
Machine	Learning	&	Data	Mining	
CMS/CS/CNS/EE	155	

Lecture	2:	
Perceptron	&	Gradient	Descent	



Announcements	

•  Homework	1	is	out	
– Due	Tuesday	Jan	12th	at	2pm	
– Via	Moodle	

•  Sign	up	for	Moodle	&	Piazza	if	you	haven’t	yet	
– Announcements	are	made	via	Piazza	

•  RecitaIon	on	Python	Programming	Tonight	
– 7:30pm	in	Annenberg	105	
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Recap:	Basic	Recipe	

•  Training	Data:	

•  Model	Class:	

•  Loss	FuncIon:	

•  Learning	ObjecIve:		

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models	

Squared	Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Op8miza8on	Problem	
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Recap:	Bias-Variance	Trade-off	

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5Variance	Bias	 Variance	Bias	 Variance	Bias	

4	



Recap:	Complete	Pipeline	

S = (xi, yi ){ }i=1
N

Training	Data	

f (x |w,b) = wT x − b

Model	Class(es)	

L(a,b) = (a− b)2

Loss	FuncIon	

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Cross	ValidaIon	&	Model	SelecIon	 Profit!	
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Today	

•  Two	Basic	Learning	Approaches	

•  Perceptron	Algorithm	

•  Gradient	Descent	
– Aka,	actually	solving	the	opImizaIon	problem	
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The	Perceptron	

•  One	of	the	earliest	learning	algorithms	
–  1957	by	Frank	Rosenbla^	

•  SIll	a	great	algorithm	
– Fast	
– Clean	analysis	
– Precursor	to	Neural	Networks	
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Frank	Rosenbla^	
with	the	Mark	1		
Perceptron	Machine	



Perceptron	Learning	Algorithm	
(Linear	ClassificaIon	Model)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	
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S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)



•  Line	is	a	1D,	Plane	is	2D	
•  Hyperplane	is	many	D	
–  Includes	Line	and	Plane	

•  Defined	by	(w,b)	

•  Distance:	

•  Signed	Distance:	

Aside:	Hyperplane	Distance		

wT x − b
w

wT x − b
w

w	

un-normalized		
signed	distance!	

Linear	Model	=		

b/|w|	
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Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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All	Training	Examples		
Correctly	Classified!	

Perceptron	Learning	
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Perceptron	Learning	Start	Again	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Correct!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Misclassified!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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Update!	

Perceptron	Learning	
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All	Training	Examples		
Correctly	Classified!	

Perceptron	Learning	



Recap:	Perceptron	Learning	Algorithm	
(Linear	ClassificaIon	Model)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	
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S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)
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Comparing	the	Two	Models	
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Convergence	to	Mistake	Free	
=	Linearly	Separable!	
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Margin	

γ =max
w
min
(x,y)

y(wT x)
w



Linear	Separability	

•  A	classificaIon	problem	is	Linearly	Separable:	
– Exists	w	with	perfect	classificaIon	accuracy	
	

•  Separable	with	Margin	γ:	

	
•  Linearly	Separable:	γ	>	0	
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γ =max
w
min
(x,y)

y(wT x)
w



Perceptron	Mistake	Bound	

51	

#Mistakes	Bounded	By:	 R
2

γ 2

Margin	

R =max
x

x

**If	Linearly	Separable	

More	Details:	h^p://www.cs.nyu.edu/~mohri/pub/pmb.pdf		

Holds	for	any	ordering		
of	training	examples!	

“Radius”	of	Feature	Space	



In	the	Real	World…	

•  Most	problems	are	NOT	linearly	separable!	

•  May	never	converge…	

•  So	what	to	do?	

•  Use	valida8on	set!	
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Early	Stopping	via	ValidaIon	

•  Run	Perceptron	Learning	on	Training	Set	

•  Evaluate	current	model	on	ValidaIon	Set	

•  Terminate	when	validaIon	accuracy	stops	
improving	
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h^ps://en.wikipedia.org/wiki/Early_stopping		



Online	Learning	vs	Batch	Learning	

•  Online	Learning:	
–  Receive	a	stream	of	data	(x,y)	
– Make	incremental	updates	
–  Perceptron	Learning	is	an	instance	of	Online	Learning	

•  Batch	Learning	
–  Train	over	all	data	simultaneously	
–  Can	use	online	learning	algorithms	for	batch	learning	
–  E.g.,	stream	the	data	to	the	learning	algorithm	

54	
h^ps://en.wikipedia.org/wiki/Online_machine_learning		



Recap:	Perceptron	

•  One	of	the	first	machine	learning	algorithms	

•  Benefits:	
– Simple	and	fast	
– Clean	analysis		

•  Drawbacks:	
– Might	not	converge	to	a	very	good	model	
– What	is	the	objecIve	funcIon?	
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(StochasIc)	Gradient	Descent	
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Back	to	OpImizing	ObjecIve	FuncIons	

•  Training	Data:	

•  Model	Class:	

•  Loss	FuncIon:	

•  Learning	ObjecIve:		

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models	

Squared	Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

OpImizaIon	Problem	
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Back	to	OpImizing	ObjecIve	FuncIons	

•  Typically,	requires	opImizaIon	algorithm.	

•  Simplest:	Gradient	Descent		

•  This	Lecture:	sIck	with	squared	loss	
– Talk	about	various	loss	funcIons	next	lecture	

argmin
w,b

L(w,b | S) ≡ L yi, f (xi |w,b)( )
i=1

N

∑



Gradient	Review	for	Squared	Loss	

∂wL(w,b | S) = ∂w L yi, f (xi |w,b)( )
i=1

N

∑

L(a,b) = (a− b)2

= ∂wL yi, f (xi |w,b)( )
i=1

N

∑

= −2(yi − f (xi |w,b))∂w f (xi |w,b)
i=1

N

∑

f (x |w,b) = wT x − b= −2(yi − f (xi |w,b))xi
i=1

N

∑

Linearity	of	DifferenIaIon	

Chain	Rule	



Gradient	Descent	

•  IniIalize:	w1	=	0,	b1	=	0	

•  For	t	=	1…	
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wt+1 = wt −η t+1∂wL(w
t,bt | S)

bt+1 = bt −η t+1∂bL(w
t,bt | S)

“Step	Size”	
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w	

L	

η =1 ∂wL(w) = −2(1−w)
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w	

L	

η =1 ∂wL(w) = −2(1−w)
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w	

L	

η =1 ∂wL(w) = −2(1−w)
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w	

L	

η =1 ∂wL(w) = −2(1−w)

Oscillate	Infinitely!	



−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

How	to	Choose	Step	Size?	

65	
w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)
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w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)
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w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)
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w	

L	

η = 0.0001 ∂wL(w) = −2(1−w)

Takes	Really	Long	Time!	



How	to	Choose	Step	Size?	
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Note	that	the	absolute	scale	is	not	meaningful	
Focus	on	the	relaIve	magnitude	differences	

As	Large	As	Possible!	
(Without	Diverging)	



Being	Scale	Invariant	

•  Consider	the	following	two	gradient	updates:	

•  Suppose:	
– How	are	the	two	step	sizes	related?	
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wt+1 = wt −η t+1∂wL(w
t,bt | S)

wt+1 = wt −η̂ t+1∂wL̂(w
t,bt | S)

L̂ =1000L

η̂ t+1 =η /1000



PracIcal	Rules	of	Thumb	

•  Divide	Loss	FuncIon	by	Number	of	Examples:	

•  Start	with	large	step	size	
–  If	loss	plateaus,	divide	step	size	by	2	
–  (Can	also	use	advanced	opImizaIon	methods)	
–  (Step	size	must	decrease	over	Ime	to	guarantee	
convergence	to	global	opImum)	
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wt+1 = wt −
η t+1

N
⎛

⎝
⎜

⎞

⎠
⎟∂wL(w

t,bt | S)



Aside:	Convexity	
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1/15/2015 ConvexFunction.svg

file:///Users/yyue/Downloads/ConvexFunction.svg 1/2

Image	Source:	h^p://en.wikipedia.org/wiki/Convex_funcIon	

Easy	to	find		
global	op8ma!	

Strict	convex	if		
diff	always	>0	
	

Not	Convex	



Aside:	Convexity	
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FuncIon	is	always		
above	the	locally		
linear	extrapolaIon	



Aside:	Convexity	

•  All	local	opIma	are	global	opIma:	

	
•  Strictly	convex:	unique	global	opImum:	

•  Almost	all	standard	objecIves	are	(strictly)	convex:	
–  Squared	Loss,	SVMs,	LR,	Ridge,	Lasso	
–  We	will	see	non-convex	objecIves	in	2nd	half	of	course	
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Gradient	Descent		
will	find	opImum	
	

Assuming	step	
size	chosen	safely	



Convergence	

•  Assume	L	is	convex		
•  How	many	iteraIons	to	achieve:	
	

•  If:	
–  Then	O(1/ε2)	iteraIons	

•  If:	
–  Then	O(1/ε)	iteraIons	

•  If:	
–  Then	O(log(1/ε))	iteraIons	

75	
More	Details:	Bubeck	Textbook	Chapter	3		

L(a)− L(b) ≤ ρ a− b L	is	“ρ-Lipschitz”	

L(w)− L(w*) ≤ ε

∇L(a)−∇L(b) ≤ ρ a− b
L	is	“ρ-smooth”	

L(a) ≥ L(b)+∇L(b)T (a− b)+ ρ
2
a− b 2

L	is	“ρ-strongly	convex”	



Convergence	
•  In	general,	takes	infinite	Ime	to	reach	global	opImum.	
•  But	in	general,	we	don’t	care!	

–  As	long	as	we’re	close	enough	to	the	global	opImum	
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How	do	we	know	if	we’re	here?		

And	not	here?	



When	to	Stop?	

•  Convergence	analyses	=	worst-case	upper	bounds	
– What	to	do	in	prac8ce?	

•  Stop	when	progress	is	sufficiently	small	
–  E.g.,	relaIve	reducIon	less	than	0.001	

•  Stop	azer	pre-specified	#iteraIons	
–  E.g.,	100000	

•  Stop	when	validaIon	error	stops	going	down	
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Yisong	prefers		
this	opIon	



LimitaIon	of	Gradient	Descent	

•  Requires	full	pass	over	training	set	per	
iteraIon	

•  Very	expensive	if	training	set	is	huge	

•  Do	we	need	to	do	a	full	pass	over	the	data?	
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∂wL(w,b | S) = ∂w L yi, f (xi |w,b)( )
i=1

N

∑



StochasIc	Gradient	Descent	

•  Suppose	Loss	FuncIon	Decomposes	AddiIvely	

	

•  Gradient	=	expected	gradient	of	sub-funcIons	

79	

L(w,b) = 1
N

Li (w,b)
i=1

N

∑ = Ei Li (w,b)[ ]

Each	Li	corresponds	to	a	single	data	point	

∂wL(w,b) = ∂w Ei Li (w,b)[ ]

Li (w,b) ≡ yi − f (xi |w,b( )2



StochasIc	Gradient	Descent	

•  Suffices	to	take	random	gradient	update	
–  So	long	as	it	matches	the	true	gradient	in	expectaIon	

•  Each	iteraIon	t:	
– Choose	i	at	random	

•  SGD	is	an	online	learning	algorithm!	
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wt+1 = wt −η t+1∂wLi (w,b)

bt+1 = bt −η t+1∂bLi (w,b)

Expected	Value	is:	∂wL(w,b)



Mini-Batch	SGD	

•  Each	Li	is	a	small	batch	of	training	examples	
– E.g,.	500-1000	examples	
– Can	leverage	vector	operaIons	
– Decrease	volaIlity	of	gradient	updates	

•  Industry	state-of-the-art	
– Everyone	uses	mini-batch	SGD	
– Ozen	parallelized		

•  (e.g.,	different	cores	work	on	different	mini-batches)	
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Checking	for	Convergence	

•  How	to	check	for	convergence?	
–  EvaluaIng	loss	on	enIre	training	set	seems	expensive…	
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Checking	for	Convergence	

•  How	to	check	for	convergence?	
–  EvaluaIng	loss	on	enIre	training	set	seems	expensive…	

•  Don’t	check	azer	every	iteraIon	
–  E.g.,	check	every	1000	iteraIons	

•  Evaluate	loss	on	a	subset	of	training	data	
–  E.g.,	the	previous	5000	examples.	
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Recap:	StochasIc	Gradient	Descent	

•  Conceptually:	
–  Decompose	Loss	FuncIon	AddiIvely	
–  Choose	a	Component	Randomly	
–  Gradient	Update	

•  Benefits:	
–  Avoid	iteraIng	enIre	dataset	for	every	update	
–  Gradient	update	is	consistent	(in	expectaIon)	

•  Industry	Standard	
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Perceptron	Revisited	
(What	is	the	Objec8ve	Func8on?)	

•  w1	=	0,	b1	=	0	
•  For	t	=	1	….	
– Receive	example	(x,y)	
–  If	f(x|wt)	=	y	
•  [wt+1,	bt+1]	=	[wt,	bt]	

– Else	
• wt+1=	wt	+	yx	
• bt+1	=	bt	+	y	
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S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:	

Go	through	training	set		
in	arbitrary	order	
(e.g.,	randomly)	

f (x |w) = sign(wT x − b)



Perceptron	(Implicit)	ObjecIve	
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Li (w,b) =max 0,−yi f (xi |w,b){ }
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Recap:	Complete	Pipeline	

S = (xi, yi ){ }i=1
N

Training	Data	

f (x |w,b) = wT x − b

Model	Class(es)	

L(a,b) = (a− b)2

Loss	FuncIon	

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Cross	ValidaIon	&	Model	SelecIon	 Profit!	
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Use	SGD!	



Next	Week	

•  Different	Loss	FuncIons	
–  Hinge	Loss	(SVM)	
–  Log	Loss	(LogisIc	Regression)	

•  Non-linear	model	classes	
–  Neural	Nets	

•  RegularizaIon	

•  Recita8on	on	Python	Programming	Tonight!	
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