each other one 
player. Move is selected based on whichever coalition could prove most beneficial.

■ Better when algorithms of other players are known.
○ Etc.

● No known perfect way to model strategy equilibrium between more than two 
players.



Variation Takeaway
● Game Properties:

○ Zero-sum: Reward across all players sums to zero.
○ Information: Fully or partially observable to the players.
○ Determinism: Chance Factors?
○ Sequential/Simultaneous actions.
○ Discrete: Whether actions are discrete or applied in real-time.

● MCTS is altered in order to apply to different games not necessarily 
combinatorial.



AlphaGo



Go
● 2 player
● Zero-sum
● 19x19 board
● Very large search tree

○ Breadth ≈ 250, depth ≈ 150
○ Unlike chess

● No amazing heuristics
○ Human intuition hard to replicate

● Great candidate for applying MCTS
○ Vanilla MCTS not good enough



How to make MCTS work for Go?
Idea 1: Value function to truncate tree -> shallower MCTS search

Idea 2: Better tree & default policies -> smarter MCTS search

● Value function
○ Expected future reward from board s assuming we play perfectly from that point

● Tree policy
○ Selecting which part of the search tree to expand

● Default policy
○ Determine how simulations are run
○ Ideally, should be perfect player



Before AlphaGo
● Strongest programs

○ MCTS
○ Enhanced by policies predicting expert moves

■ Narrow search tree
○ Limitations

■ Simple heuristics from expert players
■ Value functions based on linear combinations of input features

○ Cannot capture full breadth of human intuition
○ Generally only looking a few moves ahead
○ Local v global approach to reward



AlphaGo - Training
● AlphaGo

○ Uses both ideas for improving MCTS
○ Two resources

■ Expert data
■ Simulator (self-play)

○ Value function
■ Expected future reward from a board s assuming we play perfectly from that point

○ Tree & Default Policy networks
■ Probability distributions over possible moves a from a board s
■ Distribution encodes reward estimates

Main idea: For better policies and value functions, train with deep convolutional 
networks



AlphaGo - Training

Human expert positions        Self-play positions

Rollout policy      SL policy network             RL policy network       Value function



AlphaGo - Training
● Supervised Learning network pσ

○ Slow to evaluate
○ Goal = predict expert moves well, prior probabilities for each move

● Fast rollout network pπ
○ Default policy
○ Goal = quick simulation/evaluation

● Reinforcement Learning network pρ
○ Play games between current network and randomly selected previous iteration
○ Goal = optimize on game play, not just predicting experts

● Value function vP(s)
○ Self-play according to optimal policies pr for both players from pρ
○ Default policy
○ Function of a board, not probability distribution of moves
○ Goal = get expected future reward assuming our best estimate of perfect play



AlphaGo - Playing
● Each move

○ Time constraint
○ Deepen/build our MCTS search tree
○ Select our optimal move and only consider subtree from there



● at - action selected at time step t from board st
● Q(st, a) - average reward for playing this move (exploitation term)
● P(s, a) - prior expert probability of playing moving a
● N(s, a) - number of times we have visited parent node
● u acts as a bonus value

○ Decays with repeated visits

AlphaGo - Playing (Selection/Tree Policy)



AlphaGo - Playing (Policy Recap)

Human expert positions        Self-play positions

Rollout policy      SL policy network             RL policy network       Value function



● When leaf node is reached, it has a chance to be expanded
● Processed once by SL policy network (pσ) and stored as prior probs P(s, a)
● Pick child node with highest prior prob

AlphaGo - Playing (Expansion)



● Default policy, of sorts
● vθ - value from value function of board position sL
● zL - Reward from fast rollout pᷜ

○ Played until terminal step

● λ - mixing parameter
○ Empirical

AlphaGo - Playing (Evaluation/Default Policy)



● Extra index i is to denote the ith simulation, n total simulations
● Update visit count and mean reward of simulations passing through node
● Once search completes:

○ Algorithm chooses the most visited move from the root position

AlphaGo - Playing (Backup)



AlphaGo Results



AlphaGo Takeaway

● You should work for Google

● Tweaks to MCTS are not independently novel
● Deep learning allows us to train good policy networks
● Have data and computation power for deep learning

○ Can now solve a huge game such as Go

● Method applicable to other 2 player zero-sum games as well



Questions?


