Monte Carlo Tree Search
and AlphaGo

Suraj Nair, Peter Kundzicz, Kevin An, Vansh Kumar

Zero-Sum Games and Al

e A player’s utility gain or loss is exactly balanced by the combined gain or loss

of opponents:
o E.g. - Given a pizza with 8 slices to share between person A and B.
m Aeats 1slice.
e A experiences +1 net utility.
e B experiences -1 net utility.

e This is a powerful concept important to Al development for measuring the
cost/benefit of a particular move.
e Nash Equilibrium.

Games and Al

e Traditional strategy - Minimax:
o Attempt to minimize opponent’s

maximum reward at each state (Nash
Equilibrium)
o Exhaustive Search

Player 1

Player 2

Player 1

Player 2

Drawbacks

e The number of moves to be
analyzed quickly increases in depth.

e The computation power limits how
deep the algorithm can go.

Player 1

Player 2

Player 1

Player 2

Alternative Ildea

Bandit-Based Methods

o Choosing between K actions/moves.

o Need to maximize the cumulative reward by
continuously picking the best move.

e Given a game state we can treat each
possible move as an action.

e Some problems / Further
improvements:

o Once we pick a move the state of the game
changes.

o The true reward of each move depends on
subsequently possible moves.

Player 1

Player 2

Player 1

Player 2

Monte Carlo Tree Search

e Application of the Bandit-Based Method.
e Two Fundamental Concepts:
o The true value of any action can be approximated by running several random simulations.

o These values can be efficiently used to adjust the policy (strategy) towards a best-first
strategy.
e Builds a partial game tree before each move. Then selection is made.
o Moves are explored and values are updated/estimated.

General Applications of Monte Carlo Methods

e Numerical Algorithms

e Al Games

o Particularly games with imperfect information
o Scrabble/Bridge
o Also very successful in Go (We will hear more about this later)

e Many other applications
o Real World Planning
o Optimization
o Control Systems

Understanding Monte Carlo
Tree Search

MCTS Overview

e lteratively building partial search tree
e lteration
o Most urgent node
m T[ree policy
m Exploration/exploitation
o Simulation \
m Add child node ;
m Default policy \
o Update weights D

Fig. 1. The basic MCTS process [17].

Development of MCTS

e Kocsis and Szepesvari, 2006
o Formally describing bandit-based method
o Simulate to approximate reward

e Proved MCTS converges to minimax solution
e UCB1: finds optimal arm of upper confidence bound (UCT employed UCB1
algorithm on each explored node)

Algorithm Overview

Selection —— Expansion —— Simulation — Backpropagation N

Tree Default

Policy PO:E’:C.Y
¥
_ AN y.

Fig. 2. One iteration of the general MCTS approach.

Policies

e Policies are crucial for how MCTS operates
e Tree policy
o Used to determine how children are selected

e Default policy
o Used to determine how simulations are run (ex. randomized)
o Result of simulation used to update values

Selection

e Start at root node
e Based on Tree Policy select child

e Apply recursively - descend through tree
o Stop when expandable node is reached
o Expandable -
m Node that is non-terminal and has unexplored children

— Selection —

Expansion

e Add one or more child nodes to tree
o Depends on what actions are available for the current position

o Method in which this is done depends on Tree Policy
— Expansion —

Simulation — Simulation —

Runs simulation of path that was selected

Get position at end of simulation

Default Policy determines how simulation is run
Board outcome determines value

Def:{zult
Policy

v
A

Backpropagation

e Moves backward through saved path _
e Value of Node - Backpropagation -
o representative of benefit of going down that path from parent

e Values are updated dependent on board outcome
o Based on how the simulated game ends, values are updated

Policies

e Tree policy
o Select/create leaf node
o Selection and Expansion
o Bandit problem!

e Default policy
o Play the game till end
o Simulation

e Selecting the best child
o Max (highest weight)
o Robust (most visits)
o Max-robust (both, iterate if none exists)

UCT Algorithm

e Selecting Child Node - Multi-Arm Bandit Problem
UCB1 for each child selection

UCT - 5
HOT =X 4 o | 28

Th;

n - number of times current(parent) node has been visited
n - number of times child j has been visited
Cp- some constant > 0

Xj- mean reward of selecting this position
o [0, 1]

UCT Algorithm

2Inn

5

UCT =X, +2C,

* n= 0 means infinite weight
o Guarantees we explore each child node at least once
e Each child has non-zero probability of selection

e Adjust C}O to change exploration vs exploitation tradeoff

Advantages/disadvantages of MCTS

e Abheuristic
o No need for domain-specific knowledge
o Other algos may work better if heuristics exists
m Minimax for Chess
m Better because chess has strong
heuristics that can decrease size of tree.

[Anytlme Lbaa bbbt e b a itk hh et bannnnat b bbaantgtabiibinanl
o Can stop running MCTS at any time Bl A S S SR i
o Return best action Wl ”H

e Asymmetric
o Favor more promising nodes

e Ramanujan et al.

o Trap states = UCT performs worse

o Can’t model sacrifices well (Queen Sacrifice in Fig. . ASyTinelio Feg growsit (65,

Chess)

Example - Othello

Rules of Othello

Alternating turns
You can only make a move that sandwiches a
continuous line of your opponent's pieces between yours

o Color of sandwiched pieces switches to your color
Ends when board is full

Winner is whoever has more pieces

Example - The Game of Othello 2in

UCT = X; +2C, Vﬂ

Thy

0@@0 m1

e n.-initially O
o all weights are initially infinity
e n-initially 0
° Cp- some constant > 0
o For this example
o C=(1/2V2)
° Xj mean reward of selecting this
position
o [0, 1]
o Initially N/A

m4

—

Example - The Game of Othello cont. ver=x %"

Tt-_f
After first 4 iterations: (Xj, n, n)) - (Mean Value, Parent Visits, Child Visits)
Suppose m1, m2, m3
black wins in simulation
and m4 white wins

m1

X. n h
J j
m1 1 4 1 m3
m2 1 4 1 ma
m3 1 4 1
m4 0 4 1

Example - The Game of Othello lter #5 o _x, .40, 220

Black’s Move

A,4,1)
White’'s Move

0, 4,1)

(N/A,1,0) (N/A,1,0) (N/A, 1, 0)

e First selection picks m1
e Second selection picks m11

_;I'.Il

(X n,n) (Mean Value, Parent Visits, Ch/ld V/S/ts)

Example - The Game of Othello lter #5 ,.,_x Hﬁwzhm

(X n,n) (Mean Value, Parent Visits, Child Visits)

Black’'s Move

(.5, 5,2) (1,5, 1)

A, 5, 1)
White’s Move

0,5,1)

(1,2,1)

e Run a simulation

e White Wins

e Backtrack, and update mean scores
accordingly.

TLg
(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

Example - The Game of Othello Iter #6 vor - %, 420, a0

Black’s Move

(.5, 5, 2) (1,5, 1)

White

A,5,1)
Move

0,5,1)

e Suppose we first select m2

Example - The Game of Othello Iter #6 vor - %, 420, a0

TLg
(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

m21 m22

A, 5, 1)
Vhite’s Move

0,5,1)

(1,2,1) (N/A, 1, 0) (N/A, 1, 0) (N/A, 1, 0)

e Suppose we pick m22

Example - The Game of Othello Iter #6 vor - %, 420, a0

Black's Move

(1,6, 2)

(.5, 6, 2) (1,6, 1) 0, 6, 1)

White’s Move

(1,2,1) 0,2, 1)

e Run simulated game from this position.

e Suppose black wins the simulated game.

e Backtrack and update values

TLg
(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

Example - The Game of Othello Iter #6 vor - %, 420, a0

Black's Move

1.833

1,2,1) (N/A, 2, 0)

TLg
(Xj, n, nj) - (Mean Value, Parent Visits, Child Visits)

(N/A, 2,0) (N/A, 2,0) 0,2,1) (N/A, 2, 0)

This is how our tree looks after 6 iterations.

Red Nodes not actually in tree

Now given a tree, actual moves can be made using max, robust, max-
robust, or other child selection policies.

Only care about subtree after moves have been made

MCTS - Algorithm Recap

e Applied to solve Multi-Arm Bandit problem in a tree structure
o UCT = UCB1 applied at each subproblem

e Due to tree structure same move can have different rewards in

Selecton ——> Expansion ——> Simulation —> Backpropagatlon

different subtrees
e Weight to go to a given node: g& oﬁi %Eg%

o Mean value for paths involving node e Dﬂauh
lo Qv Policy
o Visits to node ‘
. - &
O VISItS to parent node Fig. 2. One iteration of the general MCTS approach.
o Constant balancing exploration vs exploitation

e Determines values from Default Policy

e Determines how to choose child from Tree Policy

e Once you have acomplete tree - number of ways to pick moves
during game - Max, Robust, Max-Robust, etc.

Analysis of UCT Algorithm

UCT Algorithm Convergence

e UCT is an application of the bandit algorithm (UCB1) for Monte Carlo search

e In the case of Go, the estimate of the payoffs is non-stationary (mean payoff
of move shifts as games are played)

e Vanilla MCTS has not been shown to converge to the optimal move (even
when iterated for a long period of time) for non-stationary bandit problems

e UCT Algorithm does converge to optimal move at a polynomial rate at the root
of a search tree with non-stationary bandit problems

e Assumes that the expected value of partial averages converges to some
value, and that the probability that experienced average payoff is a valn(1/5)
factor off of the expected average is less than delta if we play long enough

UCT Algorithm Convergence

Builds on earlier work by Auer (2002) who proved UCB1 algorithm converged
for stationary distributions

Since UCT algorithm views each visited node as running a separate UCB1
algorithm, bounds are made on expected number of plays on suboptimal
arms, pseudo-regret measure, deviation from mean bounds, and eventually
proving that UCB1 algorithm plays an suboptimal arm with O probability giving
enough time

Kocsis and Szepesvari’'s work was very similar, with additions of €-0 type
arguments using the convergence of payoff drift to remove the effects of drift
in their arguments, especially important in their regret upper bounds

UCT Algorithm Convergence

e After showing UCB1 correctly converges to the optimal arm, the convergence
of UCT follows with an induction argument on search tree depth

e For atree of depth D, we can consider the all children of the root node and
their associated subtrees.

e Induction hypothesis gives probability of playing suboptimal arm goes to 0
(base case is just UCB1), and the pseudo-regret bounds and deviation from
partial mean bounds ensures the drift is accounted for

e The most important takeaway is when a problem can be rephrased in terms of
multi-armed bandits (even with drifting average payoff), similar steps can be
used to show failure probability goes to O

Variations to MCTS

Applying MCTS to different game domains

Go and other Games

e Go is a combinatorial game.

o Zero-sum, perfect information, deterministic, discrete and sequential.

SOI.'ITH'.IRE

R R ERED

Multi-player MCTS

e The central principle of minimax search:

o The searching player seeks to find the move to maximize their reward while their opponent
seeks to minimize it.
o Inthe case of two players: each player seeks to maximize their own reward.

e Not necessarily true in the case of more than two players.
o Is the loss of player 1 and gain of player 2 necessarily a gain for player 3?

Zero Sum

Your Interests
“You lose.” /'

A

My Interests
“l win.”

Multi-player MCTS

e More than 2 players does not guarantee zero-sum game.
e No perfect way to model reward/loss among all players

e Simple suggestion - max" idea:
o Nodes store a vector of rewards.
o UCB then seeks to maximize the value using the appropriate vector component depending.
o Components of vector used depend on the current player.
o But how exactly are these components combined?

MCTS in Multi-player Go

e Cazenave applies several variants of UCT to Multi-player Go.
o Because players can have common enemies he considers the possibility of “coalitions”

e Uses max", but takes into account the moves that may be adversarial towards
coalition members.

e Changes scoring to include the coalition stones as if they were the player’'s
own.

MCTS in Multi-player Go

e Different ways to treat coalitions:
o Paranoid UCT: player assumes all other players are in coalition against him.
m Coalition Reduction
m Usually better than Confident.
o Confident UCT: searches are completed with the possibility of coalition with each other one

player. Move is selected based on whichever coalition could prove most beneficial.
m Better when algorithms of other players are known.
o Etc.

e No known perfect way to model strategy equilibrium between more than two
players.

Variation Takeaway

o Game Properties:
o Zero-sum: Reward across all players sums to zero.
o Information: Fully or partially observable to the players.
o Determinism: Chance Factors?
o Sequential/Simultaneous actions.
o Discrete: Whether actions are discrete or applied in real-time.

e MCTS is altered in order to apply to different games not necessarily
combinatorial.

AlphaGo

Go

2 player

Zero-sum

19x19 board

Very large search tree

o Breadth = 250, depth = 150
o Unlike chess

No amazing heuristics
o Human intuition hard to replicate

Great candidate for applying MCTS
o Vanilla MCTS not good enough

How to make MCTS work for Go?

Idea 1: Value function to truncate tree -> shallower MCTS search

|dea 2: Better tree & default policies -> smarter MCTS search

e Value function

o Expected future reward from board s assuming we play perfectly from that point
e Tree policy

o Selecting which part of the search tree to expand
e Default policy

o Determine how simulations are run
o ldeally, should be perfect player

Before AlphaGo

e Strongest programs
o MCTS
o Enhanced by policies predicting expert moves
m Narrow search tree
o Limitations
m Simple heuristics from expert players
m Value functions based on linear combinations of input features
o Cannot capture full breadth of human intuition
o Generally only looking a few moves ahead
o Local v global approach to reward

AlphaGo - Training

e AlphaGo

o Uses both ideas for improving MCTS
o Two resources

m Simulator (self-play)
o Value function

m Expected future reward from a board s assuming we play perfectly from that point
o Tree & Default Policy networks

m Probability distributions over possible moves a from a board s

m Distribution encodes reward estimates

Main idea: For better policies and value functions, train with deep convolutional
networks

AlphaGo - Training

Rollout policy SL policy network RL policy network

P Py P,

e B et 1

Value function

)

Human expert positions Self-play positions

}IOMJBU [BINSN

ele

AlphaGo - Training

e Supervised Learning network p_
o Slow to evaluate
o Goal = predict expert moves well, prior probabilities for each move
e Fast rollout network p_
o Default policy
o Goal = quick simulation/evaluation
e Reinforcement Learning network P,
o Play games between current network and randomly selected previous iteration
o Goal = optimize on game play, not just predicting experts
e Value function v"(s)

Self-play according to optimal policies p, for both players from pp

Default policy

Function of a board, not probability distribution of moves

Goal = get expected future reward assuming our best estimate of perfect play

O O O O

AlphaGo - Playing

e [Each move
o Time constraint
o Deepen/build our MCTS search tree
o Select our optimal move and only consider subtree from there

a Selection b Expansion c Evaluation d Backup
o+ 7{£HR ﬁAif, | 7H£R7
T + + +
1P madN, Q+ulP) i 1oe ey N ¥
O B S - T R 2 S
=+ —
Q +u(P) .(nax

e
g
B
e
-y
ELii /-

AlphaGo - Playing (Selection/Tree Policy)

ay = argmax,(Q(s¢, a) + u(st, a))
P(s, a)
ST N(s, a)

a, - action selected at time step t from board s,

Q(s, a) - average reward for playing this move (exploitation term)
P(s, a) - prior expert probability of playing moving a

N(s, a) - number of times we have visited parent node

u acts as a bonus value
o Decays with repeated visits

u(s, a)

AlphaGo - Playing (Policy Recap)

Rollout policy SL policy network RL policy network

e B et 1

Value function

B

Human expert positions Self-play positions

YJOMIOU [BINSN

ele

AlphaGo - Playing (Expansion)

e When leaf node is reached, it has a chance to be expanded
e Processed once by SL policy network (p_) and stored as prior probs P(s, a)
e Pick child node with highest prior prob

b Expansion

AlphaGo - Playing (Evaluation/Default Policy)

V(SL) — (1 — /\)‘UH(SL) + A‘ZL ¢ Evaluation

-
e Default policy, of sorts H &

e v, -value from value function of board position s,

e z -Reward from fast rollout p, "f’(4)
o Played until terminal step l
e A - mixing parameter ¥

o Empirical r (ﬁ)

AlphaGo - Playing (Backup)

=

i=1 =

e Extra index iis to denote the /" simulation, n total simulations
e Update visit count and mean reward of simulations passing through node

e Once search completes:
o Algorithm chooses the most visited move from the root position

AlphaGo Results

Professional

dan (p)

Amateur
dan (d)

GnuGo
Fuego

Pachi

Zen

Crazy Stone
Fan Hui

AlphaGo

AlphaGo
distributed

3,500

3

2,500

2,000+
1,500 =
1,000 -

Buney o3

AlphaGo Takeaway

e You should work for GO ge

e Tweaks to MCTS are not independently novel
e Deep learning allows us to train good policy networks

e Have data and computation power for deep learning
o Can now solve a huge game such as Go

e Method applicable to other 2 player zero-sum games as well

Questions?

