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Class	Details	

•  Instructor:	Yisong	Yue	
	
•  TAs:	

•  Course	Website:	
hBp://www.yisongyue.com/courses/cs159/		
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Style	of	Course	

•  Graduate	level	course	

•  Give	students	an	overview	of	topics	

•  Dig	deep	into	one	topic	for	final	project	

•  Assume	students	are	mathema1cally	mature	
– Goal	is	to	understand	basic	concepts		
– Understand	specific	mathema1cal	details	depending	
on	your	interest	
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Grading	Breakdown	

•  Par1cipa1on	(20%)	

•  Mini-quizzes	(10%)	

•  Final	Project	(70%)	
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Paper	Reading	&	Discussion	

•  Paper	Reading	Course	
– Reading	assignments	for	each	lecture	
– Lectures	more	like	discussion	

•  Student	Presenta1ons	
– Presenta1on	schedule	signup	soon	
– Present	in	groups	
– Can	choose	which	paper(s)	to	present	
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Mini-quizzes	

•  Evening	aber	every	lecture	
– Very	short	
– Easy	if	you	read	material	&	aBended	lecture	

•  Released	via	Piazza	
– Also	use	Piazza	for	Q&A	
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Final	Project	

•  Can	be	on	any	topic	related	to	the	course	

•  Work	in	groups	

•  Will	release	1meline	of	progress	reports	soon	

•  Peer	review	(?)	

7	



Topics	

•  Online	Learning	
•  Mul1-armed	Bandits	
•  Ac1ve	Learning	
•  Crowdsourcing	
•  Reinforcement	Learning	
•  Models	of	Human	Decision	making	
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Focus	of	Course	

•  Rigorous	algorithm	design	
– Math	intensive,	but	nothing	too	hard	
– Will	walk	through	relevant	math	in	class	

•  Apply	to	interes1ng	applica1ons	
– What	are	the	right	ways	to	model	a	problem?	
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What	Does	Rigorous	Mean?	

•  Formal	model		
– Explicitly	state	your	assump1ons	

•  Rigorously	reason	about	how	your	algorithm	
solves	the	model	
– Some1mes	with	provable	guarantees	

•  Argue	that	your	model	is	a	reasonable	one	
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What	Makes	a	Good	Final	Project?	

•  Pure	Theory	
–  Study	proof	techniques,	try	to	extend	proof,	or	apply	to	
new	sejng	

•  Algorithms	
–  Extend	algorithms,	design	new	ones,	for	new	sejngs	

•  Modeling	
– Model	new	sejng,	what	are	the	right	assump1ons?	
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Outline	

•  First	3-5	lectures	
– Review	basic	algorithms	
– Somewhat	dry,	but	necessary	

•  Topics/readings	chosen	by	students	
– With	cura1ng	from	Instructor	&	Tas	
– List	of	papers	already	on	website	

•  But	is	nego1able	
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Rest	of	Today	

•  Introduc1on	to	Online	Learning	
– Follow	the	Leader	
– Perceptron	

•  Brief	Overview	of	Other	Topics	in	Course	
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Introduc1on	to	Online	Learning	
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(Most	Basic)	Online	Learning	

•  For	t	=	1….T																															(some1mes	T	is	unknown)	

– Algorithm	chooses	pt																		
– World	reveals	loss	func1on	Lt	
– Algorithm	suffers	loss	Lt(pt)	

•  Goal:	minimize	total	loss		

15	

Lt (pt )
t=1

T

∑

What	are	the		
semanDcs	of	pt?	

What	is	the	loss?	

How	is	the	loss	
chosen?	



Recall:	Supervised	Learning	

	
•  Op1mize	via	Stochas1c	Gradient	Descent	
– Maintain	a	wt	

– Each	itera1on	receive:		
	

– Assume	sampled	randomly	from	S	

– Choose	wt+1	based	on	wt	and	Lt	
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argmin
w

L yi, f (xi |w)( )
i=1

N

∑ S = (xi, yi ){ }i=1
N

Lt (wt ) = L yi, f (xi |wt )( )



(Most	Basic)	Online	Learning	

•  For	t	=	1….T																															(some1mes	T	is	unknown)	

– Algorithm	chooses	pt																		
– World	reveals	loss	func1on	Lt	
– Algorithm	suffers	loss	Lt(pt)	

•  Goal:	minimize	total	loss		
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Lt (pt )
t=1

T

∑

pt	=	wt	

Lt(wt)	=	L(yt,f(xt|wt))	

Lt	chosen	randomly	



What	if…	

•  We	receive	a	constant	stream	of	data?	
– Don’t	know	T	a	priori	

•  We	receive	data	in	some	arbitrary	way?	
– Not	sampled	independently	from	some	
distribu1on	

•  Can	we	sDll	(provably)	achieve	good	
performance?	
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Quan1fying	Performance	

•  In	supervised	learning	we	care	about:	

•  In	online	learning,	we	care	about:	
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L yi, f (xi |w)( )
i=1

N

∑ = Li (w)
i=1

N

∑

L yt, f (xt |wt )( )
t=1

T

∑ = Lt (wt )
t=1

T

∑

a	single	w	

a	sequence	
of	wt	



Quan1fying	Performance	

•  Compete	against	single	best	w	in	hindsight:	
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Lt (w
*)

t=1

T

∑ =min
w

Lt (w)
t=1

T

∑

R(T ) = Lt (wt )
t=1

T

∑ − Lt (w
*)

t=1

T

∑ “Regret”	

InterpretaDon:	best	possible	loss	
																												w.r.t.	supervised	learning	



Interpre1ng	Regret	

•  Expected	Training	Error	is:	

•  Want	expected	training	error	to	(quickly)	converge	to	op1mal	
–  Equivalent	to	average	regret	(quickly)	converging	to	0:	

•  SaDsfied	when	regret	grows	sublinearly	w.r.t.	T!	
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1
T
R(T ) = 1

T
Lt (wt )

t=1

T

∑ − Lt (w
*)

t=1

T

∑
#

$
%

&

'
(→ 0

1
T

Lt (wt )
t=1

T

∑



Summary	of	Regret	

•  Generic	way	to	quan1fy	performance	
– Characterizes	speed	of	convergence	for	SGD	

•  Applies	to	many	online	learning	sejngs	

•  We’ll	see	other	ways	to	quan1fy	performance	
later	in	course	
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Follow	the	Leader	
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Basic	Online	Convex	Op1miza1on	

•  For	t	=	1….T																																														(T	unknown)	
– Algorithm	chooses	pt	in	RD																		
– World	reveals	loss	func1on	Lt(pt)	=	|yt-pt|2	

– Algorithm	suffers	loss	Lt(pt)	

•  Goal:	minimize	total	loss		
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Lt (pt )
t=1

T

∑

Squared	Distance	to	yt	
In	general,	convex	loss	



Follow	the	Leader	Algorithm	

•  The	“leader”	is	the	best	point	given	what	we	
know	so	far:	
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pt = argmin
p

Lt ' p( )
t '=1

t−1

∑ = argmin
p

yt ' − p
2

t '=1

t−1

∑ =
1
t −1

yt '
t '=1

t−1

∑

This	is	the	enDre	algorithm!	



Benefits	and	Drawbacks	

•  Benefits:	
– Efficient	regret	bounds	(will	see	next	slide)	
– Conceptually	very	simple	

•  Can	be	applied	to	many	sejngs	

•  Drawbacks:	
– Can	be	computa1onally	very	expensive	

•  For	arbitrary	loss	func1ons		
–  (can’t	use	average	all	the	1me)	

26	



Defini1ons	

•  Best	hindsight	choice	of	first	t	1me	steps:	

•  Follow	the	Leader	plays:	
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pt
* = argmin

p
Lt ' p( )

t '=1

t

∑ = argmin
p

yt ' − p
2

t '=1

t

∑ =
1
t

yt '
t '=1

t

∑

pt = pt−1
*

pt = argmin
p

Lt ' p( )
t '=1

t−1

∑ = argmin
p

yt ' − p
2

t '=1

t−1

∑ =
1
t −1

yt '
t '=1

t−1

∑



Goal	

•  Minimize	Regret:	
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R(T ) = Lt (pt )
t=1

T

∑ − Lt (pT
* )

t=1

T

∑

pT
* = argmin

p
Lt p( )

t=1

T

∑ = argmin
p

yt − p
2

t=1

T

∑ =
1
T

yt
t=1

T

∑



Lemma	1	

•  InterpretaDon:		
–  the	moving	best	hindsight	is	at	least	as	good	as	the	final	best	hindsight	

•  Proof	by	Induc1on	
– Base	case	(T=1):	
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L1(p1
*) = L1(p1

*)

Lt (pt
*)

t=1

T

∑ ≤ Lt (pT
* )

t=1

T

∑



Proof	Con1nued	

•  Induc1ve	Case	(T>1):	
–  Remove	last	term	because	it’s	equivalent	

–  Observe:	
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Lt (pt
*)

t=1

T

∑ ≤ Lt (pT
* )

t=1

T

∑ ⇒ Lt (pt
*)

t=1

T−1

∑ ≤ Lt (pT
* )

t=1

T−1

∑

Lt (pt
*)

t=1

T−1

∑ ≤ Lt (pT−1
* )

t=1

T−1

∑ ≤ Lt (pT
* )

t=1

T−1

∑

Induc1ve	Hypothesis	

Defini1on	of	p*	



Regret	Bound	
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R(T ) = Lt (pt )
t=1

T

∑ − Lt (pT
* )

t=1

T

∑

       = Lt (pt−1
* )

t=1

T

∑ − Lt (pT
* )

t=1

T

∑

       ≤ Lt (pt−1
* )

t=1

T

∑ − Lt (pt
*)

t=1

T

∑

DefiniDon	of		
Follow	the	Leader	

Lemma	1	



Regret	Bound	(con1nued)	
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Lt (pt−1
* )

t=1

T

∑ − Lt (pt
*)

t=1

T

∑ = pt−1
* − yt

2

t=1

T

∑ − pt
* − yt

2

t=1

T

∑

                                  = pt−1
* − pt

*, pt−1
* + pt

* − 2yt
t=1

T

∑

                                  ≤ pt−1
* − pt

* ⋅
t=1

T

∑ pt−1
* + pt

* − 2yt

                                  ≤ pt−1
* − pt

* ⋅
t=1

T

∑ pt−1
* + pt

*
t + 2yt( )

Cauchy-Schwarz	

Triangle	Inequality	



Regret	Bound	(con1nued)	
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pt−1
* − pt

* ⋅
t=1

T

∑ pt−1
* + pt

*
t + 2yt( ) ≤ 4B pt−1

* − pt
*

t=1

T

∑

Assume	each	yt	has	norm	bounded	by	B:	

Note	that	each	p*	also	has	norm	bounded	by	B	



Regret	Bound	(con1nued)	
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pt−1
* − pt

* = pt−1
* −

(t −1)pt−1
* + yt
t

               = 1
t
pt−1

* − yt

               ≤ 1
t

pt−1
* + yt( )

               ≤ 2B
t

Use	the	fact	that:	

pt
* =
(t −1)pt−1

* + yt
t

Triangle	Inequality	

Each	has	norm	B	



Regret	Bound	(complete)	
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R(T ) = Lt (pt )
t=1

T

∑ − Lt (pT
* )

t=1

T

∑

       ≤ Lt (pt−1
* )

t=1

T

∑ − Lt (pt
*)

t=1

T

∑

       ≤ 4B pt−1
* − pt

*

t=1

T

∑

       ≤ 8B2 1
tt=1

T

∑ =O B2 lnT( ) Logarithmic	Regret!	

Independent	of	how	each	yt	is	chosen!	



Recall:	Interpre1ng	Regret	

•  Expected	Training	Error	is:	

•  Want	expected	training	error	to	(quickly)	converge	to	op1mal	
–  Equivalent	to	average	regret	(quickly)	converging	to	0:	

•  SaDsfied	when	regret	grows	sublinearly	w.r.t.	T!	
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1
T
R(T ) = 1

T
Lt (wt )

t=1

T

∑ − Lt (w
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t=1

T

∑
#

$
%
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∑



When	Should	You	Use	FTL	in	Prac1ce?	

•  When	solving	each	op1miza1on	problem	is	
not	the	boBleneck	
– For	simple	squared	distance,	it	is	trivial	
– For	more	complex	loss	func1ons,	might	require	
expensive	op1miza1on	

•  We	will	see	an	analysis	of	SGD-style	
algorithms	next	Tuesday	
– Make	small	updates	to	pt	using	only	Lt	
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Perceptron	
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Binary	Classifica1on	Online	Learning	

•  For	t	=	1….T																															(some1mes	T	is	unknown)	

– Algorithm	chooses	wt	in	RD																
– World	reveals	loss	func1on:	

– Algorithm	suffers	loss	Lt(wt)	

•  Goal:	minimize	total	loss		
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Lt (pt )
t=1

T

∑

Lt (wt ) =1 yt≠sign wt ,xt( )"# $%
0/1	Loss	



Perceptron	Learning	Algorithm	
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If	Lt(wt)=1	:	 wt+1 = wt + ytxt

Else	:	 wt+1 = wt

y ∈ −1,+1{ }
x ∈ RD
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Perceptron	Learning	
Assume	Linearly	Separable	
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Misclassified!	

Perceptron	Learning	
Assume	Linearly	Separable	



43	

Update!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Correct!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Misclassified!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Update!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Update!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Correct!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Correct!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Misclassified!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Update!	

Perceptron	Learning	
Assume	Linearly	Separable	
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Update!	

Perceptron	Learning	
Assume	Linearly	Separable	
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All	Training	Examples		
Correctly	Classified!	

Perceptron	Learning	
Assume	Linearly	Separable	



Regret	Bound	=	Mistake	Bound	
(for	Separable	Case)	

•  For	separable	case:	

•  Regret	=	#Mistakes	Perceptron	makes	
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R(T ) = Lt (wt )
t=1

T

∑ − Lt (w
*)

t=1

T

∑

Lt (w
*)

t=1

T

∑ = 0



Lemma	2	
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ytxt
t∈I
∑ = (wt+1 −wt )

t∈I
∑ = wT+1

             = wt+1
2
− wt

2( )
t∈I
∑

             = wt + ytxt
2
− wt

2( )
t∈I
∑

             = 2yt wt, xt + xt
2( )

t∈I
∑

             ≤ xt
2

t∈I
∑

ytxt
t∈I
∑ ≤ xt

2

t∈I
∑

Proof:	

Mistake	Itera1ons	

Telescoping	Sum	

Update	DefiniDon	

≤0	



Perceptron	Mistake	Bound	
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#Mistakes	Bounded	By:	 B
2

γ 2

Margin	

B =max
x

x

**If	Linearly	Separable	

Holds	for	any	ordering		
of	training	examples!	

“Radius”	of	Feature	Space	



Proof	

•  Margin:	
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γ =max
w
min
(xt ,yt )

yt w, xt
w

!
"
#

$#

%
&
#

'#
Must	be	posiDve	due		
to	linear	separability	

I γ ≤
w, ytxt

t∈I
∑
w

≤ ytxt
t∈I
∑ ≤ xt

2

t∈I
∑ ≤ I B2

I γ ≤ I B2 ⇒ I ≤ B
2

γ 2



Interpreta1on	

•  If	the	data	is	linearly	separable	

•  Then	ANY	ordering	of	(x,y)	will	cause	
perceptron	to	converge	with	finite	mistakes	

•  No	dependence	on	IID	sampling	from	true	
distribu1on	
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Brief	Overview	of	Other	Topics	
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Contextual	Online	Learning	
(aka	Online	Learning	with	Experts)	

•  Given:	Set	of	experts	{fk}	
•  For	t	=	1….T																															(some1mes	T	is	unknown)	

– Each	expert	predicts	fk,t	
– Algorithm	chooses	pt															
– World	reveals	loss	func1on	Lt	
– Algorithm	suffers	loss	Lt(pt)	
	

•  Goal:	minimize	total	loss		
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Lt (pt )
t=1

T

∑

Generalizes	BoosDng	



Par1al	Informa1on	Online	Learning	

•  For	t	=	1….T																															(some1mes	T	is	unknown)	

– Algorithm	chooses	pt																		
– World	reveals	loss	Lt(pt)	
– Algorithm	suffers	loss	Lt(pt)	

•  Goal:	minimize	total	loss		
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Lt (pt )
t=1

T

∑

We	don’t	know		
loss	of	other	choices	

Need	to	“explore”		
to	measure	loss	of		
alternaDves	



Basic	Ac1ve	Learning		
(for	supervised	learning)	

•  For	t	=	1….		
– Algorithm	chooses	x																		
– World	reveals	associated	label	y	
– Add	(x,y)	to	training	set	

•  Terminate	when	sufficiently	confident	of	best	
model	
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Simple	Example	

•  1	feature	
•  Learn	threshold	func1on	
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True	Model	
Passive	Learning	
Sample	from	distribu1on	

Learned	Model	



Simple	Example	

•  1	feature	
•  Learn	threshold	func1on	
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True	Model	
AcDve	Learning	
Binary	Search	



Comparison	with	Passive	Learning	

•  #	samples	to	be	within	ε	of	true	model	

•  Passive	Learning:	

•  Ac1ve	Learning:	

65	

O 1
ε

!

"
#
$

%
&

O log 1
ε

!

"
#

$

%
&

Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

39'

True'Model'
Passive'Learning'
Sample'from'distribu7on'

Learned'Model'Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

40'

True'Model'
Ac#ve&Learning&
Binary'Search'



Crowdsourcing	
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Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2”  …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	
Ini1ally	Empty	

Repeat	



How	Reliable	are	Annotators?	

•  If	we	knew	what	the	labels	were	
– Can	judge	workers	on	label	quality	

•  If	we	knew	who	the	good	workers	were	
– Can	create	labels	from	their	annota1ons	

•  Chicken	and	egg	problem!	
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Reinforcement	Learning	

68	

•  In	previous	sejngs:	
– Ac1ons	do	not	impact	state	
– “Stateless”	

•  Reinforcement	Learning	
– Ac1ons	effect	state	you’re	in	
– Reward	func1on	depends	on	state	
– Example:	Playing	Go	



Off-Policy	Evalua1on	

•  Example:	We	have	hospital	logs	of	pneumonia	
deaths	under	various	condi1ons.	

– Want	to	train	model	predict	who	is	most	at	risk	

– Model	predicts	that	asthma	pa1ents	have	LOWER	
risk	for	pneumonia	death….	

– Because	doctors	pay	closer	aBen1on	to	asthma	
pa1ents!	
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Modeling	Human	Decision	Making	

•  How	do	humans	react	in	sequen1al	decision	
making	processes?	

– Do	they	behave	like	follow	the	leader?	

– Do	they	behave	like	a	perceptron?	
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