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EMPIRICAL DATA DISTRIBUTION
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feature 3

feature 2

eature 1

DENSITY ESTIMATION
estimating the density of the empirical data distribution
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GENERATIVE MODEL

a model of the density of the data distribution



why learn a generative model?



generative models can generate new data examples
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Glow, Kingma & Dha
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WaveNet, van den Oord et al., 2016
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R

[Transformed] Pseudorapidity (1)

llo2
10}

10°

10!

102

1073

Learning Particle Physics by Example,
de Oljveira et al., 2017

Pixel Pr (GeV)



neural rendering

observation

GQN, Eslami et al., 2018

Planning policies Long-term predictions

PlaNet, Hafner et al., 2018
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generative models can extract structure from data

feature 2 A

>

feature 1
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generative models can extract structure from data

feature 2 A

labeled
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generative models can extract structure from data
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can make it easier to learn and generalize on new tasks
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InfoGAN, Chen et al., 2016

ighting

(c)

15

g M =

S i 9
A/r»

I~ 4

N |

(b) female to male

Disentangled Sequential Autoencoder,
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modeling the data distribution

\_

Pdata(X)
data: Pdata(X) Pa o ];cef(jcz?data(x)
model: pg(X)
ameters:
X

\_

maximum likelihood estimation

find the model that assigns the maximum likelihood to the data

9*

— arg mein DKL(pdata(X)Hpe(X))

= argmin E,,,., () [108 Paata(x) — log py ()

= argmax E, log pg(x

¢ Zlnge )

A\
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bias-variance trade-off

Pdata (X)
pe(x)
o X pdata(x)

pA pA pA

_““4'_“"%')( *#W’X _‘“ﬁw'x

large bias large variance

model complexity



deep generative model

a generative model that uses deep neural networks
to model the data distribution



I

autoregressive
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invertible explicit
latent variable models

explicit
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autoregressive
models




conditional probability distributions

This morning | woke up at
L1 L2 L3 L4 L5 L6 L7
What is p(:CﬂXl:G) ?
p(z7lx16) A
1--
| . - o0 o o0 o : >

eight seven nine once dawn home

encyclopedia X7



a data example

number of features

p(X) :p($17x27 I 7$M)
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Kchain rule of probability

split the joint distribution into a product of conditional distributions

1 X2 I3

p(X) —p(ﬂcl,azg, ces ,fEM)

. p(a,b) . definition of
p(alb) = p(b) > p(a, b> - p(a\b)p(b) conditional probability

recursively apply to p(x1,Z2,..., T ):

p(z1, %2, ..., ) = p(x1)p(T2, - . ., Tas|T1)

P(afl)p(xz\%) .. -p(ﬂUM\SBh “e ,ZUM—l)

M
p(Z1,- .-, Tm) = Hp(xj|$1, coy Tjo1)
j=1

K note: conditioning order is arbitrary




model the conditional distributions of the data

learn to auto-regress each value

slefelelelelelelelels
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model the conditional distributions of the data

learn to auto-regress each value

p6(331)

0000000000
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model the conditional distributions of the data

learn to auto-regress each value

pe(ﬂ?Q\ZL’l)

08000000000
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model the conditional distributions of the data

learn to auto-regress each value

pe(ws\ﬂ?l, 5132)

MODEL

o=
® 600000000

L1
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model the conditional distributions of the data

learn to auto-regress each value

Po 2134!561,332,%3

§46¢0000000

X3
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model the conditional distributions of the data

learn to auto-regress each value

Po (33M’X<M)

__———

1 I9o2 X3 ooo T M
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maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

0*= arg m@aX Epyaia(x) llog pg (x Z log pe(x

ﬁor auto-regressive models:

log po(x) = log Hp0($j‘x<j)
j=1

M
=) logpy(x;|x<;)

K j=1

9*—argmax—2210gp9 ())

1=1 7=1



models

can parameterize conditional distributions using a recurrent neural network

pe(xl) p9($2\$1) P9($3|X<3) p9(334’X<4) P9($5\X<5) P0($6\X<6) p0($7\X<7)

see Deep Learning (Chapter 10), Goodfellow et al., 2016
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models

can parameterize conditional distributions using a recurrent neural network

P9($5\X<5)

see Deep Learning (Chapter 10), Goodfellow et al., 2016

32



models

can parameterize conditional distributions using a recurrent neural network

target chars: ‘“e” “ g

1.0 0.5 0.1 0.2
2.2 0.3 0.5 15
output layer [E 1.0 1.9 0.1
4.1 1.2 -1.1 2.2
[ R A L
0.3 1.0 0.1 |w hn|-0-3
hidden layer | .0.1 > 0.3 > -0.5 —=| 09
0.9 0.1 -0.3 0.7
R N I 2
1 0 0 0
- 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars:  “h" “e” | A

The Unreasonable Effectiveness of Recurrent Neural Networks, Karpathy, 2015
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Pixel Recurrent Neural Networks, van den Oord et al., 2016
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models

can condition on a local window using convolutional neural networks

pe 5131 $2\$1 Do $3|X12 Do 5134!X13 Do $5’X24 Do «736|X35 Do $7\X46

iy

L6 L7
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models

can condition on a local window using convolutional neural networks

109(5135!3(2:4)
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models

can condition on a local window using convolutional neural networks
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PixelCNN

---- Blind spot

Pixel Recurrent Neural Networks, Conditional Image Generation with PixelCNN Decoders,

van den Qord et al., 2016 van den Qord et al., 2016

® ¢ ¢ ¢ & ¢

WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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output distributions

need to choose a form for the conditional output distribution,
i.e. how do we express p(x;|r1,...,2;-1)7

model the data as discrete variables

» categorical output

model the data as continuous variables

» Gaussian, logistic, etc. output

37



sampling

sample from the model by drawing from the output distribution

po(z1)  po(x2|r1) po(zs|x<s) po(Ta|X<a) po(Ts|x<s) Po(x6|x<s) Po(27|X<7)

38



question

what issues might arise with sampling from the model?

training sampling

po(x1)  po(z2lz1) po(w3]X1:2) Po(walx1:3) Po(T5|X2:4) Do(T6|X3:5) Po(@r|Xa:6) po(xalz1) po(xs|x<3) Po(r4|x<s) po(@s|xcs) Po(xelx<s) Po(x7|X<7)

s,

errors in the model distribution can accumulate, leading to poor samples

see teacher forcin

39

Deep Learning (Chapter 10), Goodfellow et al., 2016
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WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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M PROMPT A train carriage containing controlled nuclear materials was stolen in
-WRITTEN)

Cincinnati today. Its whereabouts are unknown.

MODEL COMPLETION The incident occurred on the downtown train line, which runs from
(MACHINE-WRITTEN,  Covington and Ashland stations.
FIRST TRY)
In an email to Ohio news outlets, the U.S. Department of Energy
said it is working with the Federal Railroad Administration to
find the thief.

“The theft of this nuclear material will have significant negative
consequences on public and environmental health, our workforce and
the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the
theft and ensure it doesn’t happen again.”

The stolen material was taken from the University of Cincinnati’s
Research Triangle Park nuclear research site, according to a news
release from Department officials.

The Nuclear Regulatory Commission did not immediately release any
information.

According to the release, the U.S. Department of Energy’s Office
of Nuclear Material Safety and Security is leading that team’s
investigation.

“The safety of people, the environment and the nation’s nuclear
stockpile is our highest priority,” Hicks said. “We will get to
the bottom of this and make no excuses.

Attention is All You Need, Vaswani et al., 2017
Improving Language Understanding by Generative Pre-Training, Radford et al., 2018
Language Models as Unsupervised Multi-task Learners, Radford et al., 2019
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latent variables result in mixtures of distributions

pA

approach 1
directly fit a distribution to the data

po(z) = N(z; 1, 0%)

>

approach 2 \
use a latent variable to model the data

Po(,2) = po(x|2)pe(2) = N (; pa(2), 02 (2))B(2; 1)
po(z) = pol, 2)
— &'N(Qﬁ;uw(l),gi(l))‘F(l — ,LLz) 'N(ZC;,LL:E(O),O'?C(O)) J

— S —

S~

mixture component mixture component




probabilistic graphical models provide a framework

for modeling relationships between random variables

PLATE NOTATION

observed variable

O

unobserved (latent)
variable

O

directed

O—®

undirected

®

®

set of variables

[ R

®

)




question

represent an auto-regressive model of 3 random variables
with plate notation




comparing auto-regressive models and latent variable models

~

p6($3|5131, 3U2)

", \— ",

auto-regressive model latent variable model



directed latent variable model

Generation

GENERATIVE MODEL

p(x,z) = p(x|z)p(z)

joint o prior
J conditional

likelihood

1. sample z from p(z)

2. use z samples to sample x from p(x|z)

2‘ object ~ p(objects)
L |ighting ~ p(lighting)
§ background ~ p(bg)




directed latent variable model

Posterior Inference

v

INFERENCE ( ) joint
P\ X, Z
p(z|x) = ——
9 | p(X) marginal
posterior likelihood

use Bayes' rule

provides conditional distribution
over latent variables

what is the probability that | am observing a cat
given these pixel observations? .

p( ﬁ/ |cat) p(cat)

o)

p(cat |ﬁ/) =



v

0

directed latent variable model

Model Evaluation

MARGINALIZATION
marginal p(X) — p()(7 Z)dZ
likelihood .
joint

to evaluate the likelihood of an observation,

we need to marginalize over all latent variables

i.e. consider all possible underlying states

. intuitive example

~ A _

how likely is this observation under my model?

(what is the probability of observing this?)

for all objects, lighting, backgrounds, etc.:
how plausible is this example?



maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

0*= arg max Epyoea (x) 108 Po(x Z log pp(x
ﬁor latent variable models: \
discrete continuous
log ps(x) = log ZP@ X, 7) or log pg(x) = 10g/P9(X,Z)dZ

\_ J

marginalizing is often intractable in practice




r variational inference

lower bound thellogHlikelihood.by introducing anl approximate posteror
introduce an approximate posterior g(z|x)
log po(x) = L(x) + D r(q(z|x)[pe(z|x))
where L£(X) = Ey(z)x) [log pe(x,z) — log q(z]x)]

D, >0 —» E(X) < logpg(X) (lower bound)

variational expectation maximization (EM)
E-Step: optimize L(x) w.rt. q(z|X)

M-Step: optimize L(x) w.r.t.

the E-Step indirectly minimizes D 1. (q(z|x)||ps(2z|x))




interpreting the lower bound

@can write the lower bound as

L= IEerq(z|x) :Ing(X, Z) o log Q(Z|X)]

N——"

— IEEZNq(z|x) lng X|Z p(Z) T lOg Q(Z’X)]

(
= Esnq(zlx) 10g p(x|2) + log p(z) — log q(z|x)]
— IEj’z~q(z|x) 1ng(x Z)] R DKL (Q(Z‘X)HP(Z»

| S N _J
—— —r

K reconstruction regularization

q(z|x) is optimized to represent the data while staying close to the prior

connections to compression, information theory



variational autoencoder (VAE)

variational expectation maximization (EM)
E-Step: optimize L(x) w.r.t. ¢(z|x)

M-Step: optimize L(x) w.r.t.

use a separate inference model to directly output approximate posterior estimates

p(z)

inference generative

X model \ /' Z model

p(x|z)

q(z|x)

learn both models jointly using stochastic backpropagation

reparametrization trick: Z = (b + O () € €~ N(O, I)

Autoencoding Variational Bayes, Kingma & Welling, 2014
Stochastic Backpropagation, Rezende et al., 2014



hierarchical latent variable models

Wi
-
4

DT

Improving Variational Inference with Inverse

Auto-regressive Flow, Kingma et al., 2016

iterative inference models

NBLLLLLELLLL
Dic(a(z}x)|lp(z) fe—( p(2) ) 64949555555

$00bbbbbbbb]
/] BDDIIDDD 3

A4

p(x|z)
AL t
: Eq(ape) (log p(x|2)]
Deep Variational Bayes Filters:
| H
mmmwm%’\‘w'wmw Unsupervised Learning of State Space é

Models from Raw Data, Karl et al., 2016 Iterative Amortized Inference,

A Recurrent Latent Variable Model for Marino et al., 2018

Sequential Data, Chung et al., 2015 ;
54
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change of variables

use an invertible mapping to directly evaluate the log likelihood

ﬁimple example

pz(2) A
1 -
- >
B P
px(z)A
1--
0.5 + .
Y : 4 >
T
1 9 3

px(z)dr = pz(2)dz
dz

dx

K conservation of probability mass

px(z) = pz(2)

sample z from a base distribution

z ~ pz(z) = Uniform(0, 1)

apply a transform to z to get a transformed distribution

r=f(z) =2z+1

dx
— >0
dz
dx
X t
4
2z —
dz

~

Normalizing Flows Tutorial, Eric Jang, 2018



change of variables

f(2)
base transformed
1)

distribution distribution

J(f_1 (x)) is the Jacobian matrix of the inverse transform

det J(f~1(x)) is the local distortion in volume from the transform

57



change of variables

transform the data into a space that is easier to model

latent data

F(x) f % i

== PR
O

R

Density Estimation Using Real NVP, Dinh et al., 2016



maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

N
* 1 1
0" = argmax B, (x) [logps(x)] ~ N;bgpe(x())

\_

ﬂ)r invertible latent variable models:

log pg(x) = log pg(z) + log |det J(fy ' (x))]

~

J

1 N

* s (2) —1 (%)
0" = arg max — Z [logpg(z )+ log |det J(f, " (x ))H

1=1



change of variables

to use the change of variables formula, we need to evaluate det J(f~'(x))

for an arbitrary N x N Jacobian matrix, this is worst case O(N?)

restrict the transforms to those with diagonal or triangular inverse Jacobians

allows us to compute det J(f~'(x)) in O(N)

— product of diagonal entries

60



masked autoregressive flow (MAF)

autoregressive sampling can be interpreted as a transformed distribution

T~ N (255 pi(X155-1), 07 (X1:21))  —> = pi(X1im1) + 05 (X1sim1) - 2

where 2; ~ N(Z,L, 0, 1)

must generate each x; sequentially

however, we can parallelize the inverse transform:

i — ,uz'(Xlzi—l)
Ui(xlzi—l)

Z; —

Masked Autoregressive Flow, Papamakarios et al., 2017

see also Inverse Autoregressive Flow, Kingma et al.,, 2016



masked autoregressive flow (MAF)

TRANSFORM INVERSE TRANSFORM

base distribution base distribution

H®®® OO

transformed distribution transformed distribution

T4 — a4(X71:3)
by(X1.3)

T4 = aq(X1.3) + ba(X1.3) - 24 24 =

Masked Autoregressive Flow, Papamakarios et al., 2017

62



INVERSE TRANSFORM

base distribution

& ®®E®

transformed distribution

Ly — CL4(X1;3)
b4(X1:3)

4 =

question

What is the form of J(f~*(x))?

lower triangular

each z; only depends on x1.;

What is det J(f*(x))?
oroduct of diagonal elements of J(f~!(x))

det J(f~1(x)) = H bi(im‘)

1

Masked Autoregressive Flow, Papamakarios et al., 2017



normalizing flows (NF)

can also use the change of variables formula for variational inference

parameterize ¢(z|X) as a transformed distribution

U . N P
o8 —85 J
Inference network Generative model

use more complex approximate posterior, but evaluate a simpler distribution

Normalizing Flows, Rezende & Mohamed, 2015



some recent work

NICE: Non-linear Independent Components Estimation, Dinh et al., 2014
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Variational Inference with Normalizing Flows, Rezende & Mohamed, 2015
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Density Estimation Using Real NVP, Dinh et al., 2016
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Glow

use 1 x 1 convolutions to perform transform

¥

step of flow x K

f

squeeze

A

split

f

step of flow x: K x (L—1)

f

squeeze

1

®

Glow, Kingma & Dhariwal, 2018
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Parallel WaveNet

distill an autoregressive distribution into a parallel transform

WaveNet Teacher Teacher Output
P(x;i|z<:)
Linguistic features -----+»
1 t 1 T 1 Generated Samples
© © ©©© 00 00 © 0 @ 0 0 00 :L'i:g(zilzﬁ)
WaveNet Student ¢ °c©c 0000000000009 Student Output
P(zi|z<i)
O O O O O O O
Linguistic features ----- O O O 0 O O

T T T T t Input noise

®@ © ® © ©6 6 © © © © © © © © ® © VA

Parallel WaveNet, van den Oord et al., 2018
6/
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many generative models are defined in terms of an explicit likelihood

in which pg(x) has a parametric form

O0OO0O0
po(Ti|x<i) po(x|z)

this may limit the types of distributions that can be learned



instead of using an explicit probability density,
learn a model that defines an implicit density

pdata(x)
po(x)

Y

specify a stochastic procedure for generating the data

that does not require an explicit likelihood evaluation

Learning in Implicit Generative Models, Mohamed & Lakshminarayanan, 2016



Generative Stochastic Networks (GSNs)

99
a4
v
g5
6 6
6 &

A MmN YRR
LN
DL T T
NN
SN % Y
IS BN T I VB N
oA N
O
= N e B
SENETR R
= B B TN N
SO VNHK NN
O SN\

Deep Generative Stochastic Networks Trainable by Backprop, Bengio et al., 2013

train an auto-encoder to learn Monte Carlo sampling transitions

the generative distribution is implicitly defined by this transition



pdata(x)
po(x)

%Y

estimate density ratio through hypothesis testing

data distribution pgata(X) generated distribution pg(x)

Paata(X) _ p(x|y = data)
po(x) p(x|y = model)

Pdata (X) _ p(y = data|x)p(x)/p(y = data)
Po (%) p(y = model|x)p(x)/p(y = model)

(Bayes' rule)

Pdata (X) _ p(y = data|x)
po(x)  p(y = model|x)

(assuming equal dist. prob.)

density estimation becomes a sample discrimination task



Generative Adversarial Networks (GANSs)

Generator
) o
[ ~ p(z) — G(Z) — X ~ Dy (X) Discriminator
/‘:[ D(x) ]
~
[ X~ pdata(x)
J

Data

Generator: G(z)
Discriminator:  D(x) = p(y = data|x) = 1 — p(y = model|x)

Log-Likelihood: K, .. (x) logp(y = data|x)] + E,, (x) [log p(y = model|x)]

— Epdata(x) [logD(x)] + Epe (x) [log(l o ( ))]
By 08 D] + Epgey llog(1 — D(G(z))]

lan Goodfellow, 2016
/3 Shakir Mohamed, 2016



Generative Adversarial Networks (GANSs)

Minimax: m&n mSX Epdata(x) [log D(X)] + Ep(z) [log(l — D(G(Z)))]

GANs minimize the Jensen-Shannon Divergence:

For a fixed G(z) the optimal discriminatoris D*(x) = Pdata (%)
pdata(x) + Po (X)

Plugging this into the objective

Epiaea(x) 108 D7 (X)] + Epg (x) [log(1 — D™ (x))]

= B0 [log (Pdatf(d;;afrxlze (X))] o [log (pdata(p’f)(i)pe (X)>]

pdata(X)2+ pe(X)>  Dis (pe(X) Pdata(x)2+ Pe(X)>

1
— 10g (Z) + DKL (pdata(x)

~log G) 2 Dys(pasta(®)|lpe(x)

Generative Adversarial Networks, Goodfellow et al., 2014



L

e

N

X1

data manifold

Interpretation

X2

.
-
/
jS

N
-
—
)
1

A\

explicit model implicit model

explicit models tend to cover the entire data manifold, but are

constrained

implicit models tend to capture part of the data manifold,

but can neglect other parts

— “mode collapse”

/5 Aaron Courville



Generative Adversarial Networks (GANSs)

GANSs can be difficult to optimize

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D DCGAN

No normalization in either G or D

E: Es (B &

Gated multlphcatlve nonlmearmes everywhere inGG and D

tanh nonlinearities everywhere in G and D

AT

101-layer ResNet G and D

Improved Training of Wasserstein GANs, Gulrajani et al., 2017
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evaluation

without an explicit likelihood, it is difficult to quantify the performance

inception score

use a pre-trained Inception v3 model to quantify class and distribution entropy

IS(G) = exp (Eyz) Dz (p(y]%)|p(y)))

p(y|x) is the class distribution for a given image

— should be highly peaked (low entropy)

p(y) = /p(y]f&)dfc is the marginal class distribution
— want this to be uniform (high entropy)

Improved Techniques for Training GANs, Salimans et al., 2016
A Note on the Inception Score, Barratt & Sharma, 2018



Wasserstein GAN (W-GAN)

the Jenson-Shannon divergence can be discontinuous, making it difficult to train

6) is a gen. model parameter

Wasserstein

Jensen-Shannon

instead use the Wasserstein distance, continuous and diff. almost everywhere:

W (pdata(X), pe(x)) = inf Ex sy~ [||X —X
(Paasa(po(0) = inf By [ K]

“minimum cost of transporting points between two distributions”
intractable to evaluate, but can instead constrain the discriminator
D(x)] = Eppx) [D(x)]

D is the set of Lipschitz functions (bounded derivative),
enforced through weight clipping, gradient penalty, spectral normalization

min max K
G DED pdata(x)

Wasserstein GANs, Arjovsky et al., 2017
Improved Training of Wasserstein GANs, Gulrajani et al., 2017
Spectral Normalization for GANs, Miyato et al., 2018



extensions: inference

can we also learn to infer a latent representation?

-

A

zZ~q(z|x)
A

x ~ q(x)

~N

features
)

z ~ p(z)

Adversarially Learned Inference, Dumoulin et al., 2017

}ﬁ

data

.

Q)__,
Oa

Adversarial Feature Learning, Donahue et al., 2017
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applications

image to image translation

erial to Map v
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W 7 8
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Image-to-Image Translation with Conditional

Adversarial Networks, Isola et al., 2016

interpretable representations
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InfoGAN: Interpretable Representation
Learning by Information Maximizing Generative
Adversarial Nets, Chen et al., 2016

|I'\|'ll L Ground truth Output
Labels to Street Scene i i
input output
. \

A

Zebras T Horses ) Summer Z_ Winter

zebra —) horse

I.ﬂé Rl r

: : 1 g P
R ST AR ST
@ i horse —» zebra : winter —» summer

Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al., 2017

experimental simulation
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[Transformed] Pseudorapidity (r)

Learning Particle Physics by
Example, de Oliveira et al., 2017

(c) MidiNet model 3
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5 (@) MidiNetmodd This birdisred  short and medium orange  black bird has shades of black crown breast, light
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MIDINET: A CONVOLUTIONAL
GENERATIVE ADVERSARIAL
NETWORK FOR SYMBOLIC-
DOMAIN MUSIC GENERATION,
Yang et al., 2017

Zhang et al., 2016
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StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks,
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DISCUSSION



I

autoregressive
models

invertible explicit
latent variable models

explicit
latent variable models

y

v
[

implicit
latent variable models




combining models

WaveNet Teacher [0 0000600000000 00

r autoregressive + invertible model \

Teacher Output
P(zi|T<i)

Linguistic features ----+ : (‘/ Z EX :
Iy e ey
T T T T T Generated Samples
oo : = = gzl 2i)
WaveNet Student 1 ;:'E"Ie“‘i":“;“‘
Linguistic features -----
tarallel WaveNet, van den Oord et al., ZW

-~

autoregressive + explicit latent variable model

~

Reconstruction

explicit + implicit latent variable model

Adversarial Variational Bayes, Mescheder et al., 2017

k

Latent
Image Variables . OR
Sample
Encoder /'t ) Decoder L,ijj PixelCNN layers |
I
L ————————— —
Generation:

Iraining: Teacher forcing ; :
Autoregressive sampling

PixelVAE, Gulrajani et al., 2017

J

explicit + invertible latent variable model

DECOOER

.

v
v
.

» REAL NVP

S

x

Deep Variational Inference Without Pixel-Wise Reconstruction,
Agrawal & Dukkipati, 2016




generative models: what are they good for?

generative models model the data distribution

1. can generate and simulate data

iy pRgt R nE i pP i P

(a) MidiNet model 1
i 100 &1 S R = E= = JUI
oy 948 5 8 " 3
10 (b) MidiNet model 2
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(c) MidiNet model 3
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ethical concerns

StyleGAN, Karras et al., 2018




ethical concerns

SYSTEM PROMPT A train carriage containing controlled nuclear materials was stolen in
(HUMAN-WRITTEN)

Cincinnati today. Its whereabouts are unknown.

MODEL COMPLETION The incident occurred on the downtown train line, which runs from
(MACHINE-WRITTEN,  Covington and Ashland stations.
FIRST TRY)
In an email to Ohio news outlets, the U.S. Department of Energy
said it is working with the Federal Railroad Administration to
find the thief.

“The theft of this nuclear material will have significant negative
consequences on public and environmental health, our workforce and
the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the
theft and ensure it doesn’t happen again.”

The stolen material was taken from the University of Cincinnati’s
Research Triangle Park nuclear research site, according to a news
release from Department officials.

The Nuclear Regulatory Commission did not immediately release any
information.

According to the release, the U.S. Department of Energy’s Office
of Nuclear Material Safety and Security is leading that team’s
investigation.

“The safety of people, the environment and the nation’s nuclear
stockpile is our highest priority,” Hicks said. “We will get to
the bottom of this and make no excuses.

Language Models as Unsupervised Multi-task Learners, Radford et al., 2019
87/
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ethical concerns
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applying generative models to new forms of data
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model-based RL: using a (generative) model to plan actions

neural rendering

observation

GQN, Eslami et al., 2018
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