

Machine Learning & Data Mining CS/CNS/EE 155

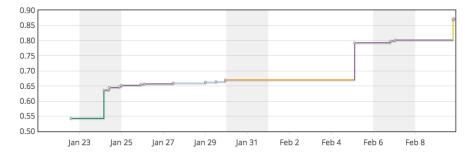
Lecture 11: Recent Applications

Kaggle Miniproject Closed

See someone using multiple

accounts?

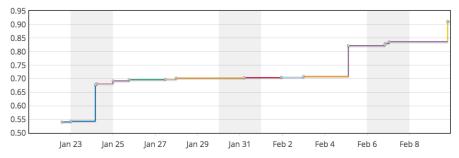
Let us know.



This leaderboard is calculated on approximately 50% of the test data.

15 J2 Prachi

The final results will be based on the other 50%, so the final standings may be different.



This competition has completed. This leaderboard reflects the final standings.

See someone using multiple accounts? Let us know.

#	∆rank	Team Name	Score @	Entries	Last Submission UTC (Best - Last Submission)
1	_	Black Tornado	0.90869	14	Tue, 09 Feb 2016 21:31:00 (-1.4h)
2	—	Yellow Yakuza UnderEducated 🍂	0.83652	37	Mon, 08 Feb 2016 01:44:30 (-24.9h)
3	↑16	Andrew "Uchiha" Chico	0.71723	5	Tue, 09 Feb 2016 19:13:54
4	—	Human Learners 🎿	0.70545	52	Tue, 09 Feb 2016 19:51:39 (-4.8d)
5	↑10	Prachi	0.70250	55	Tue, 09 Feb 2016 21:56:13 (-5d)
6	ţ1	Meng Meng Da ዾ	0.69809	38	Tue, 09 Feb 2016 10:05:40 (-8.2d)
7	↑ 2	VoraciousKinkyZebras 🎤	0.69809	63	Tue, 09 Feb 2016 05:43:10 (-0.2h)
8	↑18	Do you even train, bro? 🖊	0.69661	11	Tue, 09 Feb 2016 12:19:59 (-4.7d)
9	∱3	10 Points to Hufflepuff 🗈	0.69514	36	Tue, 09 Feb 2016 12:42:22 (-2.6d)
10	↑10	Nico~Nico~Ni~~☆ 🏨	0.69219	38	Tue, 09 Feb 2016 20:35:30 (-4.4d)
11	ţ1	StickerParty 💵	0.69072	48	Tue, 09 Feb 2016 04:16:34 (-5.1d)
12	↑9	D	0.69072	27	Tue, 09 Feb 2016 16:54:51 (-3.7d)
13	∱3	Walker Mills 🍂	0.69072	25	Mon, 08 Feb 2016 23:41:48 (-24.9h)
14	∱34	gg	0.68925	3	Wed, 27 Jan 2016 04:18:49 (-24.1h)
15	↑10	AbysML 💵	0.68925	8	Tue, 09 Feb 2016 07:37:17 (-2h)

#	∆4d	Team Name	Score 🕑	Entries	Last Submission UTC (Best - Last Submission)
1	↑ 42	Black Tornado	0.87278	14	Tue, 09 Feb 2016 21:31:00 (-1.4h)
2	↓1	Yellow Yakuza UnderEducated 🎿	0.80178	37	Mon, 08 Feb 2016 01:44:30 (-24.9h)
3	∱9	A.D.D. #	0.67160	38	Sat, 06 Feb 2016 00:48:42
4	_	Human Learners 🥵	0.67160	52	Tue, 09 Feb 2016 19:51:39 (-0.2h)
5	ţЗ	Meng Meng Da 🎿	0.67012	38	Tue, 09 Feb 2016 10:05:40 (-10.5d)
6	ţ 3	The Riders of Rohan 🎤	0.67012	38	Tue, 09 Feb 2016 19:32:23 (-4.8d)
7	_	adhd	0.67012	26	Sat, 06 Feb 2016 00:25:57 (-0.1h)
8	↑ 24	monday	0.67012	25	Sat, 06 Feb 2016 00:42:36 (-0.1h)
9	↓4	VoraciousKinkyZebras 🌶	0.66716	63	Tue, 09 Feb 2016 05:43:10 (-9.8d)
10	↓4	StickerParty 🏄	0.66716	48	Tue, 09 Feb 2016 04:16:34 (-5.1d)
11	↑4	Miss.GreenBean 🏨	0.66568	13	Tue, 09 Feb 2016 17:42:49 (-36.3h)
12	↓ 2	10 Points to Hufflepuff 🏨	0.66568	36	Tue, 09 Feb 2016 12:42:22 (-16.6h)
13	new	Victorious Secret 🗚	0.66568	13	Tue, 09 Feb 2016 20:04:58
14	↑14	NorthSide StrongSide 🛤	0.66420	41	Tue, 09 Feb 2016 19:56:26 (-2.8d)

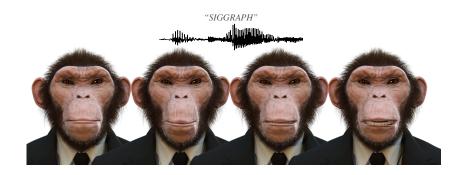
0.66420 55 Tue, 09 Feb 2016 21:56:13 (-2.6d)

Today

• Recent Applications:

Edge Detection

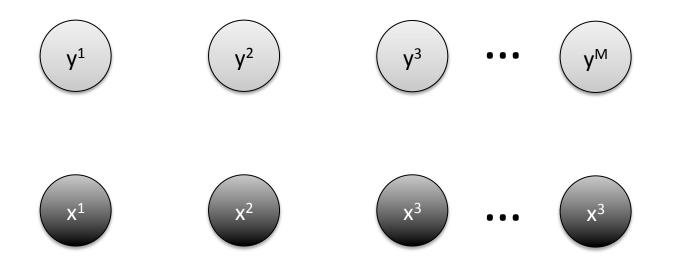
Speech Animation



• Introduction to Learning Reductions

Recall: Sequence Prediction

- X = "The Dog Jumped Over the Fence"
- Y = D N V P D N



Recall: Conditional Random Field

$$P(y | x) = \frac{1}{Z(x)} \exp\{F(x, y)\}$$

$$F(y, x) = \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j}, y^{j-1} | x)\right]$$

$$\varphi^{j}(a, b | x) = \left[\begin{array}{c}\varphi_{1}(a | x^{j}) \\ \varphi_{2}(a, b)\end{array}\right]$$

$$\varphi^{j}(a, b | x) = \left[\begin{array}{c}\varphi_{1}(a | x^{j}) \\ \varphi_{2}(a, b)\end{array}\right]$$

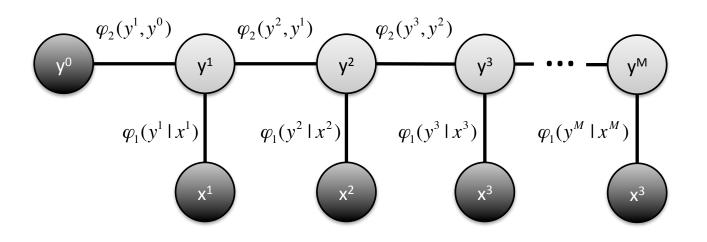
$$\varphi_{1}(y^{1} | x^{1}) \qquad \varphi_{1}(y^{2} | x^{2}) \qquad \varphi_{1}(y^{3} | x^{3}) \qquad \varphi_{1}(y^{M} | x^{M})$$

$$x^{1} \qquad x^{2} \qquad x^{3} \qquad \dots \qquad x^{3}$$

Limitations of CRFs

- Linear model
 - Requires good feature representation
- Only first-order effects

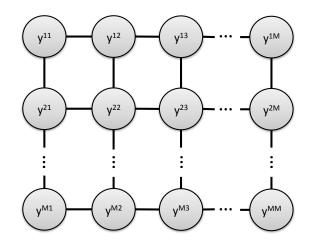
Cannot model higher-order dependencies



Edge Detection

2D Conditional Random Field

- Each y^{ij} is binary label
 Edge or Not Edge
- What features?
 - Defined over pixels?

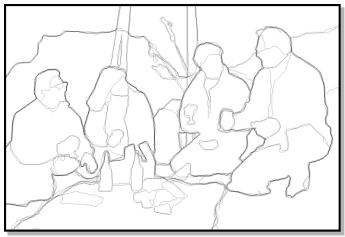


Today: Learning Reductions

- Convert complicated problem into simpler ones
 - Use complex models for simpler problems
 - E.g., decision trees, neural nets
- Recompose predictions for complicated problem

Strong Local Properties

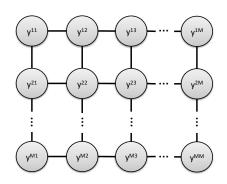
- Local patterns matter
 E.g., image patches
- Complex relationship
 Non-linear

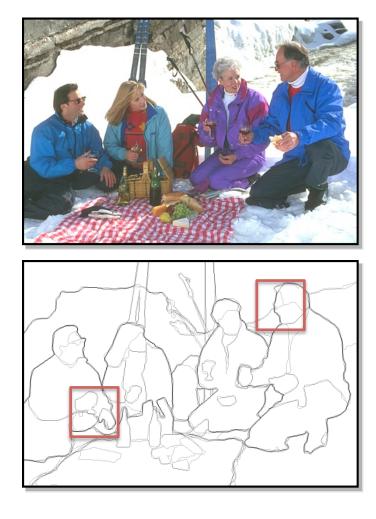


Weak Global Properties

• Edge detections local

 No need to fully connect model





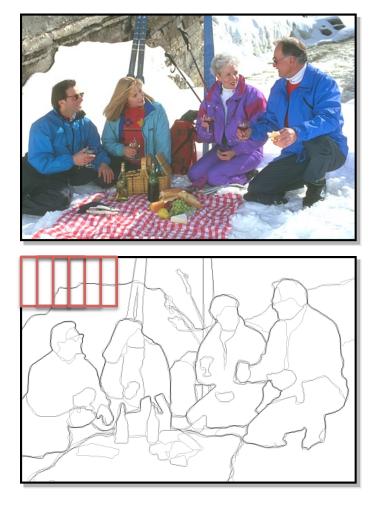
Sliding Window Approach

 Train model to predict patches

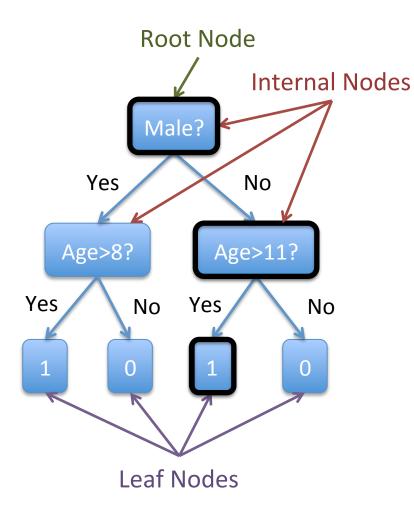
 – E.g., 16x16

• Slide across image

• What model?



Recall: Binary Decision Tree



Alice Gender: Female Age: 14

Prediction: Height > 55"

Every **internal node** has a **binary** query function q(x).

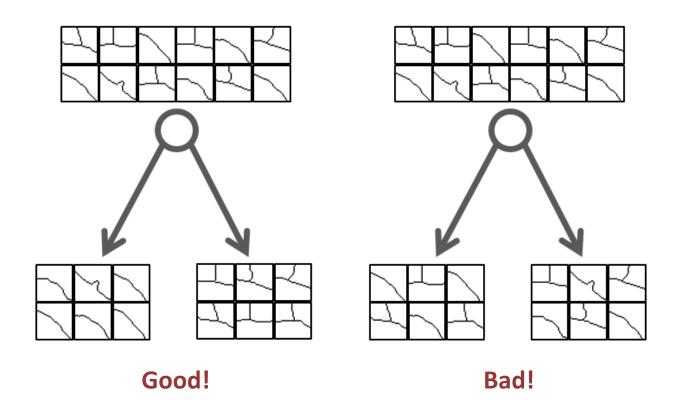
Every **leaf node** has a prediction, e.g., 0 or 1.

Prediction starts at **root node**. Recursively calls query function. Positive response → Left Child. Negative response → Right Child. Repeat until Leaf Node.

Structured Decision Tree

- Each leaf node predicts a 16x16 edge matrix
 Average of all training patch labels
- Prediction is very fast!
 - Slide predictor across image, average results
 - No need for Viterbi-type algorithms
- What is splitting criterion?
- What is query set?

Structured Information Gain



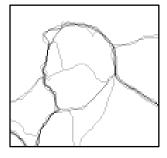
Structured Information Gain

- 1. First map labels to coordinate system
 - A. For each coordinate, choose pair of pixels
 - B. Set coordinate to 1 if in same segment, 0 o.w.
 - Coordinate 1 = 0
 - Coordinate 2 = 1
 - Etc...
- 2. Cluster training labels

(Actual approach more complicated.)

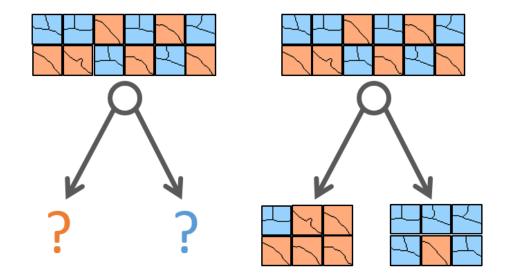
"Structured Random Forests for Fast Edge Detection" Dollár & Zitnick, ICCV 2013

For each training example!



Multiclass Entropy

- Reduced training labels to K clusters
 Can treat as multiclass classification
- Impurity measure = multiclass entropy



Query Set

- Features about color gradients
 - Image gets darker from column 1 to column 5
 - Image gets more blue from row 7 to row 3
 - Etc...
 - 7228 features total

(Actual approach more complicated.)

Putting it Together

- Create new training set Ŝ = {(x,ŷ)}
 - x = 16x16 image patch
 - $-\hat{y} = 16x16$ ground truth edges
- Train structured DT on Ŝ
- Predict by sliding DT over input image
 - Average predictions

(Actual approach more complicated.)

Comparable accuracy vs state-of-the-art

Much faster!

	ODS	OIS	AP	FPS
Human	.80	.80	-	-
Canny	.60	.64	.58	15
Felz-Hutt [11]	.61	.64	.56	10
Hidayat-Green [16]	$.62^{\dagger}$	-	-	20
BEL [9]	$.66^{\dagger}$	-	-	1/10
gPb + GPU [6]	$.70^{\dagger}$	-	_	1/2‡
gPb [1]	.71	.74	.65	1/240
gPb-owt-ucm [1]	.73	.76	.73	1/240
Sketch tokens [21]	.73	.75	.78	1
SCG [31]	.74	.76	.77	1/280
SE-SS, <i>T</i> =1	.72	.74	.77	60
SE-SS, <i>T</i> =4	.73	.75	.77	30
SE-MS, <i>T</i> =4	.74	.76	.78	6

Speech Animation

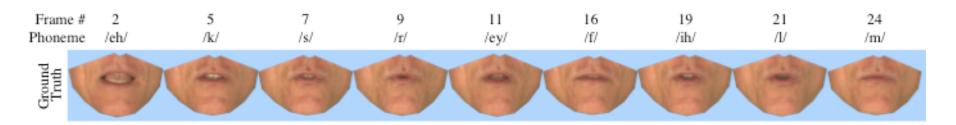
Automatically Animate to Input Audio? (Given Training Data)

"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>

Training Data

- ~2500 Sentences
 - Recorded at 30 Hz
 - ~10 hours of recorded speech
- Active Appearance Model
 - Actor's lower face
 - 30 degrees of freedom (also 100+)

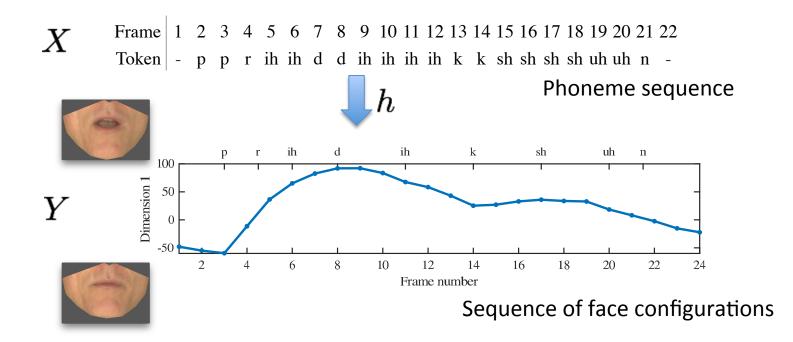


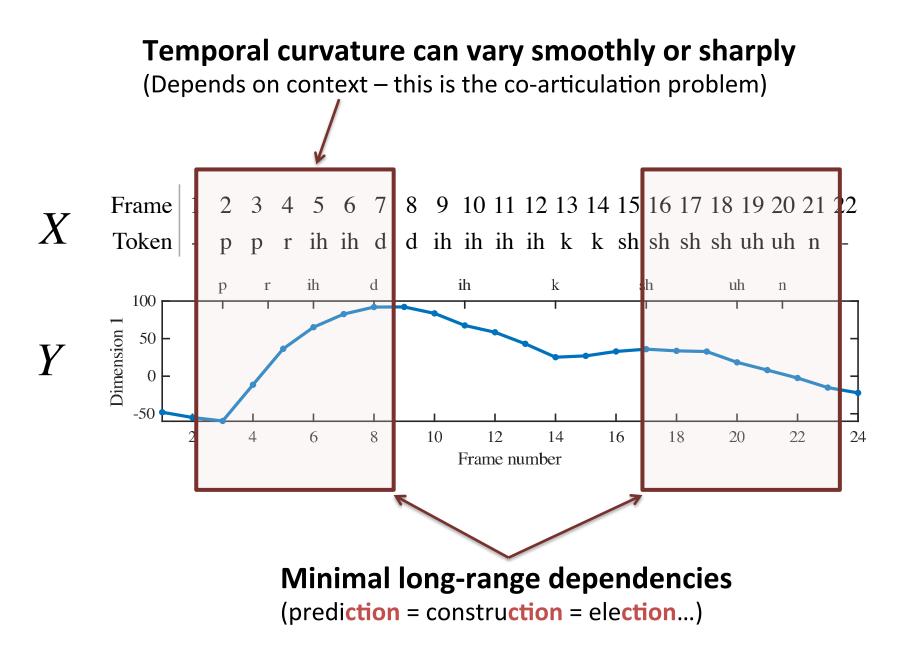


Data from [Taylor et al., 2012]₄

Prediction Task

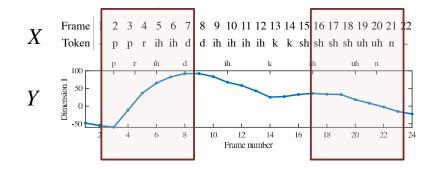
- Input sequence $X = < x_1, x_2, \dots, x_{|x|} >$ Output sequence $Y = < y_1, y_2, \dots, y_{|y|} > , y_t \in R^D$
- **Goal:** learn predictor $h: X \to Y$



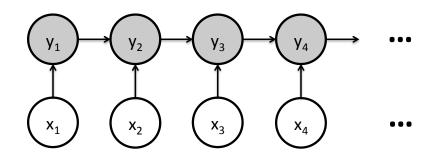


Strong Local Properties

• Need to model arbitrary local curvature

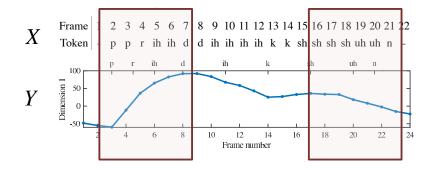


• Not well suited by linear chain models!



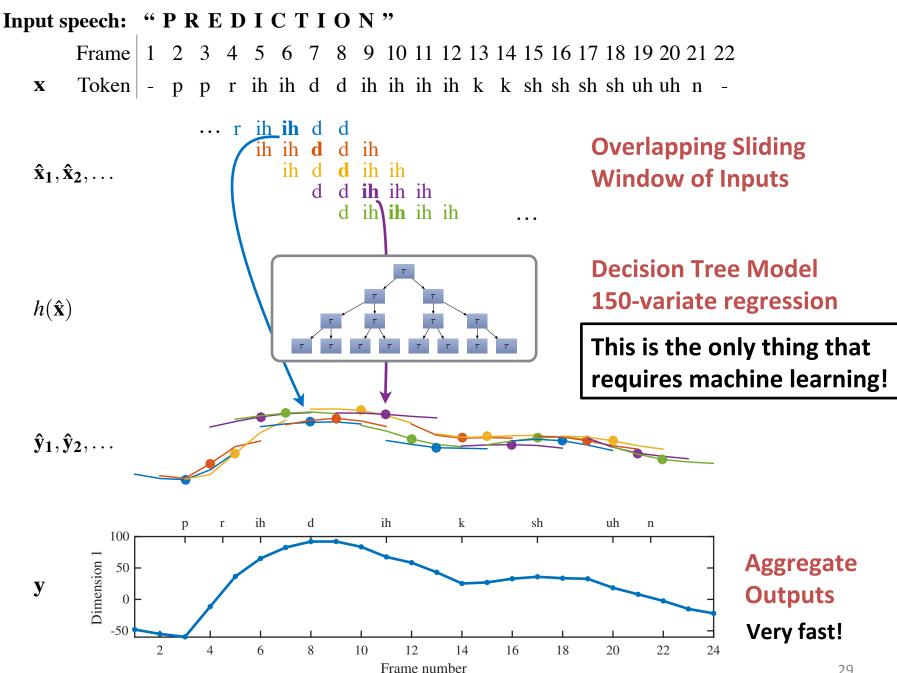
Weak Global Properties

• No need to model entire chain directly

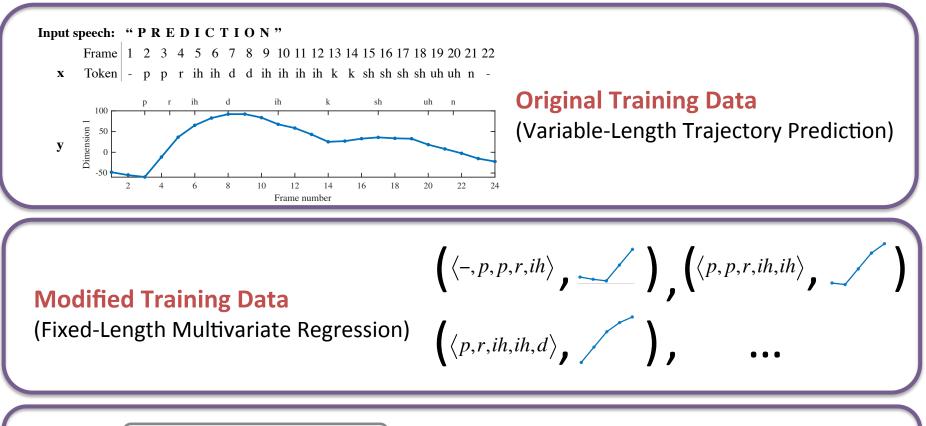


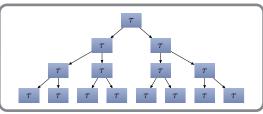
Minimal long-range dependencies (prediction = construction = election...)

• Motivates sliding window approach!



Training

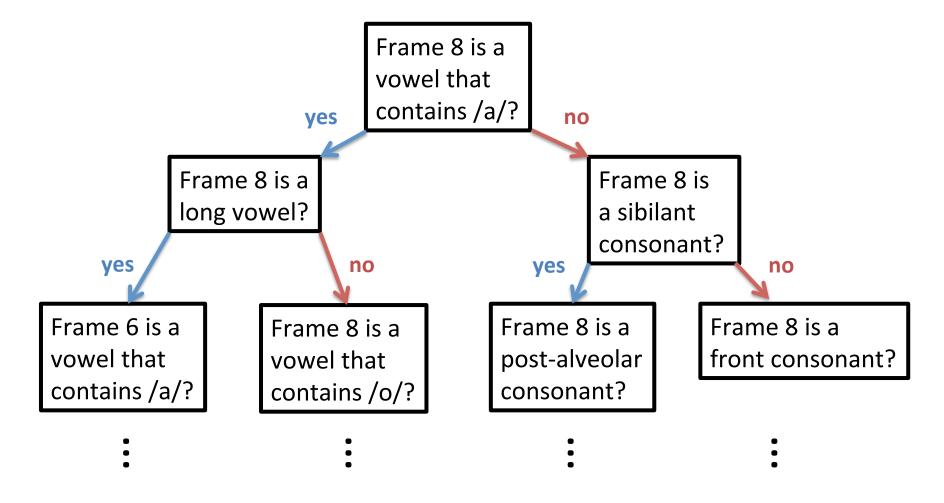




Train Decision Tree

(Or some other regression model)

Query Set for Speech Animation



Frames indexed by 1-11 (center is frame 6)

Full tree has 5K+ leaf nodes

Multivariate Regression Tree

• Training loss: multivariate squared loss:

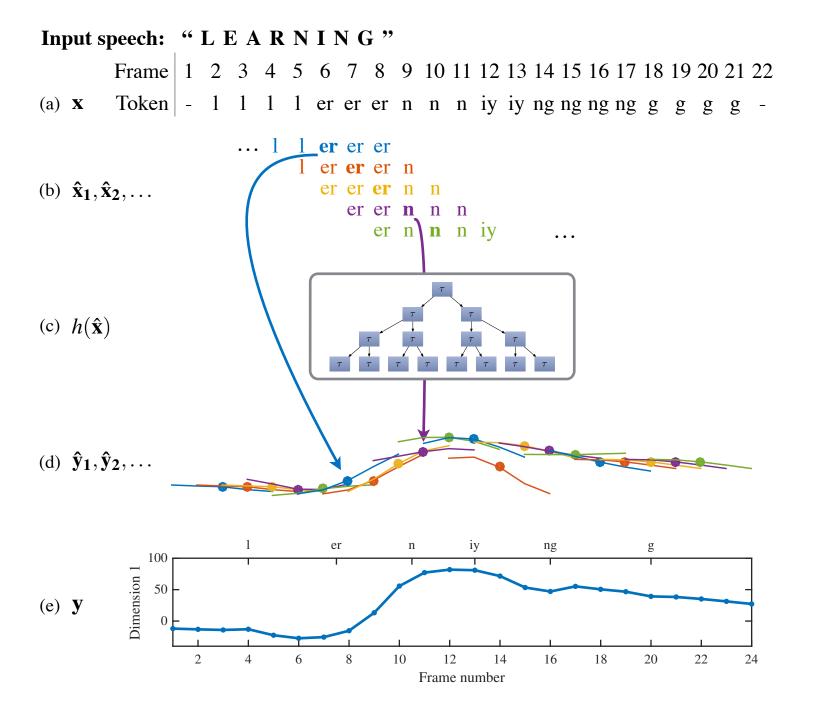
$$\sum_{Leaf} \sum_{\hat{y} \in Leaf} \left\| \hat{y}_{Leaf} - \hat{y} \right\|^2$$

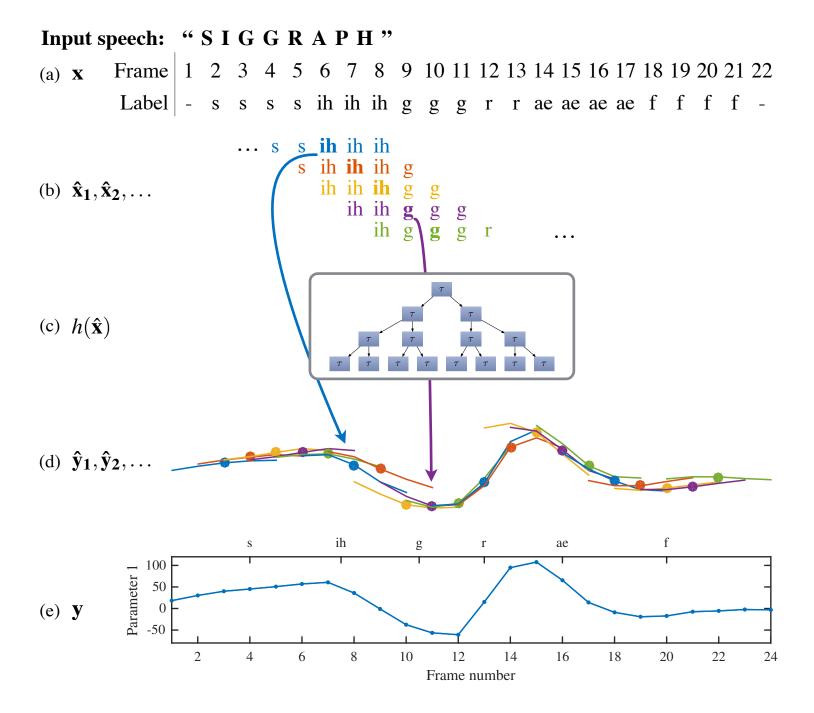
Prediction on New Speaker

"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>

Prediction on New Speaker

"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>



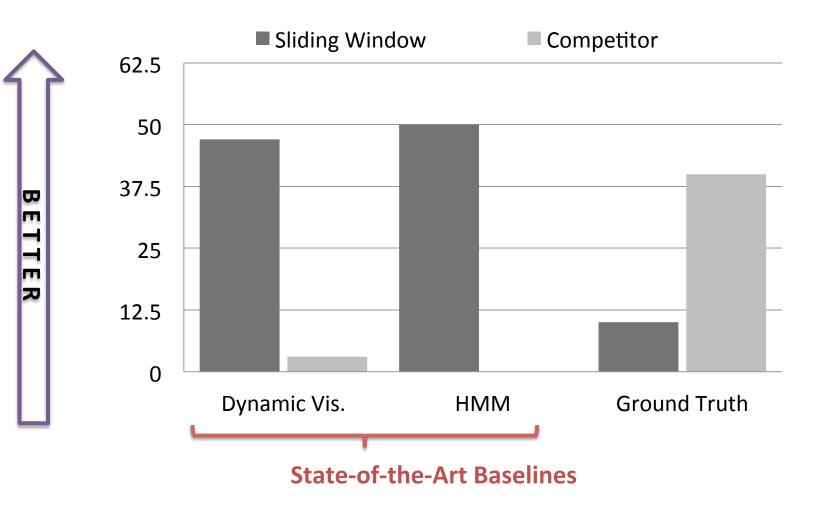


Side-by-Side User Study

Comparing our approach versus competitor on 50 held-out test sentences.

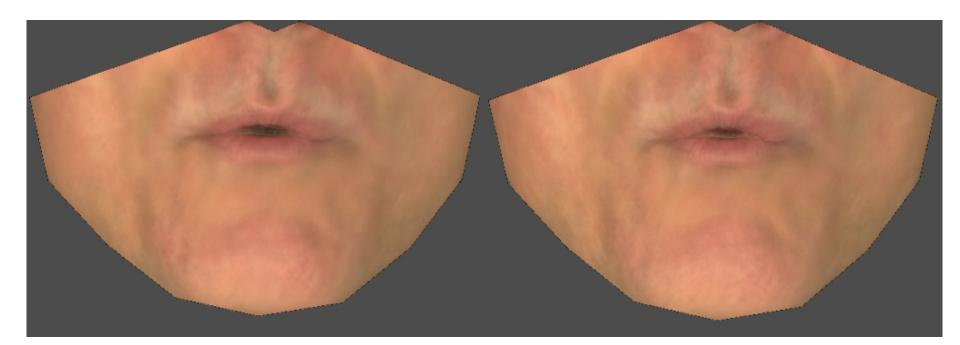
"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>

Side-by-Side User Study



Comparing our approach versus competitor on 50 held-out test sentences.

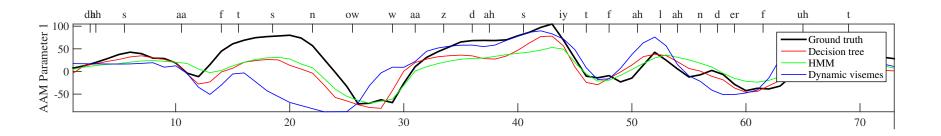
Comparison with Ground Truth

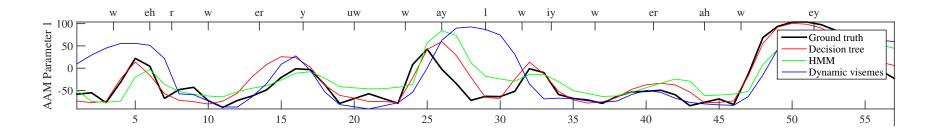


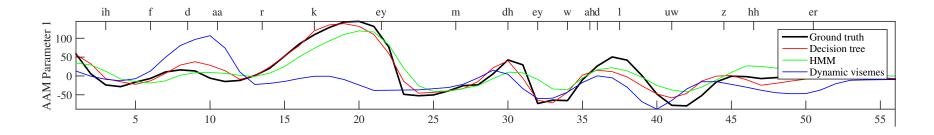
We under-articulate relative to ground truth! (Could be solved with more training data...)

"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>

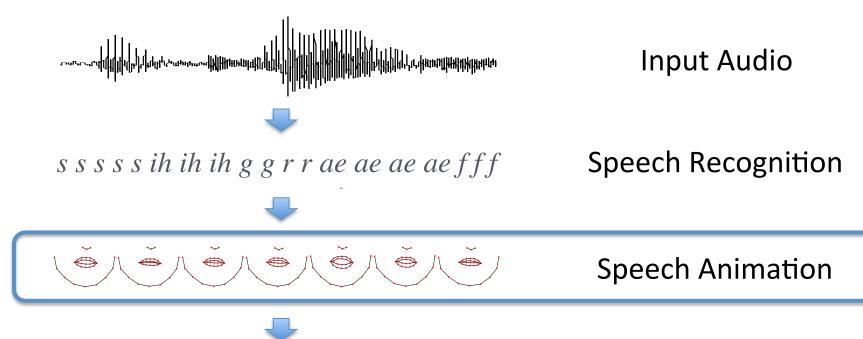
Comparison with Ground Truth







40



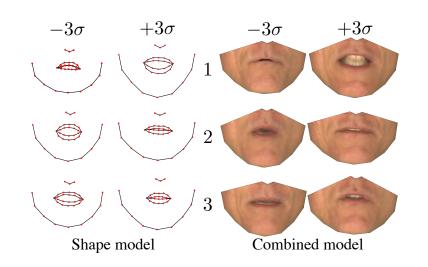
(chimp rig courtesy of Hao Li)

\checkmark

Retargeting E.g., [Sumner & Popovic 2004]

Editing

Aside: Retargeting



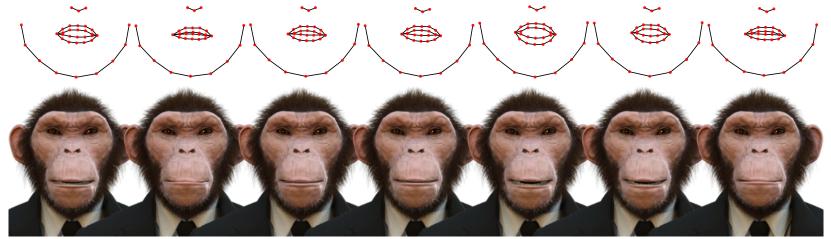
Reference face \rightarrow target face

(Semi-)Automatic:

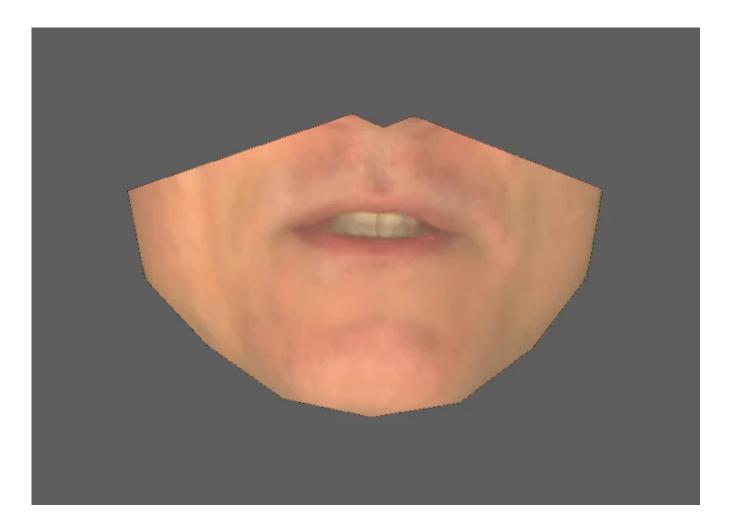
Deformation Transfer [Sumner & Popovic 2004] Finds linear transform (requires reference pose)

Manual:

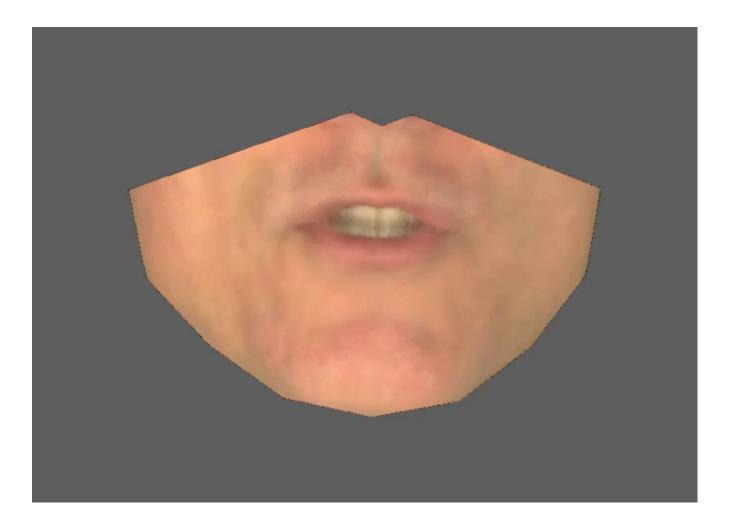
Pose basis shapes & linear blending



Prediction for Very Different Language



Prediction for Very Different Language



Overview of Learning Reductions

Motivation

- Know how to solve "standard" ML problems
 - Classification, regression, etc.
 - SVMs, logistic regression, decision trees, neural nets, etc.
- "Reduce" complex problems to simple ones?
 - Variable-length trajectories

 multivariate regression
 Still non-trivial!
- Similar to other reduction problems
 - E.g., NP-complete reductions
 - Some learning reductions have provable guarantees

Many toolkits available!

Other Learning Reductions

- Cost-weighted
 Unweighted
- Ranking → Binary
- Sequential

 Multiclass
- And many more...

http://hunch.net/~jl/projects/reductions/reductions.html

Why Multiclass Binary?

- Conventional approach: one-versus-all
 - Scoring function per class
 - Predict class with highest score
- Limitations:
 - Linear in #classes
 - Hard to prove generalization bounds
 - (Binary SVM analyzes generalization via margin)

Learning Reduction Recipe

Given original training set:

$$S = \{(x_i, y_i)\}_{i=1}^N$$

Multiclass

Create modified training set(s):

– Train ĥ's on Ŝ's

Final h = combining predictions ĥ's

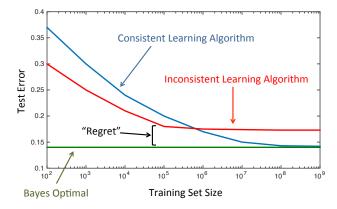
Two Flavors of Analysis

- Error Reduction:
 - Each \hat{h} achieves 0/1 Loss ϵ
 - Implication for multiclass 0/1 loss of h?
 - **Answer:** (K-1)ε
- Regret Reduction:
 - Each ĥ achieves 0/1 regret r
 - Implication of multiclass regret?
 - E.g., Kr?
 - More powerful result

$$\varepsilon = L_P(w)$$

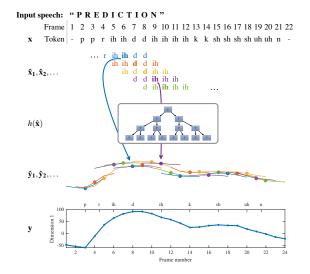
Zero 0/1 Test Error typically not possible

$$r = L_P(w) - L_P(w^*)$$

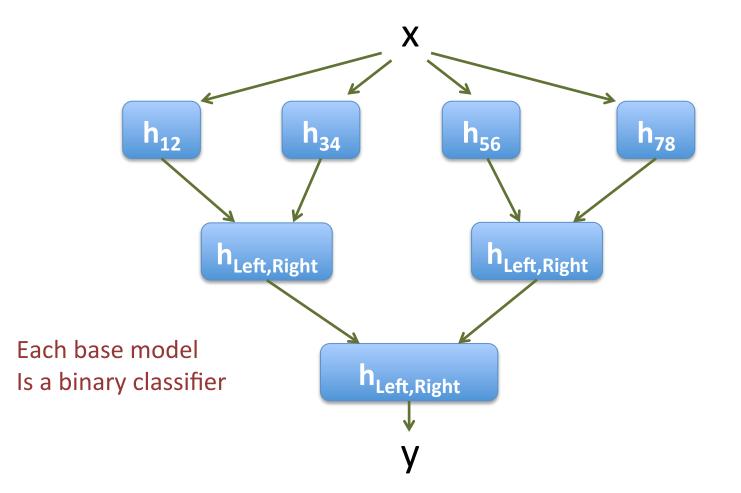


Aside: Sliding Window Regression

- If base model ĥ has 0 error
 Then sliding window prediction has 0 error
- What about when h has >0 error?
 - As regret of h decreases...
 - … decrease in regret of h?
 - Open question!
 - Need to formalize lack of global dependencies



Filter Tree for Multiclass -> Binary



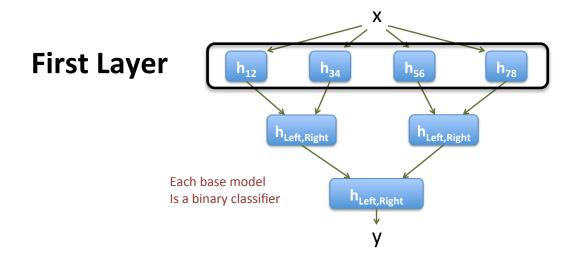
http://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf

The Learning Reduction

• First Layer

– Train each h_{ii} using

$$S_{ij} = \left\{ (x, \mathbf{1}_{[y=i]}) \middle| \forall (x, y) \in S : y \in \{i, j\} \right\}$$

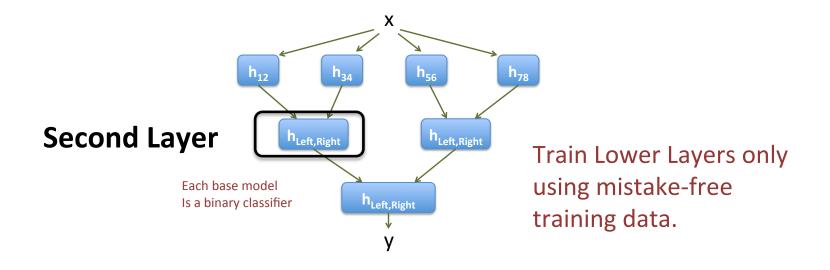


The Learning Reduction

• Second Layer

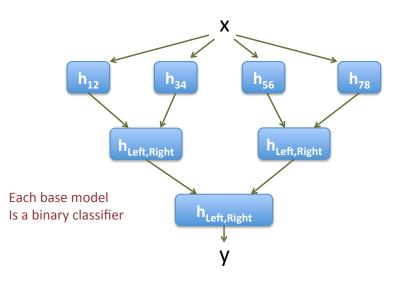
- Train $h_{Left,Right}$ using

 $S_{Left,Right} = \left\{ (x, 1_{[y \in \{L,R\}]}) \middle| \forall (x, y) \in S : y \in \{1, \dots, 4\} \land (\text{no mistake by } h_{12}, h_{34}) \right\}$



The Learning Reduction

- Classification problem dependent on classifiers learned in previous layers
- Reduction happens iteratively
 - I.e., adaptively



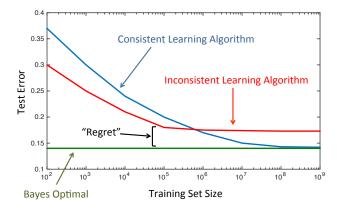
Recall: Two Flavors of Analysis

- Error Reduction:
 - Each \hat{h} achieves 0/1 Loss ϵ
 - Implication for multiclass 0/1 loss of h?
 - **Answer:** (K-1)ε
- Regret Reduction:
 - Each ĥ achieves 0/1 regret r
 - Implication of multiclass regret?
 - E.g., Kr?
 - More powerful result

$$\varepsilon = L_P(w)$$

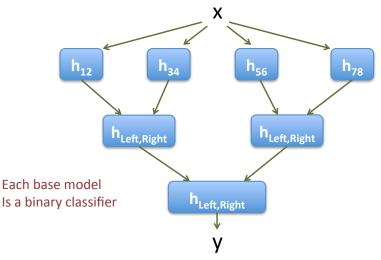
Zero 0/1 Test Error typically not possible

$$r = L_P(w) - L_P(w^*)$$



Filter Tree Regret Guarantee

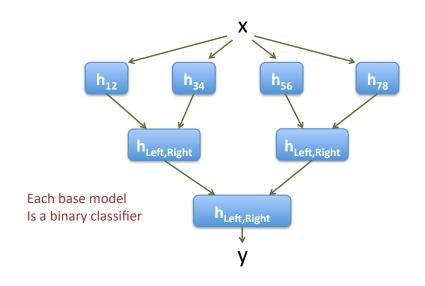
- If each classifier has regret r
- Filter Tree has multiclass regret ≤ (log₂K)r
 Good dependence on K
- Inductive proof
- See details in paper



Runtime Computational Benefits

• Logarithmic test time

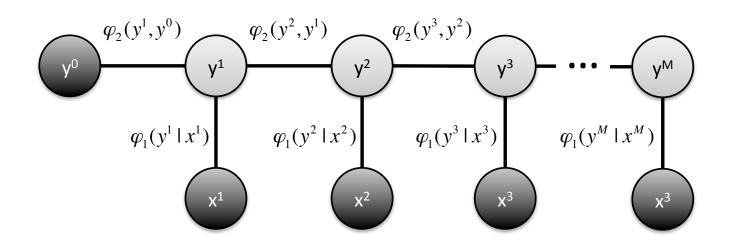
With respect to #classes



See also: Logarithmic Time Online Multiclass Prediction http://arxiv.org/abs/1406.1822

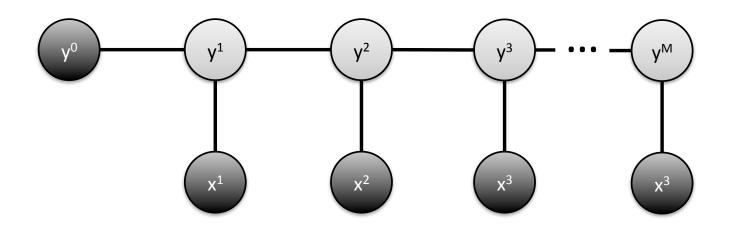
Very Briefly: Sequential Multiclass

• Suppose we want to use decision trees for first-order sequence prediction



Recurrent Multiclass Classifier

- h(x,y_{prev})
 - Takes in current x, previous y
 - Predicts next y



http://www.umiacs.umd.edu/~hal/searn/ http://arxiv.org/abs/1011.0686

Next Week

- No Lecture Thursday — Student Faculty Conference
- Recitation Thursday

 Conditional Random Fields Review
- Kaggle Miniproject Writeup due Thursday

 Via Moodle
- Next Week:

- Unsupervised, Clustering, Dim. Reduction