
Machine	Learning	&	Data	Mining	
CMS/CS/CNS/EE	155	

Lecture	2:	
Perceptron	&	Gradient	Descent	

Announcements	

•  Homework	1	is	out	
– Due	Tuesday	Jan	12th	at	2pm	
– Via	Moodle	

•  Sign	up	for	Moodle	&	Piazza	if	you	haven’t	yet	
– Announcements	are	made	via	Piazza	

•  RecitaIon	on	Python	Programming	Tonight	
– 7:30pm	in	Annenberg	105	
	

2	

Recap:	Basic	Recipe	

•  Training	Data:	

•  Model	Class:	

•  Loss	FuncIon:	

•  Learning	ObjecIve:		

S = (xi, yi){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models	

Squared	Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

Op8miza8on	Problem	
3	

Recap:	Bias-Variance	Trade-off	

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5Variance	Bias	 Variance	Bias	 Variance	Bias	

4	

Recap:	Complete	Pipeline	

S = (xi, yi){ }i=1
N

Training	Data	

f (x |w,b) = wT x − b

Model	Class(es)	

L(a,b) = (a− b)2

Loss	FuncIon	

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

Cross	ValidaIon	&	Model	SelecIon	 Profit!	

5	

Today	

•  Two	Basic	Learning	Approaches	

•  Perceptron	Algorithm	

•  Gradient	Descent	
– Aka,	actually	solving	the	opImizaIon	problem	

6	

The	Perceptron	

•  One	of	the	earliest	learning	algorithms	
–  1957	by	Frank	Rosenbla^	

•  SIll	a	great	algorithm	
– Fast	
– Clean	analysis	
– Precursor	to	Neural	Networks	

7	

Frank	Rosenbla^	
with	the	Mark	1		
Perceptron	Machine	

Perceptron	Learning	Algorithm	
(Linear	ClassificaIon	Model)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	

8	

S = (xi, yi){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)

•  Line	is	a	1D,	Plane	is	2D	
•  Hyperplane	is	many	D	
–  Includes	Line	and	Plane	

•  Defined	by	(w,b)	

•  Distance:	

•  Signed	Distance:	

Aside:	Hyperplane	Distance		

wT x − b
w

wT x − b
w

w	

un-normalized		
signed	distance!	

Linear	Model	=		

b/|w|	

10	

Perceptron	Learning	

11	

Misclassified!	

Perceptron	Learning	

12	

Update!	

Perceptron	Learning	

13	

Correct!	

Perceptron	Learning	

14	

Misclassified!	

Perceptron	Learning	

15	

Update!	

Perceptron	Learning	

16	

Update!	

Perceptron	Learning	

17	

Correct!	

Perceptron	Learning	

18	

Correct!	

Perceptron	Learning	

19	

Misclassified!	

Perceptron	Learning	

20	

Update!	

Perceptron	Learning	

21	

Update!	

Perceptron	Learning	

22	

All	Training	Examples		
Correctly	Classified!	

Perceptron	Learning	

23	

Perceptron	Learning	Start	Again	

24	

Misclassified!	

Perceptron	Learning	

25	

Update!	

Perceptron	Learning	

26	

Correct!	

Perceptron	Learning	

27	

Correct!	

Perceptron	Learning	

28	

Misclassified!	

Perceptron	Learning	

29	

Update!	

Perceptron	Learning	

30	

Update!	

Perceptron	Learning	

31	

Correct!	

Perceptron	Learning	

32	

Correct!	

Perceptron	Learning	

33	

Misclassified!	

Perceptron	Learning	

34	

Update!	

Perceptron	Learning	

35	

Update!	

Perceptron	Learning	

36	

Misclassified!	

Perceptron	Learning	

37	

Update!	

Perceptron	Learning	

38	

Update!	

Perceptron	Learning	

39	

Misclassified!	

Perceptron	Learning	

40	

Update!	

Perceptron	Learning	

41	

Update!	

Perceptron	Learning	

42	

Misclassified!	

Perceptron	Learning	

43	

Update!	

Perceptron	Learning	

44	

Update!	

Perceptron	Learning	

45	

All	Training	Examples		
Correctly	Classified!	

Perceptron	Learning	

Recap:	Perceptron	Learning	Algorithm	
(Linear	ClassificaIon	Model)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	

46	

S = (xi, yi){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)

47	

Comparing	the	Two	Models	

48	

Convergence	to	Mistake	Free	
=	Linearly	Separable!	

49	

Margin	

γ =max
w
min
(x,y)

y(wT x)
w

Linear	Separability	

•  A	classificaIon	problem	is	Linearly	Separable:	
– Exists	w	with	perfect	classificaIon	accuracy	
	

•  Separable	with	Margin	γ:	

	
•  Linearly	Separable:	γ	>	0	

50	

γ =max
w
min
(x,y)

y(wT x)
w

Perceptron	Mistake	Bound	

51	

#Mistakes	Bounded	By:	 R
2

γ 2

Margin	

R =max
x

x

**If	Linearly	Separable	

More	Details:	h^p://www.cs.nyu.edu/~mohri/pub/pmb.pdf		

Holds	for	any	ordering		
of	training	examples!	

“Radius”	of	Feature	Space	

In	the	Real	World…	

•  Most	problems	are	NOT	linearly	separable!	

•  May	never	converge…	

•  So	what	to	do?	

•  Use	valida8on	set!	

52	

Early	Stopping	via	ValidaIon	

•  Run	Perceptron	Learning	on	Training	Set	

•  Evaluate	current	model	on	ValidaIon	Set	

•  Terminate	when	validaIon	accuracy	stops	
improving	

53	

h^ps://en.wikipedia.org/wiki/Early_stopping		

Online	Learning	vs	Batch	Learning	

•  Online	Learning:	
–  Receive	a	stream	of	data	(x,y)	
– Make	incremental	updates	
–  Perceptron	Learning	is	an	instance	of	Online	Learning	

•  Batch	Learning	
–  Train	over	all	data	simultaneously	
–  Can	use	online	learning	algorithms	for	batch	learning	
–  E.g.,	stream	the	data	to	the	learning	algorithm	

54	
h^ps://en.wikipedia.org/wiki/Online_machine_learning		

Recap:	Perceptron	

•  One	of	the	first	machine	learning	algorithms	

•  Benefits:	
– Simple	and	fast	
– Clean	analysis		

•  Drawbacks:	
– Might	not	converge	to	a	very	good	model	
– What	is	the	objecIve	funcIon?	

55	

(StochasIc)	Gradient	Descent	

56	

Back	to	OpImizing	ObjecIve	FuncIons	

•  Training	Data:	

•  Model	Class:	

•  Loss	FuncIon:	

•  Learning	ObjecIve:		

S = (xi, yi){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models	

Squared	Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

OpImizaIon	Problem	
57	

Back	to	OpImizing	ObjecIve	FuncIons	

•  Typically,	requires	opImizaIon	algorithm.	

•  Simplest:	Gradient	Descent		

•  This	Lecture:	sIck	with	squared	loss	
– Talk	about	various	loss	funcIons	next	lecture	

argmin
w,b

L(w,b | S) ≡ L yi, f (xi |w,b)()
i=1

N

∑

Gradient	Review	for	Squared	Loss	

∂wL(w,b | S) = ∂w L yi, f (xi |w,b)()
i=1

N

∑

L(a,b) = (a− b)2

= ∂wL yi, f (xi |w,b)()
i=1

N

∑

= −2(yi − f (xi |w,b))∂w f (xi |w,b)
i=1

N

∑

f (x |w,b) = wT x − b= −2(yi − f (xi |w,b))xi
i=1

N

∑

Linearity	of	DifferenIaIon	

Chain	Rule	

Gradient	Descent	

•  IniIalize:	w1	=	0,	b1	=	0	

•  For	t	=	1…	

60	

wt+1 = wt −η t+1∂wL(w
t,bt | S)

bt+1 = bt −η t+1∂bL(w
t,bt | S)

“Step	Size”	

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

61	
w	

L	

η =1 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

62	
w	

L	

η =1 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

63	
w	

L	

η =1 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

64	
w	

L	

η =1 ∂wL(w) = −2(1−w)

Oscillate	Infinitely!	

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

65	
w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

66	
w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

67	
w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

68	
w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)

Takes	Really	Long	Time!	

How	to	Choose	Step	Size?	

69	

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.001
0.01
0.1
0.5

IteraIons	

Lo
ss
	

Note	that	the	absolute	scale	is	not	meaningful	
Focus	on	the	relaIve	magnitude	differences	

As	Large	As	Possible!	
(Without	Diverging)	

Being	Scale	Invariant	

•  Consider	the	following	two	gradient	updates:	

•  Suppose:	
– How	are	the	two	step	sizes	related?	

70	

wt+1 = wt −η t+1∂wL(w
t,bt | S)

wt+1 = wt −η̂ t+1∂wL̂(w
t,bt | S)

L̂ =1000L

η̂ t+1 =η /1000

PracIcal	Rules	of	Thumb	

•  Divide	Loss	FuncIon	by	Number	of	Examples:	

•  Start	with	large	step	size	
–  If	loss	plateaus,	divide	step	size	by	2	
–  (Can	also	use	advanced	opImizaIon	methods)	
–  (Step	size	must	decrease	over	Ime	to	guarantee	
convergence	to	global	opImum)	

71	

wt+1 = wt −
η t+1

N
⎛

⎝
⎜

⎞

⎠
⎟∂wL(w

t,bt | S)

Aside:	Convexity	

72	

1/15/2015 ConvexFunction.svg

file:///Users/yyue/Downloads/ConvexFunction.svg 1/2

Image	Source:	h^p://en.wikipedia.org/wiki/Convex_funcIon	

Easy	to	find		
global	op8ma!	

Strict	convex	if		
diff	always	>0	
	

Not	Convex	

Aside:	Convexity	

73	

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

L(x2) ≥ L(x1)+∇L(x1)
T (x2 − x1)

FuncIon	is	always		
above	the	locally		
linear	extrapolaIon	

Aside:	Convexity	

•  All	local	opIma	are	global	opIma:	

	
•  Strictly	convex:	unique	global	opImum:	

•  Almost	all	standard	objecIves	are	(strictly)	convex:	
–  Squared	Loss,	SVMs,	LR,	Ridge,	Lasso	
–  We	will	see	non-convex	objecIves	in	2nd	half	of	course	

74	

Gradient	Descent		
will	find	opImum	
	

Assuming	step	
size	chosen	safely	

Convergence	

•  Assume	L	is	convex		
•  How	many	iteraIons	to	achieve:	
	

•  If:	
–  Then	O(1/ε2)	iteraIons	

•  If:	
–  Then	O(1/ε)	iteraIons	

•  If:	
–  Then	O(log(1/ε))	iteraIons	

75	
More	Details:	Bubeck	Textbook	Chapter	3		

L(a)− L(b) ≤ ρ a− b L	is	“ρ-Lipschitz”	

L(w)− L(w*) ≤ ε

∇L(a)−∇L(b) ≤ ρ a− b
L	is	“ρ-smooth”	

L(a) ≥ L(b)+∇L(b)T (a− b)+ ρ
2
a− b 2

L	is	“ρ-strongly	convex”	

Convergence	
•  In	general,	takes	infinite	Ime	to	reach	global	opImum.	
•  But	in	general,	we	don’t	care!	

–  As	long	as	we’re	close	enough	to	the	global	opImum	

76	

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.001
0.01
0.1
0.5

IteraIons	

Lo
ss
	

How	do	we	know	if	we’re	here?		

And	not	here?	

When	to	Stop?	

•  Convergence	analyses	=	worst-case	upper	bounds	
– What	to	do	in	prac8ce?	

•  Stop	when	progress	is	sufficiently	small	
–  E.g.,	relaIve	reducIon	less	than	0.001	

•  Stop	azer	pre-specified	#iteraIons	
–  E.g.,	100000	

•  Stop	when	validaIon	error	stops	going	down	

77	

Yisong	prefers		
this	opIon	

LimitaIon	of	Gradient	Descent	

•  Requires	full	pass	over	training	set	per	
iteraIon	

•  Very	expensive	if	training	set	is	huge	

•  Do	we	need	to	do	a	full	pass	over	the	data?	

78	

∂wL(w,b | S) = ∂w L yi, f (xi |w,b)()
i=1

N

∑

StochasIc	Gradient	Descent	

•  Suppose	Loss	FuncIon	Decomposes	AddiIvely	

	

•  Gradient	=	expected	gradient	of	sub-funcIons	

79	

L(w,b) = 1
N

Li (w,b)
i=1

N

∑ = Ei Li (w,b)[]

Each	Li	corresponds	to	a	single	data	point	

∂wL(w,b) = ∂w Ei Li (w,b)[]

Li (w,b) ≡ yi − f (xi |w,b()2

StochasIc	Gradient	Descent	

•  Suffices	to	take	random	gradient	update	
–  So	long	as	it	matches	the	true	gradient	in	expectaIon	

•  Each	iteraIon	t:	
– Choose	i	at	random	

•  SGD	is	an	online	learning	algorithm!	

80	

wt+1 = wt −η t+1∂wLi (w,b)

bt+1 = bt −η t+1∂bLi (w,b)

Expected	Value	is:	∂wL(w,b)

Mini-Batch	SGD	

•  Each	Li	is	a	small	batch	of	training	examples	
– E.g,.	500-1000	examples	
– Can	leverage	vector	operaIons	
– Decrease	volaIlity	of	gradient	updates	

•  Industry	state-of-the-art	
– Everyone	uses	mini-batch	SGD	
– Ozen	parallelized		

•  (e.g.,	different	cores	work	on	different	mini-batches)	

81	

Checking	for	Convergence	

•  How	to	check	for	convergence?	
–  EvaluaIng	loss	on	enIre	training	set	seems	expensive…	

82	

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.001
0.01
0.1
0.5

IteraIons	

Lo
ss
	

Checking	for	Convergence	

•  How	to	check	for	convergence?	
–  EvaluaIng	loss	on	enIre	training	set	seems	expensive…	

•  Don’t	check	azer	every	iteraIon	
–  E.g.,	check	every	1000	iteraIons	

•  Evaluate	loss	on	a	subset	of	training	data	
–  E.g.,	the	previous	5000	examples.	

83	

Recap:	StochasIc	Gradient	Descent	

•  Conceptually:	
–  Decompose	Loss	FuncIon	AddiIvely	
–  Choose	a	Component	Randomly	
–  Gradient	Update	

•  Benefits:	
–  Avoid	iteraIng	enIre	dataset	for	every	update	
–  Gradient	update	is	consistent	(in	expectaIon)	

•  Industry	Standard	

84	

Perceptron	Revisited	
(What	is	the	Objec8ve	Func8on?)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	

85	

S = (xi, yi){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)

Perceptron	(Implicit)	ObjecIve	

86	

Li (w,b) =max 0,−yi f (xi |w,b){ }

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

yf(x)	

Lo
ss
	

Recap:	Complete	Pipeline	

S = (xi, yi){ }i=1
N

Training	Data	

f (x |w,b) = wT x − b

Model	Class(es)	

L(a,b) = (a− b)2

Loss	FuncIon	

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

Cross	ValidaIon	&	Model	SelecIon	 Profit!	

87	

Use	SGD!	

Next	Week	

•  Different	Loss	FuncIons	
–  Hinge	Loss	(SVM)	
–  Log	Loss	(LogisIc	Regression)	

•  Non-linear	model	classes	
–  Neural	Nets	

•  RegularizaIon	

•  Recita8on	on	Python	Programming	Tonight!	

88	

