Caltech

Machine Learning \& Data Mining CS/CNS/EE 155

Lecture 10:

Conditional Random Fields Revisited,
Overview of General Structured Prediction

Today

- Naïve Bayes vs Logistic Regression
- Detailed Comparison
- Generalizes Conceptually to HMMs vs CRFs
- Conditional Random Fields Revisited
- Using Logistic Regression Notation
- Overview of General Structured Prediction

Recall: Naïve Bayes

- Posits a generating model:
- Single y
- Multiple x features
- Only keep track of:
- P(y), P(xdy)

Graphical Model Diagram

$$
P(x, y)=P(x \mid y) P(y)=P(y) \prod_{d} P\left(x_{\uparrow}^{d} \mid y\right)
$$

Each x^{d} is conditionally independent given y.
"Naïve" independence assumption!

Recall: Logistic Regression

$$
P(y \mid x)=\frac{\exp \left\{w_{y}^{T} x-b_{y}\right\}}{\sum_{k}^{\exp \left\{w_{k}^{T} x-b_{k}\right\}}=\frac{\exp \{F(x, y)\}}{\sum_{k}^{\exp \{F(x, k)\}}} \quad \begin{array}{l}
x \in R^{D} \\
y \in\{1,2, \ldots, L\}
\end{array}}
$$

- "Log-Linear" assumption
- Linear scoring function (in exponent)
- Most common discriminative probabilistic model

Naïve Bayes vs Logistic Regression

- NB has L parameters for $\mathrm{P}(\mathrm{y})$ (i.e., A$)$
- LR has L parameters for bias b
- NB has L*D parameters for $P(x \mid y)$ (i.e, O)
- LR has L*D parameters for w
- Same number of parameters!

Naïve Bayes

$$
P(x, y)=\underset{\substack{A_{y} \\ A_{y}}}{\substack{d=1 \\ \uparrow \\ \mathrm{P}^{d}(\mathrm{x} \mid \mathrm{y})}} O_{x^{d}, y}^{d}
$$

Logistic Regression

$$
P(y \mid x)=\frac{e^{w_{y}^{T} x-b_{y}}}{\sum_{k} e^{w_{k}^{T} x-b_{k}}} \quad \begin{aligned}
& x \in\{0,1\}^{D} \\
& y \in\{1,2, \ldots, L\}
\end{aligned}
$$

Interpreting Parameters of LR

Logistic Regression

$$
P(y \mid x)=\frac{e^{w_{y}^{T} x-b_{y}}}{\sum_{k} e^{w_{k}^{T} x-b_{k}}}
$$

$$
\propto \exp \left\{w_{y}^{T} x-b_{y}\right\}
$$

$$
=\exp \left\{-b_{y}\right\} \prod_{d} \exp \left\{w_{y}^{d} x^{d}\right\}
$$

Rename

$$
=\exp \left\{A_{y}\right\} \prod_{d} \exp \left\{O_{x^{d}, y}^{d}\right\}
$$

Parameters

Naïve Bayes

Exponent of LR
looks similar to NB!
Cannot ignore denominator!!!

Modeling $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$

$$
\begin{aligned}
& \text { Logistic Regression } \\
& P(y \mid x)=\frac{\exp \left\{w_{y}^{T} x-b_{y}\right\}}{\sum_{k} \exp \left\{w_{k}^{T} x-b_{k}\right\}}=\frac{\exp \left\{\sum_{d} O_{x^{d}, y}^{d}+A_{y}\right\}}{\sum_{k} \exp \left\{\sum_{d} O_{x^{d}, k}^{d}+A_{k}\right\}}
\end{aligned}
$$

Naïve Bayes
$P(y \mid x)=\frac{P(x, y)}{P(x)}=\frac{P(x, y)}{\sum_{k} P(x, k)}=\frac{A_{y} \prod_{d=1}^{D} O_{x^{d}, y}^{d}}{\sum_{k} A_{k} \prod_{d=1}^{D} O_{x^{d}, k}^{d}}$
There's no need for each $\mathrm{A}, \mathrm{O} \leq 1$

Recall: Training Naïve Bayes

- Maximum Likelihood of Training Set:

$$
\begin{aligned}
\operatorname{argmax} P(S) & =\operatorname{argmax} \prod_{i} P\left(x_{i}, y_{i}\right) \quad S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
& =\operatorname{argmin} \sum_{i}-\log P\left(x_{i}, y_{i}\right)
\end{aligned}
$$

- Subject to Naïve Bayes assumption on structure of $P(x, y)$

Only need to estimate $\mathrm{P}(\mathrm{y})$ and each $\mathrm{P}\left(\mathrm{x}^{\mathrm{d}} \mid \mathrm{y}\right)$!

$$
P(x, y)=P(x \mid y) P(y)=P(y) \prod_{d} P\left(x^{d} \mid y\right)
$$

Optimality Condition for Naïve Bayes

- Define: $P(x \mid y)=O_{x, y}=\frac{w_{x, y}}{\sum w_{x^{\prime}}} \quad$ Just a re-parameterization
- Supervised Training:

$$
\begin{aligned}
& \operatorname{argmin} \sum_{i}\left[-\log P\left(x_{i} \mid y_{i}\right)-\log P\left(y_{i}\right)\right] \\
& \underbrace{} \sum_{i}\left[-\log w_{x_{i, v}, y_{i}}+\log \sum_{x^{\prime}} w_{x^{\prime}, y_{i}}\right]
\end{aligned}
$$

\# training examples (x, y)
$\partial_{w_{x, y}}=-\frac{N_{x, y}^{\swarrow}}{w_{x, y}}+\frac{N_{y}}{\sum_{x^{\prime}} w_{x^{\prime}, y}} \rightarrow \frac{N_{x, y}}{N_{y}}=\frac{w_{x, y}}{\sum_{x^{\prime}} w_{x^{\prime}, y}} \rightarrow \begin{aligned} & P(x \mid y)=\frac{N_{x, y}}{N_{y}} \\ & \begin{array}{l}\text { Frequency counts } \\ \text { in training set! }\end{array}\end{aligned}$

Recall: Training Logistic Regression

$$
\begin{array}{r}
\operatorname{argmin} \sum_{i}-\log P\left(y_{i} \mid x_{i}\right) \equiv \sum_{i}\left[-F\left(x_{i}, y_{i}\right)+\log \sum_{y^{\prime}} \exp \left\{F\left(x_{i}, y^{\prime}\right)\right\}\right] \\
F(x, y)=w_{y}^{T} x-b_{y}=A_{y}+\sum_{d} O_{x, y}^{d} \\
P(y \mid x)=\frac{\exp \{F(x, y)\}}{\sum_{y^{\prime}} \exp \left\{F\left(x, y^{\prime}\right)\right\}}
\end{array}
$$

Gradient (skipping derivation)

$$
\partial_{w_{y}}=\sum_{i}\left(-1_{\left[y_{i}=y\right]}+P\left(y \mid x_{i}\right)\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}=-\sum_{i}\left(1_{\left[y_{i}=y\right]}-P\left(y \mid x_{i}\right)\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}
$$

Optimality Condition for Logistic Regression

Gradient (skipping derivation)

$$
\partial_{w_{y}}=\sum_{i}\left(-1_{\left[y_{i}=y\right]}+P\left(y \mid x_{i}\right)\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}=-\sum_{i}\left(1_{\left[y_{i}=y\right]}-P\left(y \mid x_{i}\right)\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}
$$

Setting gradient to $0: \quad 0=-\sum_{i}\left(1_{\left[y_{i}=y\right]}-P\left(y \mid x_{i}\right)\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}$

$$
\sum_{i} 1_{\left[y_{i}=y\right]} \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}=\sum_{i} P\left(y \mid x_{i}\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}
$$

Empirical frequency of y should match predicted frequency!

Comparison of Optimality Conditions

- Naïve Bayes: $\quad P(x \mid y)=\frac{N_{x, y}}{N_{y}} \quad P(y)=\frac{N_{y}}{N}$

Correspond to exactly one model parameter!

- Logistic Regression:

$$
\sum_{i} 1_{\left[y_{i}=y\right]} \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}=\sum_{i} P\left(y \mid x_{i}\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y}}}
$$

Does not correspond to exactly one model parameter!

Comparison of Optimality Conditions

- HMM:

$$
P(x \mid y)=\frac{N_{x, y}}{N_{y}} \quad P\left(y \mid y^{\prime}\right)=\frac{N_{y^{\prime}, y}}{N_{y}}
$$

Correspond to exactly one model parameter!

- CRF:

$$
N_{y^{\prime}, y} \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y, y^{\prime}}}}=\sum_{i} P\left(y^{\prime}, y \mid x_{i}\right) \frac{\partial F\left(x_{i}, y\right)}{\partial_{w_{y, y}}}
$$

Does not correspond to exactly one model parameter!

Generative	Discriminative
$P(x, y)$ - Joint model over x and y - Cares about everything	$P(y \mid x) \quad$ (when probabilistic) - Conditional model - Only cares about predicting well
Naïve Bayes, HMMs - Also Topic Models	Logistic Regression, CRFs - also SVM, Least Squares, etc.
Max Likelihood	Max (Conditional) Likelihood - (=minimize log loss) - Can pick any loss based on y - Hinge Loss, Squared Loss, etc.
Always Probabilistic	Not Necessarily Probabilistic - Certainly never joint over P(x,y)
Often strong assumptions - Keeps training tractable	More flexible assumptions - Focuses entire model on P(y\|x)
Mismatch between train \& predict - Requires Bayes's rule	Train to optimize predict goal
Can sample anything	Can only sample y given x
Can handle missing values in x	Cannot handle missing values in x

Recap: Sequence Prediction

- Input: $x=\left(x^{1}, \ldots, x^{M}\right)$
- Predict: $y=\left(y^{1}, \ldots, y^{M}\right)$
- Each yi one of L labels.

- x = "Fish Sleep"
- $y=(N, V)$
- $\mathrm{x}=$ "The Dog Ate My Homework"
- $y=(D, N, V, D, N)$
- $\mathrm{x}=$ "The Fox Jumped Over The Fence"
- $y=(D, N, V, P, D, N)$

"Log-Linear" $1^{\text {st }}$ Order Sequential Model

$$
P(y \mid x)=\frac{1}{Z(x)} \exp \left\{\sum_{j=1}^{M}\left(A_{y^{j}, y^{j-1}}+O_{y^{j}, x^{j}}\right)\right\}
$$

$$
Z(x)=\sum_{y^{\prime}} \exp \left\{F\left(y^{\prime}, x\right)\right\} \quad \text { aka "Partition Function" }
$$

$$
\begin{aligned}
& F(y, x) \equiv \sum_{j=1}^{M}\left(A_{y^{j}, y^{j-1}}+O_{y^{j}, x^{j}}\right) \\
& \text { Scoring transitions Scoring input features }
\end{aligned}
$$

$$
P(y \mid x)=\frac{\exp \{F(y, x)\}}{Z(x)} \quad \log P(y \mid x)=F(y, x)-\log (Z(x))
$$

$y^{0}=$ special start state, excluding end state

- $x=$ "Fish Sleep"
- $y=(N, V)$

$$
P(y \mid x)=\frac{1}{Z(x)} \exp \left\{\sum_{j=1}^{M}\left(A_{y^{\prime}, y^{j-1}}+O_{y^{j}, x^{j}}\right)\right\}
$$

$P(N, V \mid "$ Fish Sleep" $)=\frac{1}{Z(x)} \exp \left\{A_{N, \text { Start }}+O_{N, F \text { Fish }}+A_{V, N}+O_{V, \text { Sleep }}\right\}=\frac{1}{Z(x)} \exp \{4\}$

- $x=$ "Fish Sleep"
- $y=(N, V)$
$P(N, V \mid " F i s h$ Sleep $")=\frac{1}{Z(x)} \exp \left\{A_{N, \text { Start }}+O_{N, F i s h}+A_{V, N}+O_{V, \text { Sleep }}\right\}$
P(N,V।"Fish Sleep")
*hold other parameters fixed

$$
A_{N, S t a r t}+O_{N, F i s h}+A_{V, N}+O_{V, \text { Sleep }}
$$

New Notation

$$
F(y, x) \equiv \sum_{j=1}^{M}\left(A_{y^{j},,^{j-1}}+O_{y^{j}, x^{j}}\right)
$$

Scoring transitions Scoring input features

$F(y, x) \equiv \sum_{j=1}^{M}\left[w^{T} \varphi^{j}\left(y^{j}, y^{j-1} \mid x\right)\right]$			$w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right.$	$\varphi^{j}\left(a, a^{\prime}\right.$	\| x)	$\varphi_{1}^{j}(a \mid x)$ $\varphi_{2}^{j}\left(a, a^{\prime}\right)$
$w_{1}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]$				Old Notation:		
				$\mathrm{O}_{\mathrm{N}, *}$	$\mathrm{O}_{\mathrm{V} \text {,* }}$	
			$\mathrm{O}_{*, \text { Fish }}$		1	
			O_{*},Sleep		0	
		1-22-11-2	$\varphi_{2}\left(a, a^{\prime}\right)=$			
Old Notation:						
	$\mathrm{A}_{\mathrm{N}, *}$					$\mathrm{A}_{\mathrm{V}, *}$
A_{*}, N	-2					1
A_{*}, V	2					-2
\mathbf{A}_{*} Start	1					-1

Why New Notation?

- Easier to reason about:
- Computing Predictions
- Computing Gradients
- Extensions (just generalize ϕ)

Conditional Random Fields

$$
\begin{aligned}
& P(y \mid x)=\frac{1}{Z(x)} \exp \{F(y, x)\} \\
& Z(x)=\sum_{y^{\prime}} \exp \left\{F\left(y^{\prime}, x\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& F(y, x) \equiv \sum_{j=1}^{M}\left[w^{T} \varphi^{j}\left(y^{j}, y^{j-1} \mid x\right)\right] \\
& w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \quad \varphi^{j}(a, b \mid x)=\left[\begin{array}{c}
\varphi_{1}^{j}(a \mid x) \\
\varphi_{2}(a, b)
\end{array}\right]
\end{aligned}
$$

$x=$ "Fish Sleep" $\quad y=(N, V)$

$Z(X)=\operatorname{Sum} |$| y | $\exp (F(y, x))$ |
| :--- | :--- |
| (N, N) | $\exp (2+1+1-2)=\exp (2)$ |
| (N, V) | $\exp (2+1+0+1)=\exp (4)$ |
| (V, N) | $\exp (1-1+1+2)=\exp (3)$ |
| (V, V) | $\exp (1-1+0-2)=\exp (-2)$ |

Summary of New Notation

- Generic Logistic Model Notation:

$$
\begin{aligned}
& P(y \mid x)=\frac{1}{Z(x)} \exp \{F(y, x)\} \\
& Z(x)=\sum_{y^{\prime}} \exp \left\{F\left(y^{\prime}, x\right)\right\} \quad F(y, x) \equiv \sum_{j=1}^{M}\left[w^{T} \varphi^{j}\left(y^{j}, y^{j-1} \mid x\right)\right]
\end{aligned}
$$

- Define feature function:
- Linear model in feature representation
- Applies to both CRFs and basic LR

Computing Predictions (Viterbi)

 $\underset{y}{\operatorname{argmax}} P(y \mid x)=\underset{y}{\operatorname{argmax}} F(y, x) \quad F\left(y^{\prime \prime *}, x\right) \equiv \sum_{j=1}^{k}\left[w^{\tau} \varphi^{\prime}\left(y^{\prime}, y^{\prime-1} \mid x\right)\right]$Maintain length-k prefix solutions

$$
\hat{Y}^{k}(T)=\left(\underset{y^{1, k-1}}{\operatorname{argmax}} F\left(y^{1: k-1} \oplus T, x\right)\right) \oplus T
$$

Recursively solve for

$$
\hat{Y}^{k+1}(T)=\left(\underset{\left.y^{v} \in \in \hat{y}^{k}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1: k} \oplus T, x\right)\right) \oplus T
$$

length-(k+1) solutions

$$
=\left(\underset{y^{\prime} \in \in\left\{\hat{\gamma}^{k}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1: k}, x\right)+w^{T} \varphi^{k+1}\left(T, y^{k}, x\right)\right) \oplus T
$$

Predict via best

$$
\underset{y}{\operatorname{argmax}} F(y, x)=\underset{y \in\left\{\hat{Y}^{M}(T)\right\}_{T}}{\operatorname{argmax}} F(y, x)
$$

Solve: $\quad \hat{Y}^{2}(V)=\left(\underset{y^{1} \in\left\{\hat{Y}^{1}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1}, x\right)+w^{T} \varphi^{2}\left(V, y^{1} \mid x\right)\right) \oplus V$
Store each
$\hat{Y}^{1}(\mathrm{~T}) \& F\left(\hat{\mathrm{Y}}^{1}(\mathrm{~T}), \mathrm{x}\right)$

$\hat{Y}^{1}(T)$ is just T

Solve: $\quad \hat{Y}^{2}(V)=\left(\underset{y^{1} \in\left\{\hat{Y}^{1}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1}, x\right)+w^{T} \varphi^{2}\left(V, y^{1} \mid x\right)\right) \oplus V$
Store each
$\hat{Y}^{1}(\mathrm{~T}) \& F\left(\hat{\mathrm{Y}}^{1}(\mathrm{~T}), \mathrm{x}\right)$

$\hat{Y}^{1}(T)$ is just T
$E x: \hat{Y}^{2}(\mathrm{~V})=(\mathrm{N}, \mathrm{V})$

Solve: $\quad \hat{Y}^{3}(V)=\left(\underset{y^{12} \in\left\{\hat{Y}^{2}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{122}, x\right)+w^{T} \varphi^{j}\left(V, y^{2} \mid x\right)\right) \oplus V$

Store each
$\hat{\mathrm{Y}}^{1}(\mathrm{~T}) \& F\left(\hat{Y}^{1}(\mathrm{~T}), \mathrm{x}\right)$

Store each
$\hat{Y}^{2}(Z) \& F\left(\hat{Y}^{2}(Z), x\right)$

$\hat{Y}^{1}(Z)$ is just Z
$\mathrm{Ex}: \hat{\mathrm{Y}}^{2}(\mathrm{~V})=(\mathrm{N}, \mathrm{V})$

Solve: $\hat{Y}^{M}(V)=\left(\underset{y^{1: M-1} \in\left\{\hat{y}^{M-1}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1: M-1}, x\right)+w^{T} \varphi^{M}\left(V, y^{M-1} \mid x\right)\right) \oplus V$

Store each
$\hat{Y}^{1}(Z) \& F\left(\hat{Y}^{1}(Z), x\right)$

Store each
$\hat{Y}^{2}(T) \& F\left(\hat{Y}^{2}(T), x\right)$

Store each
$\hat{Y}^{3}(T) \& F\left(\hat{Y}^{3}(T), x\right)$

$\hat{Y}^{1}(T)$ is just T
$\mathrm{Ex}: \hat{Y}^{2}(\mathrm{~V})=(\mathrm{N}, \mathrm{V})$
$E x: \hat{Y}^{3}(V)=(D, N, V)$

Solve: $\hat{Y}^{M}(V)=\left(\underset{y^{1: M-1} \in\left\{\hat{Y}^{M-1}(T)\right\}_{T}}{\operatorname{argmax}} F\left(y^{1: M-1}, x\right)+w^{T} \varphi^{M}\left(V, y^{M-1} \mid x\right)\right) \oplus V$

Store each
$\hat{Y}^{1}(Z) \& F\left(\hat{Y}^{1}(Z), x\right)$

Store each
$\hat{Y}^{2}(\mathrm{~T}) \& F\left(\hat{Y}^{2}(\mathrm{~T}), \mathrm{x}\right)$

Store each
$\hat{Y}^{3}(T) \& F\left(\hat{Y}^{3}(T), x\right)$

Decomposes additively by pairwise feature vector: $\phi(\mathrm{a}, \mathrm{b} \mid \mathrm{x})$

Easier to keep track of!

Computing Conditional Probabilities

$$
\begin{aligned}
& P(y \mid x)=\frac{1}{Z(x)} \exp \{F(y, x)\}=\frac{1}{Z(x)} \exp \left\{\sum_{j=1}^{M} w^{T} \varphi^{j}\left(y^{j}, y^{j-1} \mid x\right)\right\} \\
& Z(x)=\sum_{y^{\prime}} \exp \left\{F\left(y^{\prime}, x\right)\right\}
\end{aligned}
$$

Matrix N
Challenges:

- Compute $Z(x)$ efficiently
- Numerical instability

$$
\begin{aligned}
G^{j}(b, a) & =\exp \left\{w^{T} \varphi^{j}(b, a \mid x)\right\} \\
P(y \mid x) & =\frac{1}{Z(x)} \prod_{j=1}^{M} G^{j}\left(y^{j}, y^{j-1}\right) \\
Z(x) & =\sum_{y^{\prime}} \prod_{j=1}^{M} G^{j}\left(y^{\prime j}, y^{\prime j-1}\right)
\end{aligned}
$$

Matrix Semiring

See course notes.

Computing Partition Function

- Consider Length-1 ($\mathrm{M}=1$)

$$
Z(x)=\sum_{a} G^{1}(a, \text { Start })
$$

Sum column 'Start' of $\mathbf{G}^{\mathbf{1}}$!

- $\mathrm{M}=2 \quad Z(x)=\sum_{a, b} G^{2}(b, a) G^{1}(a$, Start $)=\sum_{b} G^{1: 2}(b$, Start $)$

Sum column 'Start' of $\mathbf{G}^{1: 2}$!

- General M
- Do M matrix computations to compute $\mathrm{G}^{1: M}$
$-Z(x)=$ sum column 'Start' of G1:M

Dealing w/ Numerical Instability

- Previous slide suffers from numerical instability
- $\mathrm{G}^{1 \text { :k }}$ can easily overflow and/or underflow

Numerical Stability va Scaling:

$$
\hat{G}^{1: j}=\frac{1}{C^{j}}\left(G^{j} \hat{G}^{1: j-1}\right) \quad G^{1: M}=\hat{G}^{1: M} \prod_{j=1}^{M} C^{j}
$$

Example Scaling Factor:

$$
C^{j}=\sum_{a, b}\left[G^{j} \hat{G}^{1: j-1}\right]_{b a}
$$

$$
\log (Z(x))=\log \left(\sum_{a} G_{a, S t a r t}^{1: M}\right)=\log \left(\sum_{a} \hat{G}_{a, \text { Start }}^{1: M}\right)+\sum_{j=1}^{M} \log \left(C^{j}\right)
$$

$$
\log (P(y \mid x))=F(y, x)-\log (Z(x))
$$

Use log probs instead!

Training
 (Stochastic) Gradient Descent

- Minimize log loss of training data:

$$
\begin{gathered}
\underset{w}{\operatorname{argmin}} \sum_{i=1}^{N}-\log P\left(y_{i} \mid x_{i}\right)=\underset{w}{\operatorname{argmin}} \sum_{i=1}^{N}-F\left(y_{i}, x_{i}\right)+\log \left(Z\left(x_{i}\right)\right) \\
\partial_{w}-F(y, x)=-\sum_{j=1}^{M} \varphi^{j}\left(y^{j}, y^{j-1} \mid x\right) \\
\partial_{w} \log (Z(x))=\sum_{j=1}^{M} \sum_{a, b} P\left(y^{j}=b, y^{j-1}=a \mid x\right) \varphi^{j}(b, a \mid x)
\end{gathered}
$$

$$
S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Optimality Condition

$$
\underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^{N}-\log P\left(y_{i} \mid x_{i}\right)=\underset{\Theta}{\operatorname{argmin}} \sum_{i=1}^{N}-F\left(y_{i}, x_{i}\right)+\log \left(Z\left(x_{i}\right)\right)
$$

- Optimality condition:

$$
\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \varphi^{j}\left(y_{i}^{j}, y_{i}^{j-1} \mid x_{i}\right)=\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \sum_{a, b} P\left(y^{j}=b, y^{j-1}=a \mid x_{i}\right) \varphi^{j}\left(b, a \mid x_{i}\right)
$$

- Frequency counts = Cond. expectation on training data!
- If each feature is disjoint, then above equality holds for each (a, b) :
$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} 1_{\left[\left(y_{i}^{j}=b\right) \wedge\left(y_{i}^{j-1}=a\right)\right]} \varphi^{j}\left(b, a \mid x_{i}\right)=\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} P\left(y^{j}=b, y^{j-1}=a \mid x_{i}\right) \varphi^{j}\left(b, a \mid x_{i}\right)$

$$
S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Computing $P\left(y^{j}=b, y^{j}-1=a \mid x\right)$ (Forward-Backward)

$$
\begin{aligned}
& \partial_{w} \log (Z(x))=\sum_{j=1}^{M} \sum_{a, b} P\left(y^{j}=b, y^{j-1}=a \mid x\right) \varphi^{j}(b, a \mid x) \\
& P\left(y^{j}=b, y^{j-1}=a \mid x\right)=\sum_{y^{1: j-2}} \sum_{y^{j+1: M}} P\left(y^{1: j-2} \oplus(a, b) \oplus y^{j+1: M} \mid x\right) \\
& \text { Forward Computes } \\
& \text { 1st Sum Efficiently }
\end{aligned}
$$

Forward-Backward for CRFs

$$
\begin{array}{l|l}
\alpha^{1}(a)=G^{1}(a, \text { Start }) & \beta^{M}(b)=1 \\
\alpha^{j}(a)=\sum_{a^{\prime}} \alpha^{j-1}\left(a^{\prime}\right) G^{j}\left(a, a^{\prime}\right) & \beta^{j}(b)=\sum_{b^{\prime}} \beta^{j+1}\left(b^{\prime}\right) G^{j+1}\left(b^{\prime}, b\right)
\end{array}
$$

$$
P\left(y^{j}=b, y^{j-1}=a \mid x\right)=\frac{\alpha^{j-1}(a) G^{j}(b, a) \beta^{j}(b)}{Z(x)}
$$

$Z(x)=\sum_{y^{\prime}} \exp \left\{F\left(y^{\prime}, x\right)\right\} \quad G^{j}(b, a)=\exp \left\{w^{T} \varphi^{j}(b, a \mid x)\right\}$

See course notes.

Dealing w/ Numerical Instability

- Numerical instability: $\alpha^{j} \& \beta^{j}$ vectors can blow up
- Observation:

$$
P\left(y^{j}=b, y^{j-1}=a \mid x\right)=\frac{\alpha^{j-1}(a) G^{j}(b, a) \beta^{j}(b)}{Z(x)}=\frac{\alpha^{j-1}(a) G^{j}(b, a) \beta^{j}(b)}{\sum_{a^{\prime}, b^{\prime}} \alpha^{j-1}\left(a^{\prime}\right) G^{j}\left(b^{\prime}, a^{\prime}\right) \beta^{j}\left(b^{\prime}\right)}
$$

- New $\alpha^{j} \& \beta^{j}$ vectors:

$$
\begin{aligned}
\hat{\alpha}^{j}(a) & =\frac{1}{C_{\alpha}^{j}} \sum_{b} \hat{\alpha}^{j-1}(b) G^{j}(a, b) & \hat{\beta}^{j}(b) & =\frac{1}{C_{\beta}^{j}} \sum_{a} \hat{\beta}^{j+1}(a) G^{j}(a, b) \\
C_{\alpha}^{j} & =\sum_{a, b} \hat{\alpha}^{j-1}(b) G^{j}(a, b) & C_{\beta}^{j} & =\sum_{a, b} \hat{\beta}^{j+1}(a) G^{j}(a, b)
\end{aligned}
$$

Recap: Conditional Random Fields

- "Log-Linear" $1^{\text {st }}$ order sequence models
- Can compute conditional probabilities $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$
- Pairwise feature maps $\phi^{j}(b, a \mid x)$
- Arbitrary features that depend on pairs of labels.
- Train via minimizing neg log likelihood
- Dynamic programming to train and predict

General Structured Prediction

More Elaborate Scoring Functions

- Structure encoded by linear scoring function:

$$
F(y, x)
$$

- $2^{\text {nd }}$ Order Sequential Model:

$$
F(y, x) \equiv \sum_{j=1}^{M}\left[w^{T} \varphi^{j}\left(y^{j}, y^{j-1}, y^{j-2} \mid x\right)\right]
$$

- Classification Model:

$$
F(y, x) \equiv w^{T} \varphi(y \mid x)
$$

- Efficient Prediction:

$$
\underset{y}{\operatorname{argmax}} F(y, x)
$$

More Elaborate Scoring Functions

- Structure encoded by linear scoring function:

$$
F(y, x)
$$

Remainder of Lecture:
 Tour of Structured Prediction Models Some Might be Interesting to You...

- Efficient Prediction:

$$
\operatorname{argmax} F(y, x)
$$

y

Graphical Models
 $$
\varphi^{j}(a, b \mid x)=\left[\begin{array}{c} \varphi_{1}\left(a \mid x^{j}\right) \\ \varphi_{2}(a, b) \end{array}\right]
$$

Graph structure encodes structural dependencies between $y^{j}!$
https://piazza.com/cornell/fall2013/btry6790cs6782/resources
http://www.cs.cmu.edu/~guestrin/Class/10708/
https://www.coursera.org/course/pgm

Graphical Models
 $$
\varphi^{j}(a, b \mid x)=\left[\begin{array}{c} \varphi_{1}^{j}(a \mid x) \\ \varphi_{2}(a, b) \end{array}\right]
$$

Graph structure encodes structural dependencies between y^{j} !
https://piazza.com/cornell/fall2013/btry6790cs6782/resources
http://www.cs.cmu.edu/~guestrin/Class/10708/
https://www.coursera.org/course/pgm

Graphical Models
 $$
\varphi^{j}(a, b, c \mid x)=\left[\begin{array}{l} \varphi_{1}\left(a \mid x^{j}\right) \\ \varphi_{3}(a, b, c) \end{array}\right]
$$

Graph structure encodes structural dependencies between yi!
Features depend on cliques in graphical model representation.
https://piazza.com/cornell/fall2013/btry6790cs6782/resources
http://www.cs.cmu.edu/~guestrin/Class/10708/
https://www.coursera.org/course/pgm

Tree Structured Models

Prediction via Dynamic Programming

$$
F(y, x) \equiv \sum_{j=1}^{M}\left[w_{1}^{T} \varphi_{1}\left(y^{j} \mid x^{j}\right)+\sum_{i \in C_{j}} w_{2}^{T} \varphi_{2}\left(y^{j}, y^{i}\right)\right]
$$

1. Solve partial solutions of Leaves
2. Solve partial sol. of next level up
3. Repeat Step 2 until Root
4. Pick best partial solution of Root

*Max-Product Algorithm for Tree Graphical Models
*Viterbi $=$ Max-Product for Linear Chain Graphical Models

Loopy Graphical Models

Stereo (binocular) Depth Detection

- Each $y^{i j}$ is depth of pixel
- Neighbor pixels are similar
- Features over pairs of pixels
- "Loopy" Graphical Model
- Prediction is NP-Hard!

$$
\operatorname{argmax} F(y, x)
$$

http://vision.middlebury.edu/MRF/
http://www.seas.upenn.edu/~taskar/pubs/mmamn.pdf http://www.cs.cornell.edu/~rdz/Papers/SZ-visalg99.pdf

String Alignment

$x=$ pair of strings (one from \mathbf{D}) $y=$ alignment

Predict Folding Structure
\& Function of Protein
Database D of Known Proteins
(very well studied)
Larger Database G of Homologies
(proteins w/ known similarities to D)

Train on G: learn how to align any amino acid seq to proteins in D

$$
F(y, x) \quad \begin{aligned}
& \text { encodes score of different types } \\
& \text { of substitutions, insertions \& deletions }
\end{aligned}
$$

http://www.cs.cornell.edu/People/tj/publications/yu_etal_06a.pdf
See Also: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1000173

Ranking

Find w that predicts best ranking of search results.

Every relevant result should be above every non-relevant result.

$$
y^{i j} \in\{-1,+1\}
$$

$x=$ query \& set of results $\mathrm{y}=$ ranking

$$
F(y, x)=\sum_{i, j} y^{i j}\left[w^{T} \varphi\left(x^{i}\right)-w^{T} \varphi\left(x^{j}\right)\right]
$$

$$
\underset{y}{\operatorname{argmax}} F(y, x)=\operatorname{sort}\left\{w^{T} \varphi\left(x^{j}\right)\right\}_{j}
$$

http://www.cs.cornell.edu/People/tj/publications/joachims_05a.pdf http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf http://www.yisongyue.com/publications/sigir2007_svmmap.pdf

Summary: Structured Prediction

- Very general setting
- Applicable to prediction made jointly over multiple y's
- Prediction in Graphical Models
- Many learning algorithms for structured prediction
- CRFs, SSVMs, Structured Perceptron, Learning Reductions
- Topic for Entire Class!
http://www.nowozin.net/sebastian/cvpr2011tutorial/
http://www.cs.cmu.edu/~nasmith/sp4nlp/
http://www.cs.cornell.edu/Courses/cs778/2006fa/
https://www.sites.google.com/site/spflodd/
http://www.cs.cornell.edu/People/tj/publications/joachims_06b.pdf

Next Week

- Lecture Tuesday:
- Learning Reductions
- Recent Applications
- NO Lecture Thursday:

- Student-Faculty Conference
- Recitation Thursday:
- Review of Conditional Random Fields

