## Caltech

# Machine Learning \& Data Mining CS/CNS/EE 155 

## Lecture 14:

Embeddings

## Last Week

- Dimensionality Reduction
- Clustering
- Latent Factor Models
- Learn low-dimensional representation of data


## This Lecture

- Embeddings
- Generalization of Latent-Factor Models
- Warm-up: Locally-Linear Embeddings
- Probabilistic Sequence Embeddings
- Playlist embeddings
- Word embeddings


## Embedding

- Learn a representation U
- Each column u corresponds to data point
- Semantics encoded via d(u, $\left.u^{\prime}\right)$
- Distance between points

$$
d\left(u, u^{\prime}\right)=\left\|u-u^{\prime}\right\|^{2}
$$

- Similarity between points

$$
d\left(u, u^{\prime}\right)=u^{T} u^{\prime}
$$

Generalizes
Latent-Factor Models

## Locally Linear Embedding

- Given: $\quad S=\left\{x_{i}\right\}_{i=1}^{N}$

Unsupervised Learning

- Learn U such that local linearity is preserved
- Lower dimensional than $x$
- "Manifold Learning"
x's u's

Any neighborhood
looks like a linear plane

https://www.cs.nyu.edu/~roweis/lle/

## Approach

- Define relationship of each x to its neighbors
- Find a lower dimensional u that preserves relationship



## Locally Linear Embedding

- Create B(i)

$$
S=\left\{x_{i}\right\}_{i=1}^{N}
$$

- B nearest neighbors of $x_{i}$
- Assumption: $B(i)$ is approximately linear
- $x_{i}$ can be written as a convex combination of $x_{j}$ in $B(i)$

$$
\begin{gathered}
x_{i} \approx \sum_{j \in B(i)} W_{i j} x_{j} \\
\sum_{j \in B(i)} W_{i j}=1
\end{gathered}
$$

https://www.cs.nyu.edu/~roweis/lle/


## Locally Linear Embedding

Given Neighbors $B(i)$, solve local linear approximation $W$ :

$$
\begin{aligned}
& \underset{W}{\operatorname{argmin}} \sum_{i}\left\|x_{i}-\sum_{j \in B(i)} W_{i j} x_{j}\right\|^{2} \\
& \sum_{j \in B(i)} W_{i j}=1 \\
& \left\|x_{i}-\sum_{j \in B(i)} W_{i j} x_{j}\right\|^{2}=\left\|\sum_{j \in B(i)} W_{i j}\left(x_{i}-x_{j}\right)\right\|^{2} \\
& =\left(\sum_{j \in B(i)} W_{i j}\left(x_{i}-x_{j}\right)\right)^{T}\left(\sum_{j \in B(i)} W_{i j}\left(x_{i}-x_{j}\right)\right) \\
& =\sum_{j \in B(i)} \sum_{k \in B(i)} W_{i j} W_{i k} C_{j k}^{i} \\
& =W_{i,{ }^{T}}^{T} C^{i} W_{i, *} \\
& C_{j k}^{i}=\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{k}\right)
\end{aligned}
$$

https://www.cs.nyu.edu/~roweis/lle/

## Locally Linear Embedding

Given Neighbors $B(i)$, solve local linear approximation W:

$$
\begin{aligned}
& \underset{W}{\operatorname{argmin}} \sum_{i}\left\|x_{i}-\sum_{j \in B(i)} W_{i j} x_{j}\right\|^{2}=\underset{W}{\operatorname{argmin}} \sum_{i} W_{i, C^{T}} i^{i} W_{i, *} \\
& C_{j k}^{i}=\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

- Every $x_{i}$ is approximated as a convex combination of neighbors
- How to solve?



## Lagrange Multipliers

## $\operatorname{argmin} L(w) \equiv w^{T} C w$

s.t. $|w|=1$
$\nabla_{w_{j}}|w|\left\{\begin{array}{ccc}-1 & \text { if } & w_{j}<0 \\ +1 & \text { if } & w_{j}>0 \\ {[-1,+1]} & \text { if } & w_{j}=0\end{array}\right.$

$\exists \lambda \geq 0:\left(\partial_{w} L(y, w) \in \lambda \nabla_{w}|w|\right) \wedge(|w|=1)$

## Solving Locally Linear Approximation

Lagrangian:

$$
\begin{aligned}
& L(W, \lambda)=\sum_{i}\left(W_{i, *}^{T} C^{i} W_{i, *}-\lambda_{i}\left(\overrightarrow{1}^{T} W_{i, *}-1\right)\right) \quad \sum_{j} W_{i j}=^{T} W_{i, *} \\
& \partial_{W_{i, *}} L(W, \lambda)=2 C^{i} W_{i, *}-\lambda_{i} \overrightarrow{1} \\
& W_{i^{*}}=\frac{\lambda_{i}}{2}\left(C^{i}\right)^{-1} \overrightarrow{1} \propto\left(C^{i}\right)^{-1} \overrightarrow{1} \\
& W_{i j} \propto \sum_{k \in B(i)}\left(C^{i}\right)_{j k}^{-1} \quad \Longleftrightarrow W_{i j}=\frac{\sum_{k \in B(i)}\left(C^{i}\right)_{j k}^{-1}}{\sum_{l \in B(i)} \sum_{m \in B(i)}\left(C^{i}\right)_{l m}^{-1}}
\end{aligned}
$$

## Locally Linear Approximation

- Invariant to:
$x_{i} \approx \sum_{j \in B(i)} W_{i j} x_{j}$
- Rotation

$$
A x_{i} \approx \sum_{j \in B(i)} A W_{i j} x_{j}
$$

$$
\sum_{j \in B(i)} W_{i j}=1
$$

- Scaling

$$
5 x_{i} \approx \sum_{j \in B(i)} 5 W_{i j} x_{j}
$$

- Translation $\quad x_{i}+x^{\prime} \approx \sum_{j \in B(i)} W_{i j}\left(x_{j}+x^{\prime}\right)$


## Story So Far: Locally Linear Embeddings

Given Neighbors $B(i)$, solve local linear approximation W :

$$
\underset{W}{\operatorname{argmin}} \sum_{i}\left\|x_{i}-\sum_{j \in B(i)} W_{i j} x_{j}\right\|^{2}=\underset{W}{\operatorname{argmin}} \sum_{i} W_{i, *}^{T} C^{i} W_{i, *} \quad \sum_{j \in B(i)} W_{i j}=1
$$

Solution via Lagrange Multipliers:

$$
C_{j k}^{i}=\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{k}\right)
$$

$$
W_{i j}=\frac{\sum_{k \in B(i)}\left(C^{i}\right)_{j k}^{-1}}{\sum_{l \in B(i)} \sum_{m \in B(i)}\left(C^{i}\right)_{l m}^{-1}}
$$

- Locally Linear Approximation

https://www.cs.nyu.edu/~roweis/lle/


## Recall: Locally Linear Embedding

- Given: $\quad S=\left\{x_{i}\right\}_{i=1}^{N}$
- Learn $U$ such that local linearity is preserved
- Lower dimensional than $x$
- "Manifold Learning"

https://www.cs.nyu.edu/~roweis/lle/


## Dimensionality Reduction (Learning the Embedding)

Given local approximation W, learn lower dimensional representation:

$$
\underset{U}{\operatorname{argmin}} \sum_{i}\left\|u_{i}-\sum_{j \in B(i)} W_{i j} u_{j}\right\|^{2}
$$

- Find low dimensional U
- Preserves approximate local linearity

https://www.cs.nyu.edu/~roweis/lle/

Given local approximation W, learn lower dimensional representation:

$$
\underset{U}{\operatorname{argmin}} \sum_{i}\left\|u_{i}-\sum_{j \in B(i)} W_{i j} u_{j}\right\|^{2}
$$

$$
U U^{T}=I_{K}
$$

- Rewrite as:

$$
\sum_{i} u_{i}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \underset{U}{\operatorname{argmin}} \sum_{i j} M_{i j}\left(u_{i}^{T} u_{j}\right) \equiv \operatorname{trace}\left(U M U^{T}\right) \\
& M_{i j}=1_{[i=j]}-W_{i j}-W_{j i}+\sum_{k} W_{k i} W_{k j} \\
& M=\left(I_{N}-W\right)^{T}\left(I_{N}-W\right) \\
& \uparrow
\end{aligned}
$$

Symmetric positive semidefinite
https://www.cs.nyu.edu/~roweis/lle/

Given local approximation W, learn lower dimensional representation:

$$
\underset{U}{\operatorname{argmin}} \sum_{i j} M_{i j}\left(u_{i}^{T} u_{j}\right) \equiv \operatorname{trace}\left(U M U^{T}\right)
$$

$$
U U^{T}=I_{K}
$$

$$
\begin{aligned}
& \underset{u}{\operatorname{argmin}} \sum_{i j} M_{i j}\left(u_{i}^{T} u_{j}\right) \equiv \operatorname{trace}\left(u M u^{T}\right) \\
& =\underset{u}{\operatorname{argmax}} \operatorname{trace}\left(u M^{+} u^{T}\right) \\
& \text { pseudoinverse }
\end{aligned}
$$

- Suppose K=1

$$
\sum_{i} u_{i}=\overrightarrow{0}
$$

$$
u u^{T}=1
$$

- By min-max theorem
$-\mathrm{u}=$ principal eigenvector of $\mathrm{M}^{+}$


## Recap: Principal Component Analysis

$$
M=V \Lambda V^{T}
$$

- Each column of V is an Eigenvector

$$
\Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & 0 & \\
& & & 0
\end{array}\right]
$$

- Each $\lambda$ is an Eigenvalue ( $\lambda_{1} \geq \lambda_{2} \geq \ldots$ )

$$
\begin{gathered}
M^{+}=V \Lambda^{+} V^{T} \\
\\
\\
\left.M M^{+}=V \Lambda \Lambda^{+} V^{T}=V_{1: 2} V_{1: 2}^{T}=\left[\begin{array}{lllll}
1 & & & \\
& 1 & & \\
& & 0 & \\
& & & 0
\end{array}\right] \quad \begin{array}{llll}
1 / \lambda_{1} & & & \\
& 1 / \lambda_{2} & & \\
& & 0 & \\
& & & 0
\end{array}\right]
\end{gathered}
$$

Given local approximation W, learn lower dimensional representation:


$$
U U^{T}=I_{K}
$$

$$
\sum_{i} u_{i}=\overrightarrow{0}
$$

$-\mathrm{u}=$ principal eigenvector of $\mathrm{M}^{+}$
$-u=$ smallest non-trivial eigenvector of $M$

- Corresponds to smallest non-zero eigenvalue
- General K
$-\mathrm{U}=$ top K principal eigenvectors of $\mathrm{M}^{+}$
- $\mathrm{U}=$ bottom K non-trivial eigenvectors of M
- Corresponds to bottom K non-zero eigenvalues
https://www.cs.nyu.edu/~roweis/lle/
http://en.wikipedia.org/wiki/Min-max_theorem


## Recap: Locally Linear Embedding

- Generate nearest neighbors of each $x_{i}, B(i)$
- Compute Local Linear Approximation:

$$
\underset{w}{\operatorname{argmin}} \sum_{i}\left\|x_{i}-\sum_{j \in B(i)} W_{i j} x_{j}\right\|^{2} \quad \sum_{j \in B(i)} W_{i j}=1
$$

- Compute low dimensional embedding

$$
\underset{U}{\operatorname{argmin}} \sum_{i}\left\|u_{i}-\sum_{i \in B(i)} W_{i j} u_{j}\right\|^{2} \quad U U^{T}=I_{K} \quad \sum_{i} u_{i}=\overrightarrow{0}
$$

## Results for Different Neighborhoods

 ( $\mathrm{K}=2$ )

True Distribution



https://www.cs.nyu.edu/~roweis/lle/gallery.html

## Probabilistic Sequence Embeddings

## Example 1: Playlist Embedding



- Users generate song playlists
- Treat as training data
- Can we learn a probabilistic model of playlists?


## Example 2: Word Embedding



- People write natural text all the time
- Treat as training data
- Can we learn a probabilistic model of word sequences?


## Probabilistic Sequence Modeling

- Training set:

$$
\begin{array}{rr}
S=\left\{s_{1}, \ldots s_{|S|}\right\} & D=\left\{p_{i}\right\}_{i=1}^{N}
\end{array} \quad p_{i}=\left\langle p_{i}^{1}, \ldots, p_{i}^{N_{i}}\right\rangle
$$

- Goal: Learn a Markov model of sequences:

$$
P\left(p_{i}^{j} \mid p_{i}^{j-1}\right)
$$

- What is the form of $P$ ?
http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf


## First Try: Probability Tables

| $P\left(s \mid s^{\prime}\right)$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ | $s_{7}$ | $s_{\text {start }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{s}_{\mathbf{1}}$ | 0.01 | 0.03 | 0.01 | 0.11 | 0.04 | 0.04 | 0.01 | 0.05 |
| $\mathbf{s}_{\mathbf{2}}$ | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 |
| $\mathbf{s}_{\mathbf{3}}$ | 0.01 | 0.01 | 0.01 | 0.07 | 0.02 | 0.02 | 0.05 | 0.09 |
| $\mathbf{s}_{\mathbf{4}}$ | 0.02 | 0.11 | 0.07 | 0.01 | 0.07 | 0.04 | 0.01 | 0.01 |
| $\mathbf{s}_{\mathbf{5}}$ | 0.04 | 0.01 | 0.02 | 0.17 | 0.01 | 0.01 | 0.10 | 0.02 |
| $\mathbf{s}_{\mathbf{6}}$ | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.08 |
| $\mathbf{s}_{\mathbf{7}}$ | 0.07 | 0.02 | 0.01 | 0.01 | 0.03 | 0.09 | 0.03 | 0.01 |

## First Try: Probability Tables

| P(s $\mathrm{s}^{\prime}$ ) | $\mathrm{s}_{1}$ | $\mathrm{s}_{2}$ | $\mathrm{S}_{3}$ | $\mathrm{S}_{4}$ | $\mathrm{s}_{5}$ | $\mathrm{S}_{6}$ | $\mathrm{s}_{7}$ | $\mathrm{S}_{\text {start }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{s}_{1}$ | 0.01 | 0.03 | 0.01 | 0.11 | 0.04 | 0.04 | 0.01 | 0.05 |
| $\mathrm{S}_{2}$ | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 |
| $\mathrm{s}_{3}$ | 0.01 | 0.01 | 0.01 | 0.07 | 0.02 | 0.02 | 0.05 | 0.09 |
| $\mathrm{S}_{4}$ | 0.02 | 0.11 | 0.07 | 0.01 | 0.07 | 0.04 | 0.01 | 0.01 |
| $S_{5}$ $s_{6}$ $s_{7}$ | \#Parameters $=O\left(\|S\|^{2}\right)!!!$ <br> (worse for higher-order sequence models) |  |  |  |  |  |  |  |

## Second Try: Hidden Markov Models

$$
\begin{aligned}
& P\left(p_{i}, z\right)=P\left(\text { End } \mid z^{N_{i}}\right) \prod_{j=1}^{N_{i}} P\left(z^{j} \mid z^{j-1}\right) \prod_{j=1}^{N_{i}} P\left(p_{i}^{j} \mid z^{j}\right) \\
& P\left(z^{j} \mid z^{j-1}\right) \quad \text { • \#Parameters }=\mathrm{O}\left(\mathrm{~K}^{2}\right) \\
& P\left(p_{i}^{j} \mid z^{j}\right) \quad \text { • \#Parameters }=\mathrm{O}(|\mathrm{~S}| \mathrm{K})
\end{aligned}
$$

- Total $=\mathrm{O}\left(\mathrm{K}^{2}\right)+\mathrm{O}(|\mathrm{S}| \mathrm{K})$


## Problem with Hidden Markov Models

$$
P\left(p_{i}, z\right)=P\left(E n d \mid z^{N_{i}}\right) \prod_{j=1}^{N_{i}} P\left(z^{j} \mid z^{j-1}\right) \prod_{j=1}^{N_{j}} P\left(p_{i}^{j} \mid z^{j}\right)
$$

- Need to reliably estimate $P(s \mid z)$

$$
S=\left\{s_{1}, \ldots s_{|S|}\right\} \quad D=\left\{p_{i}\right\}_{i=1}^{N} \quad p_{i}=\left\langle p_{i}^{1}, \ldots, p_{i}^{N_{i}}\right\rangle
$$

- Hard to do!


## Outline for Sequence Modeling

- Playlist Embedding
- Distance-based embedding
- http://www.cs.cornell.edu/people/tj/playlists/index.html
- Word Embedding (word2vec) Homework Question!
- Inner-product embedding
- https://code.google.com/archive/p/word2vec/
- Compare the two approaches


## Markov Embedding (Distance)

$u_{s}$ : entry point of song $s$ $\mathrm{v}_{\mathrm{s}}$ : exit point of song s

$$
\begin{array}{r}
P\left(s \mid s^{\prime}\right) \propto \exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\} \\
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{-\left\|u_{s^{\prime \prime}}-v_{s^{\prime}}\right\|^{2}\right\}}
\end{array}
$$

- "Log-Radial" function
- (my own terminology)
http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf


## Log-Radial Functions

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{-\left\|u_{s^{\prime \prime}}-v_{s^{\prime}}\right\|^{2}\right\}}
$$

2K parameters per song 2|S|K parameters total


Each ring defines an equivalence class of transition probabilities

## Learning Problem

$$
\begin{array}{cl}
S=\left\{S_{1}, \ldots S_{|S|}\right\} & D=\left\{p_{i}\right\}_{i=1}^{N}
\end{array} \quad \begin{array}{ll}
\text { Songs } & p_{i}=\left\langle p_{i}^{1}, \ldots, p_{i}^{N_{i}}\right\rangle \\
& \text { Playlists }
\end{array} \begin{aligned}
& \text { Playlist Definition } \\
& \text { (each } p^{j} \text { corresponds to a song) }
\end{aligned}
$$

- Learning Goal:

$$
\begin{aligned}
& \underset{U, V}{\operatorname{argmax}} \prod_{i} P\left(p_{i}\right)=\prod_{i} \prod_{j} P\left(p_{i}^{j} \mid p_{i}^{j-1}\right) \\
& P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{-\left\|u_{s^{\prime \prime}}-v_{s^{\prime}}\right\|^{2}\right\}}=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
\end{aligned}
$$

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

## Minimize Neg Log Likelihood

$$
\underset{U, V}{\operatorname{argmax}} \prod_{i} \prod_{j} P\left(p_{i}^{j} \mid p_{i}^{j-1}\right)=\underset{U, V}{\operatorname{argmin}} \sum_{i} \sum_{j}-\log P\left(p_{i}^{j} \mid p_{i}^{j-1}\right)
$$

- Solve using gradient descent
- Random initialization
- Normalization constant hard to compute:
- Approximation heuristics
- See paper

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
$$

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

## Story so Far: Playlist Embedding

- Training set of playlists
- Sequences of songs
- Want to build probability tables $\mathrm{P}\left(\mathrm{s} \mid \mathrm{s}^{\prime}\right)$
- But a lot of missing values, hard to generalize directly
- Assume low-dimensional embedding of songs

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{-\left\|u_{s^{\prime \prime}}-v_{s^{\prime}}\right\|^{2}\right\}}=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
$$

## Simpler Version

- Dual point model:

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
$$

- Single point model: $\quad P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-u_{s}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}$
- Transitions are symmetric
- (almost)
- Exact same form of training problem


## Visualization in 2D

Simpler version: Single Point Model

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-u_{s^{\prime}}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
$$

Single point model is easier to visualize


## Sampling New Playlists

- Given partial playlist:

$$
p=\left\langle p^{1}, \ldots p^{j}\right\rangle
$$

- Generate next song for playlist $\mathrm{p}^{\mathrm{j}+1}$
- Sample according to:

$$
\begin{gathered}
P\left(s \mid p^{j}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{p^{j}}\right\|^{2}\right\}}{Z\left(p^{j}\right)} \quad P\left(s \mid p^{j}\right)=\frac{\exp \left\{-\left\|u_{s}-u_{p^{j}}\right\|^{2}\right\}}{Z\left(p^{j}\right)} \\
\text { Dual Point Model } \\
\text { Single Point Model }
\end{gathered}
$$

## Demo

http://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html

## What About New Songs?

- Suppose we've trained U:

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-u_{s^{\prime}}\right\|^{2}\right\}}{Z\left(s^{\prime}\right)}
$$

- What if we add a new song s'?
- No playlists created by users yet...
- Only options: $\mathrm{u}_{\mathrm{s}^{\prime}}=0$ or $\mathrm{u}_{\mathrm{s}^{\prime}}=$ random
- Both are terrible!
- "Cold-start" problem


## Song \& Tag Embedding

- Songs are usually added with tags
- E.g., indie rock, country
- Treat as features or attributes of songs
- How to leverage tags to generate a reasonable embedding of new songs?
- Learn an embedding of tags as well!

$$
S=\underset{\text { Songs }}{\left\{s_{1}, \ldots s_{|S|}\right\}} \quad D=\underset{\text { Playlists }}{\left\{p_{i}\right\}_{i=1}^{N}} \quad p_{i}=\left\langle p_{i}^{1}, \ldots, p_{i}^{N_{i}}\right\rangle
$$

$T=\left\{T_{1}, \ldots T_{|S|}\right\}$
Tags for Each Song

Learning Objective:
$\operatorname{argmax} P(D \mid U) P(U \mid A, T)$ $U, A$

Same term as before: $P(D \mid U)=\prod_{i} P\left(p_{i} \mid U\right)=\prod_{i} \prod_{j} P\left(p_{i}^{j} \mid p_{i}^{j-1}, U\right)$
Song embedding $\approx$ average of tag embeddings:

$$
P(U \mid A, T)=\prod_{s} P\left(u_{s} \mid A, T_{s}\right) \propto \prod_{s} \exp \left\{-\lambda\left\|u_{s} \frac{1}{\left|T_{s}\right|} \sum_{k T_{s}} A_{t}\right\|\right\}
$$

Solve using gradient descent:
http://www.cs.cornell.edu/People/tj/publications/moore_etal_12a.pdf

## Visualization in 2D


http://www.cs.cornell.edu/People/tj/publications/moore_etal_12a.pdf

## Revisited: What About New Songs?

- No user has s' added to playlist
- So no evidence from playlist training data:

$$
s^{\prime} \text { does not appear in } \quad D=\left\{p_{i}\right\}_{i=1}^{N}
$$

- Assume new song has been tagged $T_{s^{\prime}}$
- The $u_{s^{\prime}}=$ average of $A_{t}$ for tags $t$ in $T_{s^{\prime}}$
- Implication from objective:

$$
\underset{U, A}{\operatorname{argmax}} P(D \mid U) P(U \mid A, T)
$$

## Switching Gears: Word Embeddings

- Given a large corpus
- Wikipedia
- Google News
- Learn a word embedding to model sequences of words (e.g., sentences)


## Switching Gears: Inner Product Embeddings

- Previous: capture semantics via distance

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{-\left\|u_{s}-v_{s^{\prime}}\right\|^{2}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{-\left\|u_{s^{\prime \prime}}-v_{s^{\prime}}\right\|^{2}\right\}}
$$

- Can also capture semantics via inner product

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{u_{s}^{T} v_{s^{\prime}}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{u_{s^{\prime \prime}}^{T} v_{s^{\prime}}\right\}}
$$

Basically a latent-factor model!

## Log-Linear Embeddings

$$
\boldsymbol{P}\left(\boldsymbol{s} \mid \boldsymbol{s}^{\prime}\right)=\frac{\exp \left\{\boldsymbol{u}_{s}^{T} \boldsymbol{v}_{s^{\prime}}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{\boldsymbol{u}_{s^{\prime}} \boldsymbol{v}_{s^{\prime}}\right\}}
$$

2K parameters per song 2|S|K parameters total


Each projection level onto the green line defines an equivalence class

## Learning Problem (Version 1)

$$
S=\left\{\begin{array}{cc}
\left\{S_{1}, \ldots S_{|S|}\right\} & D=\left\{p_{i}\right\}_{i=1}^{N}
\end{array} \quad p_{i}=\left\langle p_{i}^{1}, \ldots, p_{i}^{N_{i}}\right\rangle\right.
$$

- Learning Goal: Sequences Tokens in each Sequence

$$
\begin{gathered}
\underset{U, V}{\operatorname{argmax}} \prod_{i} P\left(p_{i}\right)=\prod_{i} \prod_{j} P\left(p_{i}^{j} \mid p_{i}^{j-1}\right) \\
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{u_{s}^{r} v_{s}\right\}}{\sum_{s^{\prime}} \exp \left\{u_{s}^{T} v_{s}\right\}}=\frac{\exp \left\{u_{s}^{T} v_{s}\right\}}{Z\left(s^{\prime}\right)}
\end{gathered}
$$

## Skip-Gram Model (word2vec)

- Predict probability of any neighboring word


$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{u_{s}^{T} v_{s^{\prime}}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{u_{s^{\prime \prime}}^{T} v_{s^{\prime}}\right\}}=\frac{\exp \left\{u_{s}^{T} v_{s^{\prime}}\right\}}{Z\left(s^{\prime}\right)}
$$

## Skip-Gram Model (word2vec)

- Predict probability of any neighboring word



## What are benefits of Skip-Gram model?

## Intuition of Skip-Gram Model

- "The dog jumped over the fence."
- "My dog ate my homework."
- "I walked my dog up to the fence."

$$
\underset{U, V}{\operatorname{argmax}} \prod_{i} \prod_{j} \prod_{k \in[-C, C] \backslash 0} P\left(p_{i}^{j+k} \mid p_{i}^{j}\right)
$$

- Distribution of neighboring words more peaked
- Distribution of further words more diffuse
- Capture everything in a single model


## Dimensionality Reduction

- What dimensionality should we choose U,V?
- E.g., what should K be?

$$
P\left(s \mid s^{\prime}\right)=\frac{\exp \left\{u_{s}^{T} v_{s^{\prime}}\right\}}{\sum_{s^{\prime \prime}} \exp \left\{u_{s^{\prime \prime}}^{T} v_{s^{\prime}}\right\}}
$$

- $K=|S|^{2}$ implies we can memorize every word pair interaction
- Smaller K assumes words lie in lower-dimensional space
- Easier to generalize across words
- Larger K can overfit


## Example 1

- $\mathrm{V}_{\text {Czech }}+\mathrm{V}_{\text {currency }} \approx \mathrm{V}_{\text {koruna }}$

| Czech + currency | Vietnam + capital | German + airlines | Russian + river | French + actress |
| :---: | :---: | :---: | :---: | :---: |
| koruna | Hanoi | airline Lufthansa | Moscow | Juliette Binoche |
| Check crown | Ho Chi Minh City | carrier Lufthansa | Volga River | Vanessa Paradis |
| Polish zolty | Viet Nam | flag carrier Lufthansa | upriver | Charlotte Gainsbourg |
| CTK | Vietnamese | Lufthansa | Russia | Cecile De |

## Example 2

- E.g., $\mathrm{V}_{\text {France }}-\mathrm{V}_{\text {Paris }}+\mathrm{V}_{\text {Italy }} \approx \mathrm{V}_{\text {Rome }}$

| Relationship | Example 1 | Example 2 | Example 3 |
| :---: | :---: | :---: | :---: |
| France - Paris | Italy: Rome | Japan: Tokyo | Florida: Tallahassee |
| big - bigger | small: larger | cold: colder | quick: quicker |
| Miami - Florida | Baltimore: Maryland | Dallas: Texas | Kona: Hawaii |
| Einstein - scientist | Messi: midfielder | Mozart: violinist | Picasso: painter |
| Sarkozy - France | Berlusconi: Italy | Merkel: Germany | Koizumi: Japan |
| copper - Cu | zinc: Zn | gold: Au | uranium: plutonium |
| Berlusconi - Silvio | Sarkozy: Nicolas | Putin: Medvedev | Obama: Barack |
| Microsoft - Windows | Google: Android | IBM: Linux | Apple: iPhone |
| Microsoft - Ballmer | Google: Yahoo | IBM: McNealy | Apple: Jobs |
| Japan - sushi | Germany: bratwurst | France: tapas | USA: pizza |

## Example 3

- 2D PCA projection of countries and cities:

http://arxiv.org/pdf/1310.4546.pdf


## Aside: Embeddings as Features

- Recall in Logistic Regression and CRFs
- Linear model in feature mapping
- Use word2vec!



## Aside: Embeddings as Features

- Recall in Logistic Regression and CRFs
- Linear model in feature mapping
- Use word2vec!

Old

New

$$
\varphi_{1}^{j}(\boldsymbol{a} \mid \boldsymbol{x})=\left[\begin{array}{c}
1_{[(a=N o u n)]} \boldsymbol{v}_{\boldsymbol{x}^{j}} \\
1_{[(a=V e r b)]} \boldsymbol{v}_{x^{j}}
\end{array}\right]
$$

## Training word2vec

- Train via gradient descent



# Hierarchical Approach (Probabilistic Decision Tree) 

- Decision tree of paths

- Leaf node = word
- Choose each branch independently


# Hierarchical Approach (Probabilistic Decision Tree) 



$$
\begin{aligned}
& P\left(s_{1} \mid s^{\prime}\right)=P\left(B \mid A, s^{\prime}\right) P\left(s_{1} \mid B, s^{\prime}\right) \\
& P\left(s_{2} \mid s^{\prime}\right)=P\left(B \mid A, s^{\prime}\right) P\left(s_{2} \mid B, s^{\prime}\right) \\
& P\left(s_{3} \mid s^{\prime}\right)=P\left(C \mid A, s^{\prime}\right) P\left(s_{3} \mid C, s^{\prime}\right) \\
& P\left(s_{4} \mid s^{\prime}\right)=P\left(C \mid A, s^{\prime}\right) P\left(s_{4} \mid C, s^{\prime}\right)
\end{aligned}
$$

## Hierarchical Approach (Probabilistic Decision Tree)



## Hierarchical Approach (Probabilistic Decision Tree)



## Hierarchical Approach (Probabilistic Decision Tree)

- Compact formula:



## Training Hierarchical Approach

- Train via gradient descent (same as before!)

$$
\underset{U, V}{\operatorname{argmin}} \sum_{i}^{\text {Sequences }} \sum_{j}^{\substack{\text { Tokens in each Sequence }}} \sum_{\substack{k \in[-C, C] 10 \\ \text { Skip Length }}}-\log P\left(p_{i}^{j+k} \mid p_{i}^{j}\right)
$$

$$
P\left(s \mid s^{\prime}\right)=\prod_{m} P\left(n_{m, s} \mid n_{m-1, s}, s\right) \quad \begin{aligned}
& \text { Complexity } \\
& =\mathrm{O}\left(\log _{2}(|\mathrm{~S}|)\right)!
\end{aligned}
$$

## Summary: Hierarchical Approach

- Each word has s corresponds to:
- One vs
$-\log _{2}(|S|)$ u's!
- Target factors u's are shared across words
- Total number of $U$ is still $O(|S|)$
- Previous use cases unchanged
- They all used $\mathrm{v}_{\mathrm{s}}$
- Vector subtraction, use as features for CRF, etc.


## Recap: Embeddings

- Given: Training Data
- Care about some property of training data
- Markov Chain
- Skip-Gram
- Goal: learn low dim representation
- "Embedding"
- Geometry of embedding captures property of interest
- Either by distance or by inner-product


## Visualization Semantics



## Distance-Based Embedding

Similarity measured via distance
Clustering/locality semantics
Cannot interpret axes
Can visualize many clusters simultaneously

Inner-Product Embeddings
Similarity measured via dot product Rotational semantics
Can interpret axes
Can only visualize 2 axes at a time


## Next Lecture

- Deep Learning
- Can be viewed as supervised embedding
- Recitation Thursday: Advanced Optimization

