Monte Carlo Tree Search and AlphaGo

Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Zero-Sum Games and AI

- A player's utility gain or loss is exactly balanced by the combined gain or loss of opponents:
 - E.g. Given a pizza with 8 slices to share between person A and B.
 - A eats 1 slice.
 - A experiences +1 net utility.
 - B experiences -1 net utility.
- This is a powerful concept important to AI development for measuring the cost/benefit of a particular move.
- Nash Equilibrium.

Games and AI

- Traditional strategy Minimax:
 - Attempt to minimize opponent's maximum reward at each state (Nash Equilibrium)
 - Exhaustive Search

Drawbacks

- The number of moves to be analyzed quickly increases in depth.
- The computation power limits how deep the algorithm can go.

Alternative Idea

- Bandit-Based Methods
 - Choosing between K actions/moves.
 - Need to maximize the cumulative reward by continuously picking the best move.
- Given a game state we can treat each possible move as an action.
- Some problems / Further improvements:
 - Once we pick a move the state of the game changes.
 - The true reward of each move depends on subsequently possible moves.

Monte Carlo Tree Search

- Application of the Bandit-Based Method.
- Two Fundamental Concepts:
 - The true value of any action can be approximated by running several random simulations.
 - These values can be efficiently used to adjust the policy (strategy) towards a best-first strategy.
- Builds a partial game tree before each move. Then selection is made.
 - Moves are explored and values are updated/estimated.

General Applications of Monte Carlo Methods

- Numerical Algorithms
- Al Games
 - Particularly games with imperfect information
 - Scrabble/Bridge
 - Also very successful in Go (We will hear more about this later)
- Many other applications
 - Real World Planning
 - Optimization
 - Control Systems

Understanding Monte Carlo Tree Search

MCTS Overview

- Iteratively building partial search tree
- Iteration
 - Most urgent node
 - Tree policy
 - Exploration/exploitation
 - Simulation
 - Add child node
 - Default policy
 - Update weights

Fig. 1. The basic MCTS process [17].

Development of MCTS

- Kocsis and Szepesvári, 2006
 - Formally describing bandit-based method
 - Simulate to approximate reward
- Proved MCTS converges to minimax solution
- UCB1: finds optimal arm of upper confidence bound (UCT employed UCB1 algorithm on each explored node)

Algorithm Overview

Fig. 2. One iteration of the general MCTS approach.

Policies

- Policies are crucial for how MCTS operates
- Tree policy
 - Used to determine how children are selected
- Default policy
 - Used to determine how simulations are run (ex. randomized)
 - Result of simulation used to update values

Selection

- Start at root node
- Based on Tree Policy select child
- Apply recursively descend through tree
 - Stop when expandable node is reached
 - Expandable -
 - Node that is non-terminal and has unexplored children

Expansion

- Add one or more child nodes to tree
 - Depends on what actions are available for the current position
 - \circ $\,$ $\,$ Method in which this is done depends on Tree Policy $\,$

Simulation

- Runs simulation of path that was selected
- Get position at end of simulation
- Default Policy determines how simulation is run
- Board outcome determines value

Backpropagation

- Moves backward through saved path
- Value of Node
 - representative of benefit of going down that path from parent
- Values are updated dependent on board outcome
 - Based on how the simulated game ends, values are updated

Backpropagation -

Policies

- Tree policy
 - Select/create leaf node
 - Selection and Expansion
 - Bandit problem!

• Default policy

- Play the game till end
- Simulation
- Selecting the best child
 - Max (highest weight)
 - Robust (most visits)
 - Max-robust (both, iterate if none exists)

UCT Algorithm

- Selecting Child Node Multi-Arm Bandit Problem
- UCB1 for each child selection

• UCT -
$$UCT = \overline{X}_j + 2C_p \sqrt{\frac{2\ln n}{n_j}}$$

- *n* number of times current(parent) node has been visited
- n_i number of times child *j* has been visited
- \vec{C}_p some constant > 0
- X_j^{\prime} mean reward of selecting this position
 - · [0, 1]

UCT Algorithm

$$UCT = \overline{X}_j + 2C_p \sqrt{\frac{2\ln n}{n_j}}$$

- $n_i = 0$ means infinite weight
 - Guarantees we explore each child node at least once
- Each child has non-zero probability of selection
- Adjust C_p to change exploration vs exploitation tradeoff

Advantages/disadvantages of MCTS

- Aheuristic
 - No need for domain-specific knowledge
 - Other algos may work better if heuristics exists
 - Minimax for Chess
 - Better because chess has strong heuristics that can decrease size of tree.
- Anytime
 - Can stop running MCTS at any time
 - Return best action
- Asymmetric
 - Favor more promising nodes
- Ramanujan et al.
 - Trap states = UCT performs worse
 - Can't model sacrifices well (Queen Sacrifice in Chess)

Example - Othello

Rules of Othello

- Alternating turns
- You can only make a move that sandwiches a continuous line of your opponent's pieces between yours
 - Color of sandwiched pieces switches to your color
- Ends when board is full
- Winner is whoever has more pieces

Example - The Game of Othello

- n_j initially 0
 - o all weights are initially infinity
- *n* initially 0
- C_p some constant > 0
 - For this example
 - $C = (1 / 2\sqrt{2})$
- X_j mean reward of selecting this position
 - o **[0, 1]**
 - Initially N/A

Example - The Game of Othello cont. $UCT = \overline{X}_j + 2C_p \sqrt{\frac{2 \ln n}{n_j}}$

	X _j	n	n _j
m1	1	4	1
m2	1	4	1
m3	1	4	1
m4	0	4	1

- This is how our tree looks after 6 iterations.
- Red Nodes not actually in tree
- Now given a tree, actual moves can be made using max, robust, max-robust, or other child selection policies.
- Only care about subtree after moves have been made

MCTS - Algorithm Recap

- Applied to solve Multi-Arm Bandit problem in a tree structure
 UCT = UCB1 applied at each subproblem
- Due to tree structure same move can have different rewards in different subtrees
- Weight to go to a given node:
 - Mean value for paths involving node
 - Visits to node
 - Visits to parent node

Selection \rightarrow Expansion \rightarrow Simulation \rightarrow Backpropagation Tree Default Policy Policy

- Constant balancing exploration vs exploitation
- Determines values from Default Policy
- Determines how to choose child from Tree Policy
- Once you have acomplete tree number of ways to pick moves during game - Max, Robust, Max-Robust, etc.

Analysis of UCT Algorithm

UCT Algorithm Convergence

- UCT is an application of the bandit algorithm (UCB1) for Monte Carlo search
- In the case of Go, the estimate of the payoffs is non-stationary (mean payoff of move shifts as games are played)
- Vanilla MCTS has not been shown to converge to the optimal move (even when iterated for a long period of time) for non-stationary bandit problems
- UCT Algorithm does converge to optimal move at a polynomial rate at the root of a search tree with non-stationary bandit problems
- Assumes that the expected value of partial averages converges to some value, and that the probability that experienced average payoff is a $\sqrt{n \ln(1/\delta)}$ factor off of the expected average is less than delta if we play long enough

UCT Algorithm Convergence

- Builds on earlier work by Auer (2002) who proved UCB1 algorithm converged for stationary distributions
- Since UCT algorithm views each visited node as running a separate UCB1 algorithm, bounds are made on expected number of plays on suboptimal arms, pseudo-regret measure, deviation from mean bounds, and eventually proving that UCB1 algorithm plays an suboptimal arm with 0 probability giving enough time
- Kocsis and Szepesvári's work was very similar, with additions of ε-δ type arguments using the convergence of payoff drift to remove the effects of drift in their arguments, especially important in their regret upper bounds

UCT Algorithm Convergence

- After showing UCB1 correctly converges to the optimal arm, the convergence of UCT follows with an induction argument on search tree depth
- For a tree of depth D, we can consider the all children of the root node and their associated subtrees.
- Induction hypothesis gives probability of playing suboptimal arm goes to 0 (base case is just UCB1), and the pseudo-regret bounds and deviation from partial mean bounds ensures the drift is accounted for
- The most important takeaway is when a problem can be rephrased in terms of multi-armed bandits (even with drifting average payoff), similar steps can be used to show failure probability goes to 0

Variations to MCTS

Applying MCTS to different game domains

Go and other Games

- Go is a combinatorial game.
 - Zero-sum, perfect information, deterministic, discrete and sequential.

• What happens when some of these aspects of the game change?

Multi-player MCTS

- The central principle of minimax search:
 - The searching player seeks to find the move to maximize their reward while their opponent seeks to minimize it.
 - In the case of two players: each player seeks to maximize their own reward.
- Not necessarily true in the case of more than two players.
 - Is the loss of player 1 and gain of player 2 necessarily a gain for player 3?

Multi-player MCTS

- More than 2 players does not guarantee zero-sum game.
- No perfect way to model reward/loss among all players
- Simple suggestion maxⁿ idea:
 - Nodes store a vector of rewards.
 - UCB then seeks to maximize the value using the appropriate vector component depending.
 - Components of vector used depend on the current player.
 - But how exactly are these components combined?

MCTS in Multi-player Go

- Cazenave applies several variants of UCT to Multi-player Go.
 - Because players can have common enemies he considers the possibility of "coalitions"
- Uses maxⁿ, but takes into account the moves that may be adversarial towards coalition members.
- Changes scoring to include the coalition stones as if they were the player's own.

MCTS in Multi-player Go

- Different ways to treat coalitions:
 - *Paranoid UCT*: player assumes all other players are in coalition against him.
 - Coalition Reduction
 - Usually better than Confident.
 - *Confident UCT:* searches are completed with the possibility of coalition with each other one player. Move is selected based on whichever coalition could prove most beneficial.
 - Better when algorithms of other players are known.
 - Etc.
- No known perfect way to model strategy equilibrium between more than two players.

Variation Takeaway

- Game Properties:
 - Zero-sum: Reward across all players sums to zero.
 - Information: Fully or partially observable to the players.
 - Determinism: Chance Factors?
 - Sequential/Simultaneous actions.
 - Discrete: Whether actions are discrete or applied in real-time.
- MCTS is altered in order to apply to different games not necessarily combinatorial.

AlphaGo

Go

- 2 player
- Zero-sum
- 19x19 board
- Very large search tree
 - Breadth \approx 250, depth \approx 150
 - Unlike chess
- No amazing heuristics
 - Human intuition hard to replicate
- Great candidate for applying MCTS
 - Vanilla MCTS not good enough

How to make MCTS work for Go?

Idea 1: Value function to truncate tree -> shallower MCTS search

Idea 2: Better tree & default policies -> smarter MCTS search

- Value function
 - Expected future reward from board *s* assuming we play perfectly from that point
- Tree policy
 - Selecting which part of the search tree to expand
- Default policy
 - Determine how simulations are run
 - Ideally, should be perfect player

Before AlphaGo

- Strongest programs
 - MCTS
 - Enhanced by policies predicting expert moves
 - Narrow search tree
 - Limitations
 - Simple heuristics from expert players
 - Value functions based on linear combinations of input features
 - Cannot capture full breadth of human intuition
 - Generally only looking a few moves ahead
 - Local v global approach to reward

AlphaGo - Training

- AlphaGo
 - Uses both ideas for improving MCTS
 - Two resources
 - Expert data
 - Simulator (self-play)
 - Value function
 - Expected future reward from a board *s* assuming we play perfectly from that point
 - Tree & Default Policy networks
 - Probability distributions over possible moves *a* from a board *s*
 - Distribution encodes reward estimates

Main idea: For better policies and value functions, train with deep convolutional networks

AlphaGo - Training

AlphaGo - Training

- Supervised Learning network p_σ
 - Slow to evaluate
 - Goal = predict expert moves well, prior probabilities for each move

• Fast rollout network p_π

- Default policy
- Goal = quick simulation/evaluation

• Reinforcement Learning network p_o

- Play games between current network and randomly selected previous iteration
- Goal = optimize on game play, not just predicting experts
- Value function v^P(s)
 - Self-play according to optimal policies p_r for both players from p_o
 - Default policy
 - Function of a board, not probability distribution of moves
 - Goal = get expected future reward assuming our best estimate of perfect play

AlphaGo - Playing

• Each move

- Time constraint
- Deepen/build our MCTS search tree
- Select our optimal move and only consider subtree from there

AlphaGo - Playing (Selection/Tree Policy)

$$a_t = \operatorname{argmax}_a(Q(s_t, a) + u(s_t, a))$$
$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

- a_t action selected at time step *t* from board s_t
- $Q(s_r, a)$ average reward for playing this move (exploitation term)
- P(s, a) prior expert probability of playing moving a
- *N(s, a)* number of times we have visited parent node
- *u* acts as a bonus value
 - Decays with repeated visits

AlphaGo - Playing (Policy Recap)

AlphaGo - Playing (Expansion)

- When leaf node is reached, it has a chance to be expanded
- Processed once by SL policy network (p_{σ}) and stored as prior probs P(s, a)
- Pick child node with highest prior prob

AlphaGo - Playing (Evaluation/Default Policy)

$$V(s_L) = (1 - \lambda)v_\theta(s_L) + \lambda z_L$$

- Default policy, of sorts
- v_{θ} value from value function of board position s_{μ}
- z_1 Reward from fast rollout p_{π}
 - Played until terminal step
- λ mixing parameter
 - Empirical

AlphaGo - Playing (Backup)

$$N(s,a) = \sum_{i=1}^{n} 1(s,a,i) \qquad Q(s,a) = \frac{1}{N(s,a)} \sum_{i=1}^{n} 1(s,a,i) V(s_L^i)$$

- Extra index *i* is to denote the *i*th simulation, *n* total simulations
- Update visit count and mean reward of simulations passing through node
- Once search completes:
 - Algorithm chooses the most visited move from the root position

AlphaGo Results

AlphaGo Takeaway

- You should work for **Google**
- Tweaks to MCTS are not independently novel
- Deep learning allows us to train good policy networks
- Have data and computation power for deep learning
 - Can now solve a huge game such as Go
- Method applicable to other 2 player zero-sum games as well

Questions?

