Accelerated Proximal-Gradient Method for Large Scale Convex Problems

Masoud Farivar

January 28, 2015
Outline

Proximal mapping
Gradient Descent
Nesterov’s Accelerated Method
Proximal Gradient Method
Iterative Shrinkage-Thresholding Algorithm (ISTA)
Fast ISTA (FISTA)
proximal mapping (or proximal operator) of a convex function h is

$$\text{prox}_t(x) = \arg\min_u \left(h(u) + \frac{1}{2t} \|u - x\|_2^2 \right)$$

Examples

$h(x) = 0 : \ \text{prox}(x) = x$

$h(x) = I_C(x)$ (indicator function of C) : \ \text{prox} \text{ is projection on } C$

$$\text{prox}(x) = P_C(x) = \arg\min_{u \in C} \|u - x\|_2^2$$

$h(x) = \|x\|_1 : \ \text{prox}_h \text{ is the soft thresholding (shrinkage) function}$

$$\text{prox}_t(x)_i = S_t(x)_i = (|x_i| - t)_+ \text{sign}(x_i) = \begin{cases} x_i - t & x_i \geq t \\ 0 & |x_i| \leq t \\ x_i + t & x_i \leq -t \end{cases}$$
Gradient Descent (Convergence)

Gradient Descent:

\[x_{k+1} = x_k - \eta \nabla f(x_k) \]

Definition. \(f \) is \(\beta \)-smooth when the gradient mapping \(\nabla f \) is \(\beta \)-Lipschitz, i.e., \(\forall x, y \in \mathbb{R}^n \)

\[\| \nabla f(x) - \nabla f(y) \| \leq \beta \| x - y \| \]

Let \(f \) be a convex and \(\beta \)-smooth function on \(\mathbb{R}^n \). Then for any \(x, y \in \mathbb{R}^n \), one has

\[f(x) - f(y) \leq \nabla f(x) ^\top (x - y) - \frac{1}{2\beta} \| \nabla f(x) - \nabla f(y) \|^2 \]

Theorem

Assume that \(f \) is a continuously differentiable \(\beta \)-smooth and convex on \(\mathbb{R}^n \). Then Gradient Descent with \(\eta = \frac{1}{\beta} \) converges with \(O(1/t) \), i.e.,

\[f(x_k) - f^* \leq \frac{2\beta \| x_1 - x^* \|^2}{k + 3} \]
Consider the following optimization problem,

$$\min_x g(x)$$

At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \arg\min_x g(x_k) + \langle \nabla g(x_k), x - x_k \rangle + \frac{\beta}{2} \| x - x_k \|^2$$

We can equivalently write this as the quadratic optimization

$$x_{k+1} = \arg\min_x \frac{1}{2} \| x - (x_k - \eta \nabla g(x_k)) \|^2$$

where $\eta = \frac{1}{\beta}$. The yields the Gradient Descent algorithm:

$$x_{k+1} = x_k - \eta \nabla g(x_k)$$
The basic Gradient Descent has two disadvantages: 1) it can’t be applied to optimize nondifferentiable functions, 2) slow convergence rate

Approaches to address these issues:

- methods with improved convergence
 - accelerated gradient method
 - quasi-Newton methods
 - conjugate gradient method

- methods for nondifferentiable or constrained problems
 - proximal gradient method
 - subgradient method
 - smoothing methods
 - cutting-plane methods
Nesterov’s Accelerated Gradient Descent

Consider the following sequences:

\[\lambda_s = \frac{1 + \sqrt{1 + 4\lambda_{s-1}^2}}{2}, \quad \lambda_0 = 0, \]

\[\gamma_s = \frac{1 - \lambda_s}{\lambda_s + 1} \]

Nesterov’s Accelerated Gradient Descent steps:

\[y_{s+1} = x_s - \frac{1}{\beta} \nabla f(x_s), \quad y_1 = x_1, \]

\[x_{s+1} = (1 - \gamma_s) y_{s+1} + \gamma_s y_s \]
Nesterov’s Accelerated Gradient Descent

Intuitively, Nesterov’s Accelerated Gradient Descent performs a simple step of gradient descent to go from x_s to y_{s+1}:

$$y_{s+1} = x_s - \frac{1}{\beta} \nabla f(x_s)$$

and then it “slides” a little bit further than y_{s+1} in the direction given by the previous point y_s:

$$x_{s+1} = (1 - \gamma_s) y_{s+1} + \gamma_s y_s$$

Rate of convergence is $O(1/t^2)$ after t steps:

Theorem (Nesterov 1983)

Let f be a convex and β-smooth function, then Nesterov’s Accelerated Gradient Descent satisfies:

$$f(y_t) - f(x^*) \leq \frac{2/\beta \|x_1 - x^*\|^2}{t^2}$$
We consider composite optimization problems

\[
\minimize_x f(x) := g(x) + h(x),
\]

where \(g\) and \(h\) are convex but \(h\) is non-smooth. Typically, \(g\) is a data-fitting term, and \(h\) is a regularizer,

The most well-studied example is \(\ell_1\)-regularized least squares,

\[
\minimize_x \|Ax - b\|^2 + \lambda \|x\|_1.
\]
Consider the following composite optimization problem,

$$\min_x g(x) + h(x)$$

At iteration x_k we use a quadratic upper bound on g,

$$x_{k+1} = \arg\min_x g(x_k) + \langle \nabla g(x_k), x - x_k \rangle + \frac{\beta}{2} \|x - x_k\|^2 + h(x)$$

We can equivalently write this as the proximal quadratic optimization ($\eta = \frac{1}{\beta}$)

$$x_{k+1} = \arg\min_x \frac{1}{2} \|x - (x_k - \eta \nabla g(x_k))\|^2 + \eta h(x)$$

The solution is the proximal-gradient algorithm:

$$x_{k+1} = \text{prox}_\eta[x_k - \eta \nabla g(x_k)]$$
Iterative Soft-Thresholding (ISTA)

Consider lasso criterion

\[
\text{minimize} \quad \frac{1}{2} \| y - Ax \|^2 + t \| x \|_1
\]

Prox function is now

\[
\text{prox}_t(x) = S_t(x) = (|x| - t)_+ \text{sign}(x).
\]

where \(S_t(x) \) is the soft-thresholding function discussed earlier:
Let us now combine Nesterovs Accelerated Gradient Descentn with ISTA, i.e.,

\[
\lambda_0 = 0, \quad \lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2}, \quad \text{and} \quad \gamma_k = \frac{1 - \lambda_k}{\lambda_{k+1}}.
\]

Let \(x_1 = y_1 \) an arbitrary initial point, and

\[
y_{k+1} = \text{prox}_\eta[x_k - \eta \nabla g(x_k)]
\]

\[
x_{k+1} = (1 - \gamma_k)y_{k+1} + \gamma_k y_k.
\]

The convergence rate of FISTA is similar to Nesterovs Accelerated Gradient Descent: \(O(1/k^2) \)

[4] Course notes form Berkeley’s EE227BT.