

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 10: Conditional Random Fields Revisited, Overview of General Structured Prediction

Today

- Naïve Bayes vs Logistic Regression
 - Detailed Comparison
 - Generalizes Conceptually to HMMs vs CRFs

- Conditional Random Fields Revisited

 Using Logistic Regression Notation
- Overview of General Structured Prediction

Recall: Naïve Bayes

- Posits a generating model:
 - Single y
 - Multiple x features
 - Only keep track of:
 - P(y), P(x^d|y)

Graphical Model Diagram

$$P(x, y) = P(x \mid y)P(y) = P(y)\prod_{d} P(x^{d} \mid y)$$

Each x^d is conditionally independent given y. "Naïve" independence assumption!

Recall: Logistic Regression

$$P(y \mid x) = \frac{\exp\{w_{y}^{T} x - b_{y}\}}{\sum_{k} \exp\{w_{k}^{T} x - b_{k}\}} = \frac{\exp\{F(x, y)\}}{\sum_{k} \exp\{F(x, k)\}} \qquad x \in \mathbb{R}^{D}$$

• "Log-Linear" assumption

- Linear scoring function (in exponent)
- Most common discriminative probabilistic model

Naïve Bayes vs Logistic Regression

- NB has L parameters for P(y) (i.e., A)
- LR has L parameters for bias b
- NB has L*D parameters for P(x|y) (i.e, O)
- LR has L*D parameters for w
- Same number of parameters!

Interpreting Parameters of LR

Logistic Regression

$$P(y \mid x) = \frac{e^{w_y^T x - b_y}}{\sum_k e^{w_k^T x - b_k}}$$

$$\propto \exp\left\{w_y^T x - b_y\right\}$$

$$= \exp\left\{-b_y\right\} \prod_d \exp\left\{w_y^d x^d\right\}$$

$$= \exp\left\{A_y\right\} \prod_d \exp\left\{O_{x^d, y}^d\right\}$$

Rename

Rename / Parameters Naïve Bayes

$$P(x, y) = A_{y} \prod_{d=1}^{D} O_{x^{d}, y}^{d}$$

$$P(y) \qquad P(x^{d} | y)$$

Exponent of LR looks similar to NB!

Cannot ignore denominator!!!

Modeling P(y|x)

Recall: Training Naïve Bayes

• Maximum Likelihood of Training Set:

$$\operatorname{argmax} P(S) = \operatorname{argmax} \prod_{i} P(x_i, y_i) \qquad S = \{(x_i, y_i)\}_{i=1}^{N}$$
$$= \operatorname{argmin} \sum_{i} -\log P(x_i, y_i)$$

Subject to Naïve Bayes assumption on structure of P(x,y)

Only need to estimate P(y) and each $P(x^d|y)!$

$$P(x, y) = P(x \mid y)P(y) = P(y)\prod_{d} P(x^{d} \mid y)$$

Optimality Condition for Naïve Bayes

- **Define:** $P(x | y) = O_{x,y} = \frac{W_{x,y}}{\sum_{x'} W_{x'}}$ Just a re-parameterization Supervised Training: •
- ۲

training examples (x,y)

$$\partial_{w_{x,y}} = -\frac{N_{x,y}}{w_{x,y}} + \frac{N_y}{\sum_{x'} w_{x',y}} \rightarrow \frac{N_{x,y}}{N_y} = \frac{w_{x,y}}{\sum_{x'} w_{x',y}} \rightarrow P(x \mid y) = \frac{N_{x,y}}{N_y}$$
Frequency counts

in training set!

Recall: Training Logistic Regression

$$\operatorname{argmin}_{i} \sum_{i} -\log P(y_i \mid x_i) \equiv \sum_{i} \left[-F(x_i, y_i) + \log \sum_{y'} \exp \left\{ F(x_i, y') \right\} \right]$$

$$F(x, y) = w_y^T x - b_y = A_y + \sum_d O_{x,y}^d$$

$$P(y \mid x) = \frac{\exp\{F(x, y)\}}{\sum_{y'} \exp\{F(x, y')\}}$$

Gradient (skipping derivation)

$$\partial_{w_y} = \sum_i \left(-\mathbf{1}_{[y_i = y]} + P(y \mid x_i) \right) \frac{\partial F(x_i, y)}{\partial_{w_y}} = -\sum_i \left(\mathbf{1}_{[y_i = y]} - P(y \mid x_i) \right) \frac{\partial F(x_i, y)}{\partial_{w_y}}$$

Optimality Condition for Logistic Regression

Gradient (skipping derivation)

$$\partial_{w_y} = \sum_i \left(-\mathbf{1}_{[y_i = y]} + P(y \mid x_i) \right) \frac{\partial F(x_i, y)}{\partial_{w_y}} = -\sum_i \left(\mathbf{1}_{[y_i = y]} - P(y \mid x_i) \right) \frac{\partial F(x_i, y)}{\partial_{w_y}}$$

Setting gradient to 0: $0 = -\sum_{i} \left(1_{[y_i = y]} - P(y \mid x_i) \right) \frac{\partial F(x_i, y)}{\partial_{w_y}}$ $\sum_{i} 1_{[y_i = y]} \frac{\partial F(x_i, y)}{\partial_{w_y}} = \sum_{i} P(y \mid x_i) \frac{\partial F(x_i, y)}{\partial_{w_y}}$

Empirical frequency of y should match predicted frequency!

Comparison of Optimality Conditions

• Naïve Bayes: $P(x | y) = \frac{N_{x,y}}{N_y}$ $P(y) = \frac{N_y}{N}$

Correspond to exactly one model parameter!

• Logistic Regression:

$$\sum_{i} \mathbb{1}_{[y_i = y]} \frac{\partial F(x_i, y)}{\partial_{w_y}} = \sum_{i} P(y \mid x_i) \frac{\partial F(x_i, y)}{\partial_{w_y}}$$

Does **not** correspond to exactly one model parameter!

Comparison of Optimality Conditions

• HMM: $P(x | y) = \frac{N_{x,y}}{N_y}$ $P(y | y') = \frac{N_{y',y}}{N_y}$

Correspond to exactly one model parameter!

• CRF:
$$N_{y',y} \frac{\partial F(x_i, y)}{\partial_{w_{y,y'}}} = \sum_i P(y', y \mid x_i) \frac{\partial F(x_i, y)}{\partial_{w_{y,y'}}}$$

Does **not** correspond to exactly one model parameter!

Generative	Discriminative
P(x,y)Joint model over x and yCares about everything	 P(y x) (when probabilistic) Conditional model Only cares about predicting well
Naïve Bayes, HMMs Also Topic Models 	Logistic Regression, CRFsalso SVM, Least Squares, etc.
Max Likelihood	 Max (Conditional) Likelihood (=minimize log loss) Can pick any loss based on y Hinge Loss, Squared Loss, etc.
Always Probabilistic	Not Necessarily ProbabilisticCertainly never joint over P(x,y)
Often strong assumptions Keeps training tractable 	More flexible assumptionsFocuses entire model on P(y x)
Mismatch between train & predict Requires Bayes's rule 	Train to optimize predict goal
Can sample anything	Can only sample y given x
Can handle missing values in x	Cannot handle missing values in x

Recap: Sequence Prediction

- Input: $x = (x^1, ..., x^M)$
- Predict: y = (y¹,...,y^M)
 - Each yⁱ one of L labels.
- x = "Fish Sleep"
- y = (N, V)
- x = "The Dog Ate My Homework"
- y = (D, N, V, D, N)
- x = "The Fox Jumped Over The Fence"
- y = (D, N, V, P, D, N)

"Log-Linear" 1st Order Sequential Model

$$P(y \mid x) = \frac{1}{Z(x)} \exp\left\{\sum_{j=1}^{M} \left(A_{y^{j}, y^{j-1}} + O_{y^{j}, x^{j}}\right)\right\}$$

$$Z(x) = \sum_{y'} \exp\{F(y', x)\}$$
 aka "Partition Function"

$$F(y, x) \equiv \sum_{j=1}^{M} \left(A_{y^{j}, y^{j-1}} + O_{y^{j}, x^{j}}\right)$$
 Scoring Function
Scoring transitions Scoring input features

$$P(y \mid x) = \frac{\exp\{F(y, x)\}}{Z(x)} \qquad \log P(y \mid x) = F(y, x) - \log(Z(x))$$

y⁰ = special start state, excluding end state

• x = "Fish Sleep"

• y = (N,V)

$$P(y \mid x) = \frac{1}{Z(x)} \exp\left\{\sum_{j=1}^{M} \left(A_{y^{j}, y^{j-1}} + O_{y^{j}, x^{j}}\right)\right\}$$

$$P(N,V | "Fish Sleep") = \frac{1}{Z(x)} \exp\{A_{N,Start} + O_{N,Fish} + A_{V,N} + O_{V,Sleep}\} = \frac{1}{Z(x)} \exp\{4\}$$

$$Z(x) = Sum \begin{cases} y & exp(F(y,x)) \\ (N,N) & exp(1+2-2+1) = exp(2) \\ (N,V) & exp(1+2+2+0) = exp(4) \\ (V,N) & exp(-1+1+2+1) = exp(3) \\ (V,V) & exp(-1+1-2+0) = exp(-2) \end{cases}$$

- x = "Fish Sleep"
- y = (N,V)

$$P(N,V \mid "Fish \ Sleep") = \frac{1}{Z(x)} \exp\left\{A_{N,Start} + O_{N,Fish} + A_{V,N} + O_{V,Sleep}\right\}$$

P(N,V|"Fish Sleep")
*hold other parameters fixed

New Notation

Why New Notation?

- Easier to reason about:
 - Computing Predictions
 - Computing Gradients
 - Extensions (just generalize ϕ)

$$F(y,x) \equiv \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j}, y^{j-1} | x) \right]$$
$$w = \left[\begin{array}{c} w_{1} \\ w_{2} \end{array} \right] \qquad \varphi^{j}(a,b | x) = \left[\begin{array}{c} \varphi_{1}^{j}(a | x) \\ \varphi_{2}(a,b) \end{array} \right]$$

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{[(a=Noun)\land (x^{j}='Fish')]} \\ 1_{[(a=Noun)\land (x^{j}='Sleep')]} \\ 1_{[(a=Verb)\land (x^{j}='Fish')]} \\ 1_{[(a=Verb)\land (x^{j}='Sleep')]} \end{bmatrix}$$

$$\varphi_{2}(a,b) = \begin{vmatrix} 1_{[(a=Noun)\wedge(b=Start)]} \\ 1_{[(a=Noun)\wedge(b=Noun)]} \\ 1_{[(a=Noun)\wedge(b=Verb)]} \\ 1_{[(a=Verb)\wedge(b=Start)]} \\ 1_{[(a=Verb)\wedge(b=Noun)]} \\ 1_{[(a=Verb)\wedge(b=Verb)]} \end{vmatrix}$$

Conditional Random Fields

$$P(y|x) = \frac{1}{Z(x)} \exp\{F(y,x)\}$$

$$Z(x) = \sum_{y'} \exp\{F(y',x)\}$$

$$\varphi_{1}^{j}(a|x) = \begin{bmatrix} 1_{[(a=Noun)\wedge(x^{j}='Fish')]} \\ 1_{[(a=Voun)\wedge(x^{i}='Fish')]} \\ 1_{[(a=Voun)\wedge(x^{i}='Fish')]} \\ 1_{[(a=Voun)\wedge(x^{i}='Fish')]} \\ 1_{[(a=Voun)\wedge(x^{i}='Fish')]} \\ 1_{[(a=Voun)\wedge(x^{i}='Sleep')]} \end{bmatrix}$$

$$W = \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \qquad \varphi^{j}(a,b|x) = \begin{bmatrix} \varphi_{1}^{j}(a|x) \\ \varphi_{2}(a,b) \end{bmatrix} \qquad \varphi_{2}(a,b) = \begin{bmatrix} 1_{[(a=Noun)\wedge(b=Star)]} \\ 1_{[(a=Voun)\wedge(b=Star)]} \\ 1_{[(a=Voun)\wedge(b=Sta$$

7	у	exp(F(y,x))	
	(N,N)	exp(2+1+1-2) = exp(2)	
	(N,V)	exp(2+1+0+1) = exp(4)	
	(V <i>,</i> N)	exp(1-1+1+2) = exp(3)	
	(V,V)	exp(1-1+0-2) = exp(-2)	

Z(x) = Sum

Summary of New Notation

Generic Logistic Model Notation:

$$P(y \mid x) = \frac{1}{Z(x)} \exp\{F(y, x)\}$$

$$Z(x) = \sum_{y'} \exp\{F(y', x)\} \qquad F(y, x) = \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j}, y^{j-1} | x)\right]$$

- Define feature function:
 - Linear model in feature representation
 - Applies to both CRFs and basic LR

Computing Predictions (Viterbi)
$$argmax P(y \mid x) = argmax F(y,x)$$
 $F(y^{tk},x) = \sum_{j=1}^{k} [w^{T}\varphi^{j}(y^{j},y^{j-1}|x)]$ Maintain length-k
prefix solutions $\hat{Y}^{k}(T) = \left(argmax F(y^{1:k-1} \oplus T,x) \right) \oplus T$ Maintain length-k
prefix solutions $\hat{Y}^{k+1}(T) = \left(argmax F(y^{1:k-1} \oplus T,x) \right) \oplus T$ Recursively solve for
length-(k+1) solutions $\hat{Y}^{k+1}(T) = \left(argmax F(y^{1:k} \oplus T,x) \right) \oplus T$ Recursively solve for
length-(k+1) solutions $\hat{Y}^{k+1}(T) = \left(argmax F(y^{1:k} \oplus T,x) \right) \oplus T$ Predict via best
length-M solution $argmax F(y,x) = argmax F(y,x)$
 $y \in \{\hat{Y}^{M}(T)\}_{T}$

 $\hat{Y}^{1}(T)$ is just T

Solve:
$$\hat{Y}^{3}(V) = \left(\underset{y^{1:2} \in \{\hat{Y}^{2}(T)\}_{T}}{\operatorname{argmax}} F(y^{1:2}, x) + w^{T} \varphi^{j}(V, y^{2} \mid x) \right) \oplus V$$

Store each $\hat{Y}^{1}(T) \& F(\hat{Y}^{1}(T),x)$

Store each $\hat{Y}^2(Z) \& F(\hat{Y}^2(Z),x)$

 $\hat{Y}^1(Z)$ is just Z

Ex: $\hat{Y}^{2}(V) = (N, V)$

Solve:
$$\hat{Y}^{M}(V) = \begin{pmatrix} \operatorname{argmax}_{y^{1:M-1} \in \left\{ \tilde{y}^{M-1}(T) \right\}_{T}} F(y^{1:M-1}, x) + w^{T} \varphi^{M}(V, y^{M-1} \mid x) \end{pmatrix} \oplus V$$

Store each
 $\hat{Y}^{1}(Z) \otimes F(\hat{Y}^{1}(Z), x)$
Store each
 $\hat{Y}^{2}(T) \otimes F(\hat{Y}^{2}(T), x)$
Store each
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(D)$
 $\hat{Y}^{3}(D)$
 $\hat{Y}^{1}(D)$
 $\hat{Y}^{1}(D)$
 $\hat{Y}^{2}(D)$
 $\hat{Y}^{2}(D)$
 $\hat{Y}^{2}(D)$
 $\hat{Y}^{3}(D)$
 $\hat{Y}^{1}(D)$
 $\hat{Y}^{1}(D)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{3}(V)$
 $\hat{Y}^{1}(V)$
 $\hat{Y}^{2}(V)$
 $\hat{Y}^{3}(V)$
 \hat{Y}^{3}

Solve:
$$\hat{Y}^{M}(V) = \left(\underset{y^{1:M-1} \in \{\hat{Y}^{M-1}(T)\}_{T}}{\operatorname{argmax}} F(y^{1:M-1}, x) + w^{T} \varphi^{M}(V, y^{M-1} \mid x) \right) \oplus V$$

Store each $\hat{Y}^1(Z) \& F(\hat{Y}^1(Z),x)$

Store each $\hat{Y}^2(T) \& F(\hat{Y}^2(T),x)$

Store each $\hat{Y}^{3}(T) \& F(\hat{Y}^{3}(T),x)$

Decomposes additively by pairwise feature vector: φ^j(a,b|x)

Easier to keep track of!

 $\hat{Y}^{1}(T)$ is just T

Ex: $\hat{Y}^{2}(V) = (N, V)$

Computing Conditional Probabilities

$$P(y \mid x) = \frac{1}{Z(x)} \exp\{F(y, x)\} = \frac{1}{Z(x)} \exp\{\sum_{j=1}^{M} w^{T} \varphi^{j}(y^{j}, y^{j-1} \mid x)\}$$
$$Z(x) = \sum_{y'} \exp\{F(y', x)\}$$
$$Matrix Notation: \longrightarrow G^{j}(b, a) = \exp\{w^{T} \varphi^{j}(b, a \mid x)\}$$
$$P(y \mid x) = \frac{1}{Q} \prod_{j=1}^{M} G^{j}(y^{j}, y^{j-1})$$

- Compute Z(x) efficiently
- Numerical instability

$$P(y \mid x) = \frac{1}{Z(x)} \prod_{j=1}^{M} G^{j}(y^{j}, y^{j-1})$$

$$Z(x) = \sum_{y'} \prod_{j=1}^{M} G^{j}(y'^{j}, y'^{j-1})$$

Matrix Semiring

$$Z(x) = \sum_{y'} \prod_{j=1}^{M} G^{j}(y'^{j}, y'^{j-1})$$

$$G^{j}(b,a) = \exp\left\{w^{T}\varphi^{j}(b,a \mid x)\right\}$$

Matrix Version of
$$G^{j}$$

 $\underbrace{ \underbrace{ } \\ G^{j}(b,a) } \\ \underline{ \\ } \\ \underline{ \\$

$$G^{1:2}(b,a) = \sum_{c} G^{2}(b,c)G^{1}(c,a)$$

$$G^{1:2} = G^{2}$$

$$G^{1}$$

$$G^{i:j}(b,a) = G^{j}$$

$$G^{j-1}$$

$$G^{j+1}$$

$$G^{j}$$

Computing Partition Function

 $Z(x) = \sum G^1(a, Start)$ Consider Length-1 (M=1) Sum column 'Start' of G¹! $Z(x) = \sum_{a,b} G^{2}(b,a)G^{1}(a,Start) = \sum_{b} G^{1:2}(b,Start)$ Sum column 'Start' of G^{1:2}! M=2 General M Sum column 'Start' of G^{1:M}! Do M matrix computations to compute G^{1:M} $- Z(x) = sum column 'Start' of G^{1:M}$ G^{1:M} G^M G^{M-1} G^2 G^1

See course notes for more efficient approach.

Dealing w/ Numerical Instability

- Previous slide suffers from numerical instability
 - G^{1:k} can easily overflow and/or underflow

Training (Stochastic) Gradient Descent

• Minimize log loss of training data:

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} -\log P(y_i \mid x_i) = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} -F(y_i, x_i) + \log(Z(x_i))$$

$$\partial_{w} - F(y, x) = -\sum_{j=1}^{M} \varphi^{j}(y^{j}, y^{j-1} \mid x)$$

$$\partial_{w} \log(Z(x)) = \sum_{j=1}^{M} \sum_{a,b} P(y^{j} = b, y^{j-1} = a \mid x) \varphi^{j}(b, a \mid x)$$

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

Optimality Condition

$$\underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^{N} -\log P(y_i \mid x_i) = \underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^{N} -F(y_i, x_i) + \log(Z(x_i))$$

• Optimality condition:

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \varphi^{j}(y_{i}^{j}, y_{i}^{j-1} \mid x_{i}) = \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \sum_{a,b} P(y^{j} = b, y^{j-1} = a \mid x_{i})\varphi^{j}(b, a \mid x_{i})$$

- Frequency counts = Cond. expectation on training data!
 - If each feature is disjoint, then above equality holds for each (a,b):

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \mathbb{1}_{\left[\left(y_{i}^{j}=b\right) \land \left(y_{i}^{j-1}=a\right)\right]} \varphi^{j}(b, a \mid x_{i}) = \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} P(y^{j}=b, y^{j-1}=a \mid x_{i}) \varphi^{j}(b, a \mid x_{i})$$

$$S = \{(x_i, y_i)\}_{i=1}^N$$

Forward-Backward for CRFs

$$\alpha^{1}(a) = G^{1}(a, Start) \qquad \beta^{M}(b) = 1$$

$$\alpha^{j}(a) = \sum_{a'} \alpha^{j-1}(a')G^{j}(a, a') \qquad \beta^{j}(b) = \sum_{b'} \beta^{j+1}(b')G^{j+1}(b', b)$$

$$P(y^{j} = b, y^{j-1} = a \mid x) = \frac{\alpha^{j-1}(a)G^{j}(b, a)\beta^{j}(b)}{Z(x)}$$

$$Z(x) = \sum_{y'} \exp\{F(y', x)\} \qquad G^{j}(b, a) = \exp\{w^{T}\varphi^{j}(b, a \mid x)\}$$

Dealing w/ Numerical Instability

- Numerical instability: $\alpha^{j} \& \beta^{j}$ vectors can blow up
- Observation:

$$P(y^{j} = b, y^{j-1} = a \mid x) = \frac{\alpha^{j-1}(a)G^{j}(b, a)\beta^{j}(b)}{Z(x)} = \frac{\alpha^{j-1}(a)G^{j}(b, a)\beta^{j}(b)}{\sum_{a',b'} \alpha^{j-1}(a')G^{j}(b', a')\beta^{j}(b')}$$

• New $\alpha^j \& \beta^j$ vectors:

$$\hat{\alpha}^{j}(a) = \frac{1}{C_{\alpha}^{j}} \sum_{b} \hat{\alpha}^{j-1}(b) G^{j}(a,b) \qquad \hat{\beta}^{j}(b) = \frac{1}{C_{\beta}^{j}} \sum_{a} \hat{\beta}^{j+1}(a) G^{j}(a,b)$$
$$C_{\alpha}^{j} = \sum_{a,b} \hat{\alpha}^{j-1}(b) G^{j}(a,b) \qquad C_{\beta}^{j} = \sum_{a,b} \hat{\beta}^{j+1}(a) G^{j}(a,b)$$

Recap: Conditional Random Fields

- "Log-Linear" 1st order sequence models
 Can compute conditional probabilities P(y|x)
- Pairwise feature maps φ^j(b,a|x)
 Arbitrary features that depend on pairs of labels.
- Train via minimizing neg log likelihood
- Dynamic programming to train and predict

General Structured Prediction

More Elaborate Scoring Functions

• Structure encoded by linear scoring function:

• 2nd Order Sequential Model:

$$F(y,x) = \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j}, y^{j-1}, y^{j-2} \mid x) \right]$$

• Classification Model:

$$F(y,x) \equiv w^T \varphi(y \mid x)$$

• Efficient Prediction:

$$\operatorname*{argmax}_{y} F(y, x)$$

More Elaborate Scoring Functions

• Structure encoded by linear scoring function:

F(y,x)

Remainder of Lecture: Tour of Structured Prediction Models Some Might be Interesting to You...

• Efficient Prediction:

 $\operatorname*{argmax}_{y} F(y, x)$

Graphical Models

$$\varphi^{j}(a,b \mid x) = \begin{bmatrix} \varphi_{1}(a \mid x^{j}) \\ \varphi_{2}(a,b) \end{bmatrix}$$

Graph structure encodes structural dependencies between y^j!

https://piazza.com/cornell/fall2013/btry6790cs6782/resources http://www.cs.cmu.edu/~guestrin/Class/10708/ https://www.coursera.org/course/pgm

Graphical Models

$$\varphi^{j}(a,b \mid x) = \begin{bmatrix} \varphi_{1}^{j}(a \mid x) \\ \varphi_{2}(a,b) \end{bmatrix}$$

Graph structure encodes structural dependencies between y^j!

```
https://piazza.com/cornell/fall2013/btry6790cs6782/resources
http://www.cs.cmu.edu/~guestrin/Class/10708/
https://www.coursera.org/course/pgm
```


Graph structure encodes structural dependencies between y^j! Features depend on cliques in graphical model representation.

https://piazza.com/cornell/fall2013/btry6790cs6782/resources http://www.cs.cmu.edu/~guestrin/Class/10708/ https://www.coursera.org/course/pgm

Prediction via Dynamic Programming

$$F(y,x) = \sum_{j=1}^{M} \left[w_{1}^{T} \varphi_{1}(y^{j} | x^{j}) + \sum_{i \in C_{j}} w_{2}^{T} \varphi_{2}(y^{j}, y^{i}) \right]$$

- 1. Solve partial solutions of Leaves
- 2. Solve partial sol. of next level up
- 3. Repeat Step 2 until Root
- 4. Pick best partial solution of Root

*Max-Product Algorithm for Tree Graphical Models *Viterbi = Max-Product for Linear Chain Graphical Models

Loopy Graphical Models

Stereo (binocular) Depth Detection

- Each y^{ij} is depth of pixel
- Neighbor pixels are similar
- Features over pairs of pixels
- "Loopy" Graphical Model
- Prediction is NP-Hard! argmax F(y,x)

x suppressed for brevity

http://vision.middlebury.edu/MRF/

http://www.seas.upenn.edu/~taskar/pubs/mmamn.pdf http://www.cs.cornell.edu/~rdz/Papers/SZ-visalg99.pdf

String Alignment

x = pair of strings (one from D)
y = alignment

Predict Folding Structure & Function of Protein

Database **D** of Known Proteins (very well studied)

Larger Database **G** of Homologies (proteins w/ known similarities to **D**)

Train on **G**: learn how to align any amino acid seq to proteins in **D**

F(y,x) encodes score of different types of substitutions, insertions & deletions

http://www.cs.cornell.edu/People/tj/publications/yu_etal_06a.pdf See Also: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000173

Ranking

x = query & set of results

y = ranking

Find w that predicts best ranking of search results.

Every relevant result should be above every non-relevant result.

 $y^{ij} \in \{-1,+1\}$

$$F(y,x) = \sum_{i,j} y^{ij} \left[w^T \varphi(x^i) - w^T \varphi(x^j) \right]$$

 $\underset{y}{\operatorname{argmax}} F(y, x) = \operatorname{sort} \left\{ w^{T} \varphi(x^{j}) \right\}_{j}$

http://www.cs.cornell.edu/People/tj/publications/joachims_05a.pdf http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf http://www.yisongyue.com/publications/sigir2007_svmmap.pdf

Summary: Structured Prediction

- Very general setting
 - Applicable to prediction made jointly over multiple y's
 - Prediction in Graphical Models
- Many learning algorithms for structured prediction
 CRFs, SSVMs, Structured Perceptron, Learning Reductions
- Topic for Entire Class!

http://www.nowozin.net/sebastian/cvpr2011tutorial/

http://www.cs.cmu.edu/~nasmith/sp4nlp/

http://www.cs.cornell.edu/Courses/cs778/2006fa/

https://www.sites.google.com/site/spflodd/

http://www.cs.cornell.edu/People/tj/publications/joachims_06b.pdf

Next Week

- Lecture Tuesday:
 - Learning Reductions
 - Recent Applications
- NO Lecture Thursday:

- Student-Faculty Conference

• Recitation Thursday:

– Review of Conditional Random Fields

