
Machine	Learning	&	Data	Mining
CS/CNS/EE	155

Lecture	18:
Survey	of	Advanced	Topics

What	We	Covered

Linear	Models

Non-Linear	Models

Overfitting Loss	Functions

Learning	Algorithms	
&	Optimization

Supervised	Learning

Unsupervised	Learning

Probabilistic	Modeling

Topic	Overview

Basic	Supervised	Learning

• Training	Data:

• Model	Class:

• Loss	Function:

• Learning	Objective:	

S = (xi, yi){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models

Squared	Loss

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

Optimization	Problem

Basic	Unsupervised	Learning

=X’ U’

V’T

Deep	Learning

Lecture'16:'Deep'Learning' 40'

h4p://www.image9net.org/'

Input'
Image'Input'
Image'Input'
Image'

h4p://www.cs.toronto.edu/~fritz/absps/imagenet.pdf'
h4p://Bp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf'

96'
filters'

RGB'Input'Image'
224'x'224'x'3'

7x7x3'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
55'x'55'x'96'

256'
filters'

5x5x96'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
13'x'13'x'256'

354'
filters'

3x3x256'ConvoluRon'
13'x'13'x'354'

354'
filters'

3x3x354'ConvoluRon'
13'x'13'x'354'

256'
filters'

3x3x354'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'2x'

6'x'6'x'256'

Standard'
4096'Units'

Standard'
4096'Units'

LogisRc'
Regression'

≈1000'Classes'

Sequence	Prediction

Y1

X1

Y2

X2

YM

XM

…

…

Y0 YEnd

Simple	Optimization	Algorithms

• Stochastic	Gradient	Descent

• EM	algorithm	(for	HMMs)

Other	Basic	Concepts	

• Cross	Validation

• Overfitting

• Bias-Variance	Tradeoff

Learning	Theory	

Generalization	Bounds

• Formal	characterization	of	over-fitting

• Example	result:

Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
"

#
$

%

&
'

Trained	Model Training	Size

Training	ErrorTest	Error
With	Prob.	≥	1-δ	:

Make	rigorous!

Shattering

• Definition:	A	set	of	points	is	shattered by	H	if	
for	all	possible	binary	labelings of	points,	
there	exists	some	h	that	classifies	perfectly.

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide	Material	Borrowed	From	Piyush Rai:	
https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf

In	2D,	any	3	points	can	always	be	shattered	by	linear	models!

Shattering

• Definition:	A	set	of	points	is	shattered by	H	if	
for	all	possible	binary	labelings of	points,	
there	exists	some	h	that	classifies	perfectly.

Slide	Material	Borrowed	From	Piyush Rai:	
https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf

In	2D,	linear	models	cannot	shatter	4	points!

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

VC	Dimension

• VC(H)	=	most	#	points	that	can	be	shattered
– If	H	is	linear	models	in	2D	feature	space:

• VC(H)	=	3

Eout (h) ≤ Ein (h)+O
VC(H)log 2N

VC(H)
+1

"

#
$

%

&
'+ log

1
δ

"

#
$
%

&
'

N

"

#

$
$
$
$$

%

&

'
'
'
''

With	Prob.	≥	1-δ	:

Generalization	in	Deep	Learning

• VC	dimension	does	not	characterize	deep	
learning.
– Bounds	are	vacuous!

• Interplay	between	optimization	&	
generalization
– Some	local	optima	seem	“better”	than	others

• Topic	of	current	research!

Structured	Prediction

• Part-of-Speech	Tagging
– Given	a	sequence	of	words	x,	predict	sequence	of	tags	y.

– Dependencies	from	tag-tag	transitions	in	Markov	model.

à Similarly	for	other	sequence	labeling	problems,	e.g.,	RNA	
Intron/Exon	Tagging.

The rain wet the catx Det NVDet N
y

Examples of Complex Output Spaces

Examples of Complex Output Spaces

• Natural Language Parsing
– Given a sequence of words x, predict the parse tree y.
– Dependencies from structural constraints, since y has to be a

tree.

The dog chased the catx

S
VPNP

Det NV

NP

Det N

y

Examples of Complex Output Spaces

• Information Retrieval
– Given a query x, predict a ranking y.
– Dependencies between results (e.g. avoid redundant hits)
– Loss function over rankings (e.g. Average Precision)

SVM
x 1. Kernel-Machines

2. SVM-Light
3. Learning with Kernels
4. SV Meppen Fan Club
5. Service Master & Co.
6. School of Volunteer Management
7. SV Mattersburg Online
…

y

Conservation Reservoir

Corridors
Building outward from sources

!"#$%&'()*'+,'-.%'

!"#$%&'/)*'+,'-.%'

!"#$0'

12+30'

4' 5'

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

Structured	Prediction
X Y X Y X Y

X X Y

Predictions	Require	Optimization!

• E.g.,	Dynamic	Programming

• Learning	Requires	Prediction!
– E.g.,	Dynamic	Programming	for	marginal	
inference.

• What	can	constraints	encode?

A New Vision for Autonomy

Center for Autonomous Systems and Technologies

http://cast.caltech.edu

6.3 Summary of Facilities, Equipment, and Other Resources
The Center for Autonomous Systems and Technologies (CAST) at Caltech, directed by Prof.
Gharib, promotes interdisciplinary research and the exchange of ideas in the expanding area of
autonomous systems (). These systems include, but are not limited
to, drones and robots for use in science, industry, and medicine. The research conducted by the
center addresses sensing, control, vision, and other emerging areas. Currently, drones are highly
unstable flyers and are prone to atmospheric conditions. CAST’s unique open air wind tunnel
facility, shown in Fig. 13, allows researchers to study the complexity and challenges of control and
stability associated with autonomous single or collective drone systems. Drone performance can be
tested and studied under severe atmospheric conditions such as rain, hail, sandstorms, turbulence,
and gust.

Figure 13: Caltech’s CAST drone research
facilities.

The CAST-facility is built of 8,230 square feet (765
m2) of specialized lab including: high-bay drone &
robotic testing facility, fabrication lab & assembly area,
and o�ces, meeting rooms, visiting sta� o�ces and re-
strooms. 4,300 square feet (399 m2) is located inside the
first floor of the Karman Laboratory and enclose 1800
square feet (167 m2) of outside laboratory space where
the wind tunnel system and drone flight arena is located.

The CAST wind tunnel facility in (Figs. 3 & 13), at
its core, provides a paradigm change in the field of multi-
functional wind tunnels, by incorporating a wide variety
of flow conditions in a space e�cient package. Introduc-
ing a new technique of generating flow patterns not de-
pendent upon obstacle geometries (which result in major
pressure losses) allows an open loop tunnel concept to be
implemented, maximizing test section size in a limited
space environment. To meet recent research challenges
and open new fields of wind tunnel testing, Co-PI Gharib
and his students have built an innovative concept of a con-
figurable 10-foot-by-10-foot multi-fan array of 1296 fans
capable of generating wind speeds of up to 44 mph, with
a side wall of 324 fans to create a crosswind. The wall is
capable of creating a nearly infinite variety of wind con-
ditions for drones to learn to react to– everything from
a light gust to a stormy vortex. It can also be tilted 90
degrees to simulate vertical take o�s and landings.

A real-time optical tracking system, comprised of 48
IR cameras, is implemented throughout the entire outdoor
drone arena of the CAST facility, including a designated
subsystem for the wind tunnel test section, to relay de-
tailed positioning information to the user. This setup al-
lows drones to enter and exit the test section as desired

but remain actively tracked and controlled throughout all of the CAST facility. The setup consists

15

Autonomous	Dynamic	Robotsof an arrangement of high precision cameras placed throughout the capture space which can locate
an object three-dimensionally with sub-millimeter accuracy. The location information, for exam-
ple, can be fed back wirelessly to a control system to position one or more drones flying in the test
section with 200-micron accuracy.

Figure 14: Caltech’s Lucas wind tunnel
(1.3 m tall and 1.8 m wide)

The John W. Lucas Wind Tunnel at Caltech is a
medium-sized, low-speed wind tunnel with a 4.3 feet (1.3
meters) tall, 5.9 feet (1.8 meters) wide and 24.6 feet (7.5
meters) long test section. The closed circuit tunnel uti-
lizes a 670 hp (500 kW) synchronous motor driving a
16-blade variable pitch fan and can achieve flow speeds
up to 168 mph (75 m/s). It uses adaptive wall technol-
ogy to minimize the wall interference and reduce the need
for data corrections required in straight-wall tunnel tests.
Based on the measured pressure distribution around the
investigated model the wall contour is adapted to the cur-
rent model configuration to mimic an infinite flow field.
Equipped with a highly accurate 6-component strain gage balance, this tunnel provides precise data
about aerodynamic forces and moments. In addition, the Lucas Wind Tunnel is designed to facili-
tate particle image velocimetry (PIV) measurements, which enables a full dynamic characterization
of the flow field around any investigated model. The equipment was originally designed to fit within
the confines of the 90 x 30 x 20 feet (27.4 x 9.1 x 6.1 m) room in which it sits.

Figure 15: Prof. Chung’s space drone sim-
ulator facility.

The Aerospace Robotics and Control Laboratory at
Caltech, directed by PI Chung, has the facility and equip-
ment to develop full-autonomous aerial robots, such as
robotic multicopter systems with custom onboard autopi-
lot systems and single-board computers for computer-
vision based navigation and control, and robotic flapping
flying bats (AFOSR Young Investigator Award, 2009-
2011 and NSF CAREER Award 2013-2018). Our new
spacecraft research laboratory consists of a large space-
craft fabrication space with a clean room and one of the
largest spacecraft motion simulation flat floors among
university laboratories. The lab is also equipped with 3-
D printers for rapid prototyping of novel UAV designs,
multiple oscilloscopes, function generators, and real-time

control computers. The lab also has a state-of-the-art motion capture system for rapid implementa-
tion of control algorithms and two MarkForge Carbon Fiber 3D printers for fabricating lightweight
UAV wing and body structures. The Aerospace Department at Caltech (GALCIT) owns an ad-
vanced machine shop that is equipped with multiple 3D printers (SLS), laser cutters, and various
metalworking tools ().
6.4 Current and Pending Support
A separate document for listing funding and research activities of the PI and Co-PI in on-going and
pending research projects is attached into the R&R Senior / Key Person Profile Form.

16

Learning	+	Control

Optimal	Control	

• Design	controller	to	achieve	goal	in	dynamical	
system	(PDE)

• Optimization	based
– Dynamic	Programming
– Iterative	Linearization	
– Etc.

• How	to	incorporate	learning?

Stable	Drone	Landing

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	KamyarAzizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		ICRA	2019

Ground	effect

Robust	Landing	Control

PD PID Neural-Lander	(PD+Fa)

https://www.youtube.com/watch?v=FLLsG0S78ik

Crowdsourcing

Acquiring	Labels	from	AnnotatorsFigure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Ymij =

⇢
ymij if (i, j) 2 Ȳm

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i

and/or item j).
Analogous to low-rank matrix (2-tensor) factorization approaches

for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Ymij ⇡
DX

d=1

�dumdxidxjd + b,

where each xi and um are unit vectors, and �d are positive weights.
Each xi corresponds to an item representation, and each um corre-
sponds to the diagonal of a user transform Um. In our model, rather
than constraining xi and um to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of xi and um

(or Um) via regularization penalties Rx and Ru.11 We also enforce
um � 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms Um and Vm is related

to (multi-task) metric learning problems under pairwise constraints
11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].

How	Reliable	are	Annotators?

• If	we	knew	what	the	labels	were
– Can	judge	workers	on	label	quality

• If	we	knew	who	the	good	workers	were
– Can	create	labels	from	their	annotations

• Chicken	and	egg	problem!

Worker	Reliability	as	Latent	Variable

• Let	zm denote	the	reliability	of	worker	m

yi =
1
zm

m
∑

yimzm
m
∑

Estimated	label

zm =
1
N

L(yi, yim)
i
∑

Differing	Ambiguities	Across	Tasks

• Often	collecting	annotations	for	many	tasks

• Some	tasks	are	harder	than	others

• How	many	labels	to	collect	for	each	task?

Structured	Annotations

http://arxiv.org/pdf/1506.02106v4.pdf

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let sic be the CNN score for pixel i and class c. Let
Sic = exp(sic)/

PN
k=1 exp(sik) be the softmax probability

of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class Gi, the loss on a single training
image is:

Lpix(S,G) = �

X

i2I

log(SiGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0

✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

Limg(S,L, L
0) = � 1

|L|
X

c2L

log(Stcc)�
1

|L0|
X

c2L0

log(1�Stcc)

with tc = argmax
i2I

Sic (2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels Is, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

Lpoint(S,G,L, L0) = Limg(S,L, L
0)�

X

i2Is

↵i log(SiGi) (3)

Here, ↵i determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵i. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |Is| = |L| and ↵i is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵i to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵i corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵i.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let Pi be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let sic be the CNN score for pixel i and class c. Let
Sic = exp(sic)/

PN
k=1 exp(sik) be the softmax probability

of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class Gi, the loss on a single training
image is:

Lpix(S,G) = �

X

i2I

log(SiGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0

✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

Limg(S,L, L
0) = � 1

|L|
X

c2L

log(Stcc)�
1

|L0|
X

c2L0

log(1�Stcc)

with tc = argmax
i2I

Sic (2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels Is, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

Lpoint(S,G,L, L0) = Limg(S,L, L
0)�

X

i2Is

↵i log(SiGi) (3)

Here, ↵i determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵i. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |Is| = |L| and ↵i is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵i to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵i corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵i.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let Pi be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.

The	Visipedia Project

http://visipedia.org

Everyday	visual	puzzles

A real life experiment
by Debra Moring
5/17/17 9:05AM

Crowdsourcing	Science

• There	is	no	“ground	truth”
• Only	scientific	consensus
• How	can	AI-powered	systems	accelerate	science?

Pietro	Perona

Active	Learning

Crowdsourcing

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled

Labeled
Initially	Empty

Repeat

Passive	Learning

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled

Labeled
Initially	Empty

Repeat

Random

Active	Learning

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled

Labeled
Initially	Empty

Repeat

Choose

Active	Learning

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled

Labeled
Initially	Empty

Goal:	Maximize	Accuracy	with	Minimal	Cost

Repeat

Choose

On-Demand	Crowdsourcing

Anima	
Anandkumar

Unlabeled

Labeled
(Subset)

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Annotate

Train

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”

Repeat

Comparison	with	Passive	Learning

• Conventional	Supervised	Learning	is	considered	
“Passive”	Learning

• Unlabeled	training	set	sampled	according	to	test	
distribution

• So	we	label	it	at	random	
– Very	Expensive!

Simple	Example

• 1	feature
• Learn	threshold	function

True	Model
Passive	Learning
Sample	from	distribution

Learned	Model

Simple	Example

• 1	feature
• Learn	threshold	function

True	Model
Active	Learning
Binary	Search

Comparison	with	Passive	Learning

• #	samples	to	be	within	ε of	true	model

• Passive	Learning:

• Active	Learning:

O 1
ε

!

"
#
$

%
&

O log 1
ε

!

"
#

$

%
&

Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

39'

True'Model'
Passive'Learning'
Sample'from'distribu7on'

Learned'Model'Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

40'

True'Model'
Ac#ve&Learning&
Binary'Search'

Multi-Armed	Bandits

Problems	with	Crowdsourcing

• Assumes	you	can	label	by	proxy
– E.g.,	have	someone	else	label	objects	in	images

• But	sometimes	you	can’t!
– Personalized	recommender	systems

• Need	to	ask	the	user	whether	content	is	interesting

– Personalized	medicine
• Need	to	try	treatment	on	patient

– Requires	actual	target	domain

Personalized	Labels

Sports
Unlabeled

Labeled
Initially	Empty

Choose

Repeat

What	is	Cost?
Real	System

End	User

Formal	Definition

• K	actions/classes
• Each	action	has	an	average	reward:	μk

– Unknown	to	us
– Assume	WLOG	that	u1 is	largest

• For	t	=	1…T
– Algorithm	chooses	action	a(t)
– Receives	random	reward	y(t)

• Expectation	μa(t)

• Goal:	minimize	Tu1 – (μa(1)	+	μa(2)	+	…	+	μa(T))

Basic	Setting
K	classes
No	features

Algorithm	Simultaneously
Predicts	&	Receives	Labels

If	we	had	perfect	information	to	start Expected	Reward	of	Algorithm

Sports

-- -- -- -- --

0 0 0 1 0# Shown

Average Likes : 0

Interactive	Personalization
(5	Classes,	No	features)

-- -- -- 0 --

0 0 0 1 0# Shown

Average Likes : 0

Interactive	Personalization
(5	Classes,	No	features)

Sports

-- -- -- 0 --

0 0 1 1 0# Shown

Average Likes : 0

Interactive	Personalization
(5	Classes,	No	features)

Politics

-- -- 1 0 --

0 0 1 1 0# Shown

Average Likes : 1

Interactive	Personalization
(5	Classes,	No	features)

Politics

-- -- 1 0 --

0 0 1 1 1# Shown

Average Likes : 1

Interactive	Personalization
(5	Classes,	No	features)

World

-- -- 1 0 0

0 0 1 1 1# Shown

Average Likes : 1

Interactive	Personalization
(5	Classes,	No	features)

World

-- -- 1 0 0

0 1 1 1 1# Shown

Average Likes : 1

Interactive	Personalization
(5	Classes,	No	features)

Economy

-- 1 1 0 0

0 1 1 1 1# Shown

Average Likes : 2

Interactive	Personalization
(5	Classes,	No	features)

Economy …

-- 0.44 0.4 0.33 0.2

0 25 10 15 20# Shown

Average Likes : 24

What	should	Algorithm	Recommend?

Exploit: Explore: Best:

PoliticsEconomy Celebrity

How	to	Optimally	Balance	Explore/Exploit	Tradeoff?
Characterized	by	the	Multi-Armed	Bandit	Problem	

()

R(T) = OPT()− ALG()

• Opportunity cost of not knowing preferences
• “no-regret” if R(T)/T è 0

– Efficiency measured by convergence rate

Regret:

Time Horizon

(OPT) = + () + () …

(ALG) = () () ()++ …

Recap:	The	Multi-Armed	Bandit	Problem

• K	actions/classes
• Each	action	has	an	average	reward:	μk

– All	unknown	to	us
– Assume	WLOG	that	u1 is	largest

• For	t	=	1…T
– Algorithm	chooses	action	a(t)
– Receives	random	reward	y(t)

• Expectation	μa(t)

• Goal:	minimize	Tu1 – (μa(1)	+	μa(2)	+	…	+	μa(T))

Basic	Setting
K	classes
No	features

Algorithm	Simultaneously
Predicts	&	Receives	Labels

Regret

The	Motivating	Problem

• Slot	Machine	=	One-Armed	Bandit

• Goal:	Minimize	regret	From	pulling	suboptimal	arms
http://en.wikipedia.org/wiki/Multi-armed_bandit

Each	Arm	Has	
Different	Payoff

Implications	of	Regret

• If	R(T)	grows	linearly	w.r.t.	T:
– Then	R(T)/T	è constant	>	0
– I.e.,	we	converge	to	predicting	something	suboptimal

• If	R(T)	is	sub-linear	w.r.t.	T:
– Then	R(T)/T	è 0
– I.e.,	we	converge	to	predicting	the	optimal	action

R(T) = OPT()− ALG()Regret:

Experimental	Design

• How	to	split	trials	to	collect	information
• Static	Experimental	Design	

– Standard	practice
– (pre-planned)

http://en.wikipedia.org/wiki/Design_of_experiments

Treatment Placebo Treatment Placebo Treatment

…

Sequential	Experimental	Design

• Adapt	experiments	based	on	outcomes

Treatment Placebo Treatment Treatment

…
Treatment

Sequential	Experimental	Design	Matters

http://www.nytimes.com/2010/09/19/health/research/19trial.html

Automated	Experiment	Design
(AI	for	Decision	Making)

Hypothesis	Space

Nature	Paper

Useful	Result

$100M

Sequential	Experimental	Design

• MAB	models	sequential	experimental	design!

• Each	treatment	has	hidden	expected	value
– Need	to	run	trials	to	gather	information
– “Exploration”

• In	hindsight,	should	always	have	used	treatment	
with	highest	expected	value

• Regret	=	opportunity	cost	of	exploration

basic

Online	Advertising

Largest	Use-Case
of	Multi-Armed
Bandit	Problems

Treating	Lower	Spine	Injuries

49	mm

10	mm

Medtronic	
human	
array

Image	source:	
williamcapicottomd.com

SCI	Patient

Each	patient	is	unique
109	possible	configurations!

• Protein	Engineering
• High-Throughput

– Thousands	per	batch

– Multiple	batches
• Trillions	of	Possibilities

– How	to	select?

Frances
Arnold

• Nano-photonics	Design
– E.g.,	next-gen	camera	sensors

• High-Throughput	Experiments
– Simulate	Maxwell’s	equations

• Billions	of	Possibilities
– How	to	select	design?

Plasmonic color filters utilizing periodic arrays of subwavelength holes or nanoslits in
metal films enable efficient conversion of optical energy between incident photons and
surface propagating two-dimensional charge density waves, surface plasmon polaritons
(SPPs). Due to the permittivity discontinuity at metal-dielectric surfaces, SPPs have an in-
plane momentum kSPP greater than that of light in free space ko. Patterned metal surfaces
including gratings, or arrays of holes or slits, allow the matching of momentum and thereby
enable efficient conversion of light into SPPs via scattering. The strength of interaction
between photons and SPPs can be tailored by changing geometric factors such as the shape of
the scattering elements, and the symmetry and periodicity of the array as well as by selecting
the permittivity of the constituent materials [20].

In particular, periodic arrays of subwavelength apertures passing through a metal film
exhibit enhanced transmission exclusively at conditions corresponding to constructive mutual
interference between incident light and SPPs traveling along the surface between adjacent
slits. In the case that the metallic layer is thick enough to be substantially opaque to incident
photons, the SPP mediated process is the dominant mode of transmission and the surface acts
as a band-pass color transmission filter. Such aperture arrays have been the topic of
substantial scientific interest due to these remarkable optical properties and their utility as a
testbed for studying fundamental light-matter interactions in plasmonic systems [7,21].

The dispersion of plasmonic propagating modes can be further engineered using metal-
clad slot waveguides, often realized as multilayer stacks with a metal-insulator-metal (MIM)
configuration [8]. Such MIM stacks may support a multitude of polaritonic modes which lie
either inside or outside the “light cone,” that is, with in-plane momentum either greater or less
than that of a photon with equal energy. This additional degree of freedom enables
substantially more complex optical transmission filter spectra enabling narrow bandwidth
suitable for multi- and hyperspectral color filtering applications [5].

2. Designing plasmonic color filters
Finite difference time domain methods (FDTD) were used to determine the transmission
spectra of different filter structures. Figure 1 illustrates the different types of transmission
filters and their spectral behavior. MIM have been used to make RGB color filters [5]. These
structures can be optimized to have narrowband transmission, but as the structure is optimized
to minimize FWHM of the transmission peak, the intensity of the next highest order mode
increases. This trade-off can be lifted by introducing a second MIM mode into the structure
that couples with the original MIM mode, leading to the suppression of the spurious
transmission. The multilayer slot-mode plasmonic filter (MSPF) investigated demonstrates a
narrow transmission bandwidth and spurious peak suppression, as shown in Fig. 1(b), and by
changing the periodicity of the slits, this filter can be swept across the entire visible spectrum.

Fig. 1. (a) Schematics of MIM and MIMIM filter structures. All dark grey metal layers are Ag
and 70 nm thick, except for the 50 nm center metal layer of the MIMIM filter. All light grey
insulating layers are 70 nm of SiO2 (b) Comparison between MIM and MIMIM transmission
behavior shows similar FWHM but enhanced suppression of the secondary peak in the
MIMIM case.

 Vol. 25, No. 22 | 30 Oct 2017 | OPTICS EXPRESS 27388

Manuscript under review by AISTATS 2019

(a) Max. likelihood with grid cost. (b) M.L. with observation cost. (c) Nanophotonic FOM optimization.

Figure 3: Two cost settings for maximum likelihood inference task and the task of optimizing FOM for nanopho-
tonic sctructures. Error bar shows one standard error over 20 runs for each experiment.

Figure 4: A nanophotonic structured is determined by
various parameters used in manufacturing it.

Results The results using the original cost definition
are shown in Figure 3a. Note for this task we do not
know the optimal likelihood, so we report best objec-
tive value so far in the y-axis. Our method MF-MI-
Greedy (red) outperforms both baselines. The results
using the new cost definition are shown in Figure 3b.
Our method obtains a consistent high likelihood when
the cost structure changes. However, MF-GP-UCB’s
quality degrades significantly, which implies that it is
sensitive to how the costs among fidelity levels are de-
fined. These two set of results demonstrate the robust-
ness of our method against costs, which is a desirable
property as inaccuracy in cost estimates is inevitable
in practical applications.

6.4.2 Experimental design for material

science

Dataset The second experiment is motivated by a
material science task of designing nanophotonic struc-
tures with desired color filtering property. A nanopho-
tonic structure is characterized by the following 5 pa-
rameters as shown in Figure 4: mirror height, film
thickness, mirror spacing, slit width and oxide thick-
ness. For each parameter setting, we use a score,
commonly called a figure-of-merit (FOM), to repre-
sent how well the resulting structure satisfies the de-

sired color filtering property. By minimizing FOM, we
hope to find a set of high quality design parameters.
Traditionally, FOMs can only be computed through
actual fabrication of a structure and tests its various
physical properties, which is a time consuming pro-
cess. Alternatively, simulations can be utilized to esti-
mate what physical properties a design will have. By
solving a variant of the Maxwell’s equations, we could
simulate the transimission of light spectrum and com-
pute FOM from the spectrum. We collect three fidelity
level data on 5000 nanophotonic strctures. What dis-
tinguishes each fidelity is the mesh size we use to solve
Maxwell’s equations. Finer meshes lead to more ac-
curate results. Specifically, lowest fidelity uses a mesh
size of 3nm⇥ 3nm, the middle fidelity 2nm⇥ 2nm and
the target fidelity 1nm ⇥ 1nm. The costs, simulation
time, are inverse proportional to the mesh size, so we
use the following costs [1, 4, 9] for our three fidelity
functions.

Results Figure 3c shows the results of this experi-
ment. As usual, the x-axis is the cost and y-axis is
negative FOM. After a small portion of the budget
is used in initial exploration, MF-MI-Greedy (red) is
able to arrive at a better final design compared with
MF-GP-UCB and GP-UCB.

7 Conclusion

In this paper, we investigated the multi-fidelity
Bayesian optimization problem, and proposed a gen-
eral, principled framework for addressing the problem.
We introduced a simple, intuitive notion of regret, and
showed that our framework is able to lift many pop-
ular, o↵-the-shelf single-fidelity GP optimization algo-
rithms to the multi-fidelity setting, while still preserv-
ing their original regret bounds. We demonstrated the
performance of our proposed algorithm on several syn-
thetic and real data sets.

Harry
Atwater

Reinforcement	Learning

Actions	Impact	State

• In	MAB:
– Actions	do	not	impact	state
– Constant	reward	function

• Reinforcement	Learning
– Actions	effect	state	you’re	in
– Reward	function	depends	on	state

Video	Demo
(Deep	Reinforcement	Learning	for	Atari)

https://www.youtube.com/watch?v=iqXKQf2BOSE

What	is	State?

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Reward	of	each	action	varies	depending	on	state!

Action	at	current	state	impacts	future	states!

Much	harder	to	do	exploration!

Imitation	Learning

Imitation	Learning

• Input:
– Sequence	of	contexts/states:	

• Predict:
– Sequence	of	actions

• Learn	Using:
– Sequences	of	demonstrated	actions

h

s

a

Example:	Basketball	Player	Trajectories

• 𝑠 =	location	of	players	&	ball
• 𝑎 =	next	location	of	player

• Training	set:	𝐷 = 𝑠, 𝑎⃗
– 𝑠 =	sequence	of	𝑠
– 𝑎 =	sequence	of	𝑎

• Goal: learn	ℎ(𝑠) → 𝑎

Generating Long-term Trajectories Using Deep

Hierarchical Networks

Stephan Zheng

Caltech
stzheng@caltech.edu

Yisong Yue

Caltech
yyue@caltech.edu

Patrick Lucey

STATS
plucey@stats.com

Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)

has two macro-goals: 1)

pass the ball (orange) and

2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals cab control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ⇠ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.

3

(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals cab control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ⇠ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.

3

Non-Convex	Optimization

Anima	
Anandkumar

Recall:	Hidden	Markov	Models

Y1

X1

Y2

X2

YM

XM

…

…

P x, y() = P(End | yM) P(yi | yi−1)
i=1

M

∏ P(xi | yi)
i=1

M

∏

Optional

Y0 YEnd

Recall:	EM	Algorithm	for	HMMs

• If	we	had	y’s	èmax	likelihood.
• If	we	had	(A,O)	è predict	y’s

1. Initialize	A	and	O	arbitrarily

2. Predict prob.	of	y’s	for	each	training	x

3. Use	y’s	to	estimate	new	(A,O)

4. Repeat	back	to	Step	1	until	convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

Expectation	Step

Maximization	Step

Chicken	vs Egg!

Non-Convex	Optimization	Problem!
Converges	to	local	optimum.

Can	We	Train	HMMs	Optimally?

Inspiration	from	Dimensionality	Reduction

• Find	best	rank	K	approximation	to	Y:

• Non-convex	optimization	problem!
– Due	to	non-convex	feasible	region

• But	optimally	solved	via	SVD!

argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2

Spectral	Learning	of	HMMs

P(y j | y j−1) = A P(x j | y j) =O
Want	to	
Estimate:

∑t = E x j+t x j()
T"

#$
%
&'= E E x j+t x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E E x j+t y j"
#

%
&E x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E OAtky j() Oy j()
T"

#$
%
&'

 =OAtE y j y j()
T"

#$
%
&'O

T

 =OAtZOT

Treat	each	xj and	yj
as	indicator	vector

http://www.cs.cmu.edu/~ggordon/spectral-learning/

Spectral	Learning	of	HMMs

Σt O

At Z OT

=

http://www.cs.cmu.edu/~ggordon/spectral-learning/

A =UT ∑2 UT ∑1()
−1

Optimal	Solution:

(requires	a	lot	of	data)

Rank-K	SVD	of	Σ1

Spectral	Properties	of	Deep	Learning?

• Deep	Learning	is	layers	of	matrix	
multiplications
– With	non-linear	transfer	function	in	between

• Can	we	analyze	the	spectral	properties	of	
weight	matrices?

…and	many	more	topics!

• Probabilistic	Models	&	Bayesian	Reasoning
• Representation	Learning

– Deep	learning	is	the	most	visible	example

• Causal	Reasoning
• ML	+	Game	Theory
• ML	+	Systems

– Large	Scale	Machine	Learning
• Fairness	&	Privacy
• Etc …

Imaging	the	Black	Hole

yx

In
pu

t	I
m
ag
e

Re
co
ns
tr
uc
tio

n

Sparse	+	Noisy
Measurements

MODEL	+	
ALGORITHM

How	do	we	design/learn	 this	
inverse	function	 that	takes	us	
from	measurements	 to	a	
good	 image

Katie
Bouman

CS	159

• Special	Topics	in	Machine	Learning
– Taught	Every	Spring	Term
– Topics	Rotate

• Next	Term:	Deep	Generative	Models
– Probabilistic	Modeling,	Inference,	Sampling,	Incorporating	
Deep	Learning

• Paper	Reading	&	Presenting	+	Final	Project
– Graded	on	participation	and	final	project

