Caltech

Machine Learning \& Data Mining CMS/CS/CNS/EE 155

Lecture 2:
Perceptron \& Gradient Descent

Announcements

- Homework 1 is out
- Due Tuesday Jan $12^{\text {th }}$ at 2 pm
- Via Moodle
- Sign up for Moodle \& Piazza if you haven't yet - Announcements are made via Piazza
- Recitation on Python Programming Tonight - 7:30pm in Annenberg 105

Recap: Basic Recipe

- Training Data: $\quad S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \begin{aligned} & x \in R^{D} \\ & y \in\{-1,+1\}\end{aligned}$
- Model Class:
$f(x \mid w, b)=w^{T} x-b \quad$ Linear Models
- Loss Function: $L(a, b)=(a-b)^{2}$

Squared Loss

- Learning Objective: $\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)$

Optimization Problem

Recap: Bias-Variance Trade-off

Recap: Complete Pipeline

$$
\left.\begin{array}{c}
S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
\text { Training Data }
\end{array}\right)\binom{f(x \mid w, b)=w^{T} x-b}{\text { Model Class(es) }}
$$

$$
L(a, b)=(a-b)^{2}
$$

Loss Function

$$
\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
$$

Cross Validation \& Model Selection

Today

- Two Basic Learning Approaches
- Perceptron Algorithm
- Gradient Descent
- Aka, actually solving the optimization problem

The Perceptron

- One of the earliest learning algorithms
- 1957 by Frank Rosenblatt
- Still a great algorithm
- Fast
- Clean analysis
- Precursor to Neural Networks

Perceptron Learning Algorithm (Linear Classification Model)

- $w^{1}=0, b^{1}=0$

$$
f(x \mid w)=\operatorname{sign}\left(w^{T} x-b\right)
$$

- For $\mathrm{t}=1$....
- Receive example (x, y)
- If $f\left(x \mid w^{t}\right)=y$
- $\left[w^{t+1}, b^{t+1}\right]=\left[w^{t} b^{t}\right]$

Training Set:

$$
\begin{aligned}
& S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
& y \in\{+1,-1\}
\end{aligned}
$$

- Else
- $w^{t+1}=w^{t}+y x$
- $b^{t+1}=b^{t}+y$

Go through training set in arbitrary order (e.g., randomly)

Aside: Hyperplane Distance

- Line is a 1 D , Plane is 2 D
- Hyperplane is many D
- Includes Line and Plane
- Defined by (w,b)
- Distance:

$$
\frac{\left|w^{T} x-b\right|}{\|w\|}
$$

- Signed Distance: $\frac{w^{p} x-b}{\|w\|}$
Linear Model = un-normalized

All Training Examples
 Correctly Classified!

Perceptron Learning

Start Again

Perceptron Learning

All Training Examples Correctly Classified!

Perceptron Learning

Recap: Perceptron Learning Algorithm (Linear Classification Model)

- $w^{1}=0, b^{1}=0$

$$
f(x \mid w)=\operatorname{sign}\left(w^{T} x-b\right)
$$

- For $\mathrm{t}=1$....
- Receive example (x, y)
- If $f\left(x \mid w^{t}\right)=y$
- $\left[w^{t+1}, b^{t+1}\right]=\left[w^{t} b^{t}\right]$

Training Set:

$$
\begin{aligned}
& S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
& y \in\{+1,-1\}
\end{aligned}
$$

- Else
- $w^{t+1}=w^{t}+y x$
- $b^{t+1}=b^{t}+y$

Go through training set in arbitrary order (e.g., randomly)

Comparing the Two Models

Convergence to Mistake Free = Linearly Separable!

Margin

Linear Separability

- A classification problem is Linearly Separable:
- Exists w with perfect classification accuracy
- Separable with Margin γ :

$$
\gamma=\max _{w} \min _{(x, y)} \frac{y\left(w^{T} x\right)}{\|w\|}
$$

- Linearly Separable: $\gamma>0$

Perceptron Mistake Bound

Holds for any ordering
of training examples!
"Radius" of Feature Space

$$
R=\max _{x}\|x\|
$$

\#Mistakes Bounded By: $\frac{R^{2}}{\gamma^{2}}$

Margin
**If Linearly Separable
More Details: http://www.cs.nyu.edu/~mohri/pub/pmb.pdf

In the Real World...

- Most problems are NOT linearly separable!
- May never converge...
- So what to do?
- Use validation set!

Early Stopping via Validation

- Run Perceptron Learning on Training Set
- Evaluate current model on Validation Set
- Terminate when validation accuracy stops improving

Online Learning vs Batch Learning

- Online Learning:
- Receive a stream of data (x, y)
- Make incremental updates
- Perceptron Learning is an instance of Online Learning
- Batch Learning
- Train over all data simultaneously
- Can use online learning algorithms for batch learning
- E.g., stream the data to the learning algorithm

Recap: Perceptron

- One of the first machine learning algorithms
- Benefits:
- Simple and fast
- Clean analysis
- Drawbacks:
- Might not converge to a very good model
- What is the objective function?

(Stochastic) Gradient Descent

Back to Optimizing Objective Functions

- Training Data:

$$
S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

$$
\begin{aligned}
& x \in R^{D} \\
& y \in\{-1,+1\}
\end{aligned}
$$

- Model Class:

$$
f(x \mid w, b)=w^{T} x-b
$$

Linear Models

- Loss Function: $L(a, b)=(a-b)^{2}$

Squared Loss

- Learning Objective: $\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)$

Optimization Problem

Back to Optimizing Objective Functions

$$
\underset{w, b}{\operatorname{argmin}} L(w, b \mid S) \equiv \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
$$

- Typically, requires optimization algorithm.
- Simplest: Gradient Descent
- This Lecture: stick with squared loss
- Talk about various loss functions next lecture

Gradient Review for Squared Loss

$$
\begin{aligned}
& \partial_{w} L(w, b \mid S)=\partial_{w} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right) \\
& =\sum_{i=1}^{N} \partial_{w} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
\end{aligned}
$$

$$
=\sum_{i=1}^{N}-2\left(y_{i}-f\left(x_{i} \mid w, b\right)\right) \partial_{w} f\left(x_{i} \mid w, b\right)
$$

$$
=\sum_{i=1}^{N}-2\left(y_{i}-f\left(x_{i} \mid w, b\right)\right) x_{i}
$$

Linearity of Differentiation

$$
\begin{array}{r}
L(a, b)=(a-b)^{2} \\
\text { Chain Rule }
\end{array}
$$

$f(x \mid w, b)=w^{T} x-b$

Gradient Descent

- Initialize: $w^{1}=0, b^{1}=0$
- For $t=1$...

$$
\begin{aligned}
& w^{t+1}=w^{t}-\eta^{t+1} \partial_{w} L\left(w^{t}, b^{t} \mid S\right) \\
& b^{t+1}=b^{t}-\eta^{t+1} \partial_{b} L\left(w^{t}, b^{t} \mid S\right)
\end{aligned}
$$

Size"

How to Choose Step Size?

$$
\eta=1 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=1 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=1 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=1 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=0.0001 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=0.0001 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=0.0001 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

$$
\eta=0.0001 \quad \partial_{w} L(w)=-2(1-w)
$$

How to Choose Step Size?

Note that the absolute scale is not meaningful Focus on the relative magnitude differences

Being Scale Invariant

- Consider the following two gradient updates:

$$
\begin{aligned}
& w^{t+1}=w^{t}-\eta^{t+1} \partial_{w} L\left(w^{t}, b^{t} \mid S\right) \\
& w^{t+1}=w^{t}-\hat{\eta}^{t+1} \partial_{w} \hat{L}\left(w^{t}, b^{t} \mid S\right)
\end{aligned}
$$

- Suppose: $\hat{L}=1000 L$
- How are the two step sizes related?

$$
\hat{\eta}^{t+1}=\eta / 1000
$$

Practical Rules of Thumb

- Divide Loss Function by Number of Examples:

$$
w^{t+1}=w^{t}-\left(\frac{\eta^{t+1}}{N}\right) \partial_{w} L\left(w^{t}, b^{t} \mid S\right)
$$

- Start with large step size
- If loss plateaus, divide step size by 2
- (Can also use advanced optimization methods)
- (Step size must decrease over time to guarantee convergence to global optimum)

Aside: Convexity

Image Source: http://en.wikipedia.org/wiki/Convex_function

Aside: Convexity

$$
L\left(x_{2}\right) \geq L\left(x_{1}\right)+\nabla L\left(x_{1}\right)^{T}\left(x_{2}-x_{1}\right)
$$

Function is always above the locally linear extrapolation

Aside: Convexity

- All local optima are global optima:

Gradient Descent
will find optimum
Assuming step
size chosen safely

- Strictly convex: unique global optimum:

- Almost all standard objectives are (strictly) convex:
- Squared Loss, SVMs, LR, Ridge, Lasso
- We will see non-convex objectives in $2^{\text {nd }}$ half of course

Convergence

- Assume L is convex
- How many iterations to achieve: $L(w)-L\left(w^{*}\right) \leq \varepsilon$
- If: $|L(a)-L(b)| \leq \rho\|a-b\| \longleftarrow$ Lis " ρ-Lipschitz"
- Then $\mathrm{O}\left(1 / \varepsilon^{2}\right)$ iterations
- If: $|\nabla L(a)-\nabla L(b)| \leq \rho\|a-b\|$ $\leq L$ is " p -smooth"
- Then $\mathrm{O}(1 / \varepsilon)$ iterations
- If: $L(a) \geq L(b)+\nabla L(b)^{T}(a-b)+\frac{\rho}{2}\|a-b\|^{2}$
- Then $\mathrm{O}(\log (1 / \varepsilon))$ iterations

More Details: Bubeck Textbook Chapter 3

Convergence

- In general, takes infinite time to reach global optimum.
- But in general, we don't care!
- As long as we're close enough to the global optimum

And not here?
Iterations

When to Stop?

- Convergence analyses = worst-case upper bounds
- What to do in practice?
- Stop when progress is sufficiently small
- E.g., relative reduction less than 0.001

Yisong prefers this option

- Stop after pre-specified \#iterations
- E.g., 100000
- Stop when validation error stops going down

Limitation of Gradient Descent

- Requires full pass over training set per iteration

$$
\partial_{w} L(w, b \mid S)=\partial_{w} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
$$

- Very expensive if training set is huge
- Do we need to do a full pass over the data?

Stochastic Gradient Descent

- Suppose Loss Function Decomposes Additively

$$
L(w, b)=\frac{1}{N} \sum_{i=1}^{N} L_{i}(w, b)=\mathrm{E}_{i}\left[L_{i}(w, b)\right]
$$

Each L_{i} corresponds to a single data point

- Gradient = expected gradient of sub-functions

$$
\partial_{w} L(w, b)=\partial_{w} \mathrm{E}_{i}\left[L_{i}(w, b)\right]
$$

$L_{i}(w, b) \equiv\left(y_{i}-f\left(x_{i} \mid w, b\right)^{2}\right.$

Stochastic Gradient Descent

- Suffices to take random gradient update
- So long as it matches the true gradient in expectation
- Each iteration t :
- Choose i at random

$$
\begin{aligned}
& w^{t+1}=w^{t}-\eta^{t+1} \partial_{w} L_{i}(w, b) \\
& b^{t+1}=b^{t}-\eta^{t+1} \partial_{b} L_{i}(w, b)
\end{aligned}
$$

- SGD is an online learning algorithm!

Mini-Batch SGD

- Each L_{i} is a small batch of training examples
- E.g. 500-1000 examples
- Can leverage vector operations
- Decrease volatility of gradient updates
- Industry state-of-the-art
- Everyone uses mini-batch SGD
- Often parallelized
- (e.g., different cores work on different mini-batches)

Checking for Convergence

- How to check for convergence?
- Evaluating loss on entire training set seems expensive...

Checking for Convergence

- How to check for convergence?
- Evaluating loss on entire training set seems expensive...
- Don't check after every iteration
- E.g., check every 1000 iterations
- Evaluate loss on a subset of training data
- E.g., the previous 5000 examples.

Recap: Stochastic Gradient Descent

- Conceptually:
- Decompose Loss Function Additively
- Choose a Component Randomly
- Gradient Update
- Benefits:
- Avoid iterating entire dataset for every update
- Gradient update is consistent (in expectation)
- Industry Standard

Perceptron Revisited (What is the Objective Function?)

- $w^{1}=0, b^{1}=0$

$$
f(x \mid w)=\operatorname{sign}\left(w^{T} x-b\right)
$$

- For $\mathrm{t}=1$....
- Receive example (x, y)
- If $f\left(x \mid w^{t}\right)=y$
- $\left[w^{t+1}, b^{t+1}\right]=\left[w^{t} b^{t}\right]$

Training Set:

$$
\begin{aligned}
& S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
& y \in\{+1,-1\}
\end{aligned}
$$

- Else
- $w^{t+1}=w^{t}+y x$
- $b^{t+1}=b^{t}+y$

Go through training set in arbitrary order (e.g., randomly)

Perceptron (Implicit) Objective

$$
L_{i}(w, b)=\max \left\{0,-y_{i} f\left(x_{i} \mid w, b\right)\right\}
$$

Recap: Complete Pipeline

$$
\left.\begin{array}{c}
S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \\
\text { Training Data }
\end{array}\right)\binom{f(x \mid w, b)=w^{T} x-b}{\text { Model Class(es) }}
$$

$$
L(a, b)=(a-b)^{2}
$$

Loss Function
$\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right) \quad$ Use SGD!
Cross Validation \& Model Selection

Next Week

- Different Loss Functions
- Hinge Loss (SVM)
- Log Loss (Logistic Regression)
- Non-linear model classes
- Neural Nets
- Regularization
- Recitation on Python Programming Tonight!

