
Machine	Learning	&	Data	Mining
CS/CNS/EE	155

Lecture	13:
Probabilistic	Models

1

Announcements

• Probability	Recitation	Tonight!

2

3

Linear	Models

Non-Linear	Models

Overfitting Loss	Functions

Learning	Algorithms	
&	Optimization

Supervised	Learning

Unsupervised	Learning

Probabilistic	Modeling

Topic	Overview

Today

• Basic	Probabilistic	Models
– Naïve	Bayes
– Estimation
– Sampling

• Brief	Overview	of	Advanced	Probabilistic	
Models

• Thursday:	Hidden	Markov	Models

4

Generative	Probabilistic	Models

• Models	joint	distribution	of	x	and	y:

• Can	make	predictions	via	Bayes	Rule:

• Can	infer	marginal	distributions:

5

P(x, y)

P(y | x) = P(x, y)
P(x)

=
P(x | y)P(y)

P(x)

P(y) = P(y, x)
x
∑ P(x) = P(y, x)

y
∑

Prediction	=	choose	y	
with	maximal	P(y|x)

Example

• P(x,y)	sums	to	1
– Joint	distribution

• P(x=Homework)	??
– Answer:	0.5
– “Marginalize	out	the	y”

6

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

P(x) = P(y, x)
y
∑

Margin	distribution	of	P(x)

Example	#2

• P(x,y)	sums	to	1
– Joint	distribution

• P(y=SPAM|x=Help!)	??
– Answer:	0.6
– P(x,y)	=	0.15
– P(x)	=	0.25

7

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

P(y | x) = P(x, y)
P(x)

P(x) = P(y, x)
y
∑

Example	#3

• P(x,y)	sums	to	1
– Joint	distribution

• P(x=Help!|y=NOT)	??
– Answer:	0.17
– P(x,y)	=	0.1
– P(y)	=	0.6

8

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

P(x | y) = P(x, y)
P(y)

P(y) = P(y, x)
x
∑

Training

• Goal	is	to	learn	P(x,y)
– What	is	objective	function?

• Maximum	Likelihood!

– Just	frequency	counts!
– 6	parameters

9

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

S = (xi, yi){ }i=1
N

argmaxP(S) = argmax P(xi, yi)
i
∏

 = argmin − logP(xi, yi)
i
∑

Training

• Goal	is	to	learn	P(x,y)
– What	is	objective	function?

• Maximum	Likelihood!

– Just	frequency	counts!
– 6	parameters

10

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

S = (xi, yi){ }i=1
N

argmaxP(S) = argmax P(xi, yi)
i
∏

 = argmin − logP(xi, yi)
i
∑

Interpretation:	Given	model	structure,	find	that	
parameterization	that	best	explains	data

Training	Derivation

• Define:	

11

P(x, y) =
wx,y

wx ',y '
x ',y '
∑

argmin − logP(xi, yi)
i
∑ = argmin

w
− logwxi ,yi

+ log wx ',y '
x ',y '
∑

#

$
%
%

&

'
(
(i

∑

∂wx ,y = −
Nx,y

wx,y

+
N
wx ',y '

x ',y '
∑

#	training	examples	(x,y)

Nx,y

N
=

wx,y

wx ',y '
x ',y '
∑è

Frequency	of	(x,y)	
in	training	set!

P(x, y) =
Nx,y

N
è

Just	a	re-parameterization

Regularization

• Hallucinate	data!

• aka:	“pseudo	counts”

12

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

P(x, y) =
Nx,y +λPx,y
N +λ

Prior	Probability	of	observing	(x,y)

Regularization	Strength

Generative	vs Discriminative

• Generative	models
– Models	both	y	AND	x
– P(x,y)

• Discriminative	models	
– Models	y	GIVEN	x
– P(y|x)
– E.g.,	Logistic	Regression

13

What	are	Benefits	
and	Drawbacks?

Generative	vs Discriminative

• Generative:	
– Models	all	of	P(x,y)
– Prediction	via	Bayes	Rule

• Tolerates	missing	data

• Discriminative:
– Only	models	P(y|x)
– Directly	models	prediction	task

• Cannot	naturally	tolerate	missing	data

14

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

Discriminative	Models	Make	Better	
Predictions

• Directly	learn	to	optimize	prediction	goal:
– Aka:	directly	learn:
– E.g.,	minimize	log-loss

• Generative	Models	require	combining	
multiple	estimated	values:

– Training	objective	does	not	maximize	accuracy.

15

P(y | x) = P(x, y)
P(x)

P(y | x)

What	if	there	are	so	
many	different	x	that
P(x)	underflows?

Generative	Models	are	Joint	Models

• Fully	specify	probability	distribution	of	P(x,y)

• Can	draw	samples	from	P(x,y)
– R	=	uniform([0,1])
– If(R	<	0.15)
• x=help!,	y=SPAM

– Elseif(R	<	0.25)
• x=help!,	y=NOT

– …

16

y x P(x,y)

Y=	SPAM Help! 0.15

y=	NOT Help! 0.1

y=	SPAM Homework 0.05

y=	NOT Homework 0.45

Y=	SPAM Winner! 0.2

Y=	NOT Winner! 0.05

Built-in	function	in	
python,	Matlab,	etc.

Generative	Models	can	Tolerate	
Missing	Values

• We	can	model	the	probability	of	missing	
feature	value
–We	will	see	this	specifically	for	Naïve	Bayes.

• Discriminative	models	cannot	tolerate	missing	
values
– If	you	don’t	observe	an	input	feature,	you	lose	all	
guarantees

17

Generative	Models	are	more	Elegant?

• Many	find	generative	models	more	elegant

• Tell	a	“complete”	story	about	the	data

• Useful	if	we	can’t	decide	what	is	the	
prediction	task	a	priori

• E.g.,	train	model	first,	pick	what	is	the	y	later

18

Naïve	Bayes

19

Modeling	a	Feature	Vector

• Single	y	
– (e.g.,	binary)

• Vector	of	x	(D-dimensional)
– Simplest	case,	each	xd binary
– E.g.,	presence/absence	of	word

• Model	P(x,y)

20

Example

• Binary	y
• 2	binary	x’s

• “Probability	table”

• What’s	wrong	with	
this	approach?

21

y x1=Winner! x2=Homework P(x,y)

SPAM 1 1 0.01

NOT 1 1 0.01

SPAM 0 1 0.03

NOT 0 1 0.35

SPAM 1 0 0.25

NOT 1 0 0.05

SPAM 0 0 0.2

NOT 0 0 0.1

Example

• Binary	y
• 2	binary	x’s

• “Probability	table”

• What’s	wrong	with	
this	approach?

22

y x1=Winner! x2=Homework P(x,y)

SPAM 1 1 0.01

NOT 1 1 0.01

SPAM 0 1 0.03

NOT 0 1 0.35

SPAM 1 0 0.25

NOT 1 0 0.05

SPAM 0 0 0.2

NOT 0 0 0.1
Model	Complexity	is	Exponential	

w.r.t.	the	length	of	x!

Naïve	Bayes	Formulation

• Posits	a	generating	model:
– Single	y
– Multiple	x	features
– Only	keep	track	of:
• P(y),	P(xd|y)

23

Y

X1 XD…X2

…

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical	Model	Diagram

Each	xd is	conditionally	independent	given	y.
“Naïve”	independence	assumption!

Why	is	Naïve	Bayes	Convenient?

• Compact	representation

• Easy	to	compute	any	quantity	
– P(y|x),	P(xd|y),	…

• Easy	to	estimate	model	components
– P(y),	P(xd|y)

• Easy	to	sample

• Easy	to	deal	with	missing	values

24

Example	Model	(Discrete)

• Each	xd binary
– E.g.,	presence	or	absence	of	word

25

x1=Homework x2=Winner!

y=SPAM P(x1|y)=0.2 P(x2|y)=0.5

y=NOT P(x1|y)=0.6 P(x2|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

P(x|y)

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

P(y)

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Example	Model	(Discrete)

• Each	xd binary
– E.g.,	presence	or	absence	of	word

26

x1=Homework x2=Winner!

y=SPAM P(x1|y)=0.2 P(x2|y)=0.5

y=NOT P(x1|y)=0.6 P(x2|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

P(x|y)

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

P(y)

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Model	Complexity	is	Linear
w.r.t.	the	length	of	x!

Making	Predictions

27

Y

X1 XD…X2

…

Graphical	Model	Diagram

P(y | x) = P(x, y)
P(x)

 = P(x | y)P(y)
P(x)

 = P(y)
P(x)

P(xd | y)
d
∏

 ∝P(y) P(xd | y)
d
∏

Model	components	we	keep	track	of.

Example	Prediction

• Suppose:

• Then:

28

P(y | x)∝P(y) P(xd | y)
d
∏ = P(y)P(x | y)

P(y =1) = 0.3
P(y = −1) = 0.7

P(x | y =1) = 0.05
P(x | y = −1) = 0.001

P(y =1| x) = 0.3*0.05
0.3*0.05+ 0.7*0.001

≈ 0.96

Example	Prediction	#2

• What	if	we	want	to	compute:

• Simple!

• It’s	an	explicitly	defined	model	component:

29

P(x1 | x2:D, y)

P(x1 | y)

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Example	Prediction	#3

• What	if	we	want	to	compute:

30

P(x1 | x2:D)

P(x1 | x2:D) = P(x)
P(x2:D)

=

P(y)P(x | y)
y
∑

P(y)P(x2:D | y)
y
∑

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Why	is	the	numerator	smaller	than	the	denominator?

“Marginalizing
out	the	y”

Marginalization	in	Matrix	Form

• Compute	P(xd=1):

31

x1=Homework x2=Winner!

y=SPAM P(x1=1|y)=0.2 P(x2=1|y)=0.5

y=NOT P(x1=1|y)=0.6 P(x2=1|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

O

P

P(xd =1) = OTP!" #$d d-th row	

P(xd =1) = P(xd =1| y)P(y)
y
∑

Often	faster	than	
writing	for	loops!

Missing	Values

• What	if	we	don’t	observe	x2?
• Predict	P(y=SPAM|x1)

32

x1=Homework x2=Winner!

y=SPAM P(x1=1|y)=0.2 P(x2=1|y)=0.5

y=NOT P(x1=1|y)=0.6 P(x2=1|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

P(y | x1) = P(y, x2:D | x1) =
x2:D
∑ P(x, y)

P(x1)x2:D
∑

How	to	efficiently	sum	over	multiple	missing	values?

We	can	marginalize	
out	the	missing	values!

Conditional	Independence	to	the	
Rescue!

33

P(y | x1) = P(y, x2:D | x1) =
x2:D
∑ P(x, y)

P(x1)x2:D
∑

P(x, y) = P(y) P(xd | y)
d
∏

P(x, y)
x2:D
∑ = P(y) P(xd | y)

d
∏

x2:D
∑

 = P(y)P(x1 | y) P(xd | y)
xd
∑

d∈ 2,D[]
∏

 = P(y)P(x1 | y)

From	previous	slide

Definition	of	
Naïve	Bayes

Swap	Product	&	Sum	
due	to	independence!

Marginalizes	to	1!

Intuition

• Consider	the	case	of	3	variables	in	x:

34

= P(x2 | y)P(x3 | y)
x3∈ 0,1{ }

∑
x2∈ 0,1{ }

∑

P(x, y)
x2:D
∑ = P(y) P(xd | y)

d
∏

x2:D
∑ = P(y)P(x1 | y) P(xd | y)

xd
∑

d∈ 2,D[]
∏ = P(y)P(x1 | y)

= P(x2 = 0 | y)P(x3 = 0 | y)+P(x2 = 0 | y)P(x3 =1| y)
 +P(x2 =1| y)P(x3 = 0 | y)+P(x2 =1| y)P(x3 =1| y)

= P(x2 = 0 | y)+P(x2 =1| y)() P(x3 = 0 | y)+P(x3 =1| y)()
=1

Comparison	with	Logistic	Regression

• Naïve	Bayes
– Can	query	any	distribution:	P(y|x),	P(y|x1),	P(x1|x2)
– Training	just	requires	counting	(next	slide)
– Not	optimized	for	classification	accuracy

• Logistic	Regression
– Can	only	query	P(y|x)
– Training	requires	optimization	procedure
– Trained	to	minimize	log-loss	of	P(y|x)

35

Missing	Values	Setting

One	Empirical	Comparison

• Measure	how	frequently	each	model	places	
– 1st,	2nd,	3rd,	etc.

• Only	generative	model	(Naïve	Bayes)	is	in	last	place

36

An Empirical Comparison of Supervised Learning Algorithms

Table 4. Bootstrap Analysis of Overall Rank by Mean Performance Across Problems and Metrics

model 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

bst-dt 0.580 0.228 0.160 0.023 0.009 0.000 0.000 0.000 0.000 0.000
rf 0.390 0.525 0.084 0.001 0.000 0.000 0.000 0.000 0.000 0.000
bag-dt 0.030 0.232 0.571 0.150 0.017 0.000 0.000 0.000 0.000 0.000
svm 0.000 0.008 0.148 0.574 0.240 0.029 0.001 0.000 0.000 0.000
ann 0.000 0.007 0.035 0.230 0.606 0.122 0.000 0.000 0.000 0.000
knn 0.000 0.000 0.000 0.009 0.114 0.592 0.245 0.038 0.002 0.000
bst-stmp 0.000 0.000 0.002 0.013 0.014 0.257 0.710 0.004 0.000 0.000
dt 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.616 0.291 0.089
logreg 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.312 0.423 0.225
nb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.284 0.686

overall, and only a 4.2% chance of seeing them rank
lower than 3rd place. Random forests would come in
1st place 39% of the time, 2nd place 53% of the time,
with little chance (0.1%) of ranking below third place.

There is less than a 20% chance that a method other
than boosted trees, random forests, and bagged trees
would rank in the top three, and no chance (0.0%)
that another method would rank 1st—it appears to be
a clean sweep for ensembles of trees. SVMs probably
would rank 4th, and neural nets probably would rank
5th, but there is a 1 in 3 chance that SVMs would rank
after neural nets. The bootstrap analysis clearly shows
that MBL, boosted 1-level stumps, plain decision trees,
logistic regression, and naive bayes are not competitive
on average with the top five models on these problems
and metrics when trained on 5k samples.

6. Related Work

STATLOG is perhaps the best known study (King
et al., 1995). STATLOG was a very comprehensive
study when it was performed, but since then important
new learning algorithms have been introduced such as
bagging, boosting, SVMs, and random forests. LeCun
et al. (1995) presents a study that compares several
learning algorithms (including SVMs) on a handwrit-
ing recognition problem using three performance crite-
ria: accuracy, rejection rate, and computational cost.
Cooper et al. (1997) present results from a study that
evaluates nearly a dozen learning methods on a real
medical data set using both accuracy and an ROC-like
metric. Lim et al. (2000) perform an empirical com-
parison of decision trees and other classification meth-
ods using accuracy as the main criterion. Bauer and
Kohavi (1999) present an impressive empirical analy-
sis of ensemble methods such as bagging and boosting.
Perlich et al. (2003) conducts an empirical comparison
between decision trees and logistic regression. Provost

and Domingos (2003) examine the issue of predicting
probabilities with decision trees, including smoothed
and bagged trees. Provost and Fawcett (1997) discuss
the importance of evaluating learning algorithms on
metrics other than accuracy such as ROC.

7. Conclusions

The field has made substantial progress in the last
decade. Learning methods such as boosting, random
forests, bagging, and SVMs achieve excellent perfor-
mance that would have been difficult to obtain just 15
years ago. Of the earlier learning methods, feedfor-
ward neural nets have the best performance and are
competitive with some of the newer methods, particu-
larly if models will not be calibrated after training.

Calibration with either Platt’s method or Isotonic Re-
gression is remarkably effective at obtaining excellent
performance on the probability metrics from learning
algorithms that performed well on the ordering met-
rics. Calibration dramatically improves the perfor-
mance of boosted trees, SVMs, boosted stumps, and
Naive Bayes, and provides a small, but noticeable im-
provement for random forests. Neural nets, bagged
trees, memory based methods, and logistic regression
are not significantly improved by calibration.

With excellent performance on all eight metrics, cali-
brated boosted trees were the best learning algorithm
overall. Random forests are close second, followed by
uncalibrated bagged trees, calibrated SVMs, and un-
calibrated neural nets. The models that performed
poorest were naive bayes, logistic regression, decision
trees, and boosted stumps. Although some methods
clearly perform better or worse than other methods
on average, there is significant variability across the
problems and metrics. Even the best models some-
times perform poorly, and models with poor average

“An	Empirical	Comparison	of	Supervised	Learning	Algorithms”
Caruana,	Niculescu-Mizil,	ICML	2006

Training

• Maximum	Likelihood	of	Training	Set:

– Subject	to	Naïve	Bayes	assumption	on	structure	of	P(x,y)

37

S = (xi, yi){ }i=1
NargmaxP(S) = argmax P(xi, yi)

i
∏

 = argmin − logP(xi, yi)
i
∑

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Only	need	to	estimate	P(y)	and	each	P(xd|y)!

Just	Counting!

38

P(y = SPAM) =
Ny=SPAM

N

P(x1 =1| y = SPAM) =
N

y=SPAM∧x1=1

Ny=SPAM

Frequency	of	SPAM	
documents	in	training	set

Frequency	of	word	x1	
appearing	in	SPAM	
documents	in	training	set

Regularization

• Add	“pseudo	counts”
– aka	hallucinate	some	data

39

P(y = SPAM) =
Ny=SPAM +λPy=SPAM

N +λ

P(x1 =1| y = SPAM) =
N
y=SPAM∧x1=1

+λP
x1=1|y=SPAM

N y=SPAM +λ

Often	just	set	pseudo	counts
to	uniform	distribution!

Sampling

• Can	sample	from	distribution
– Definition	of	Generative	Model

• Can	draw	samples	from	P(x,y)
– First	sample	y:
• Random	uniform	variable	R
• Set	y=SPAM	if	R	<	P(y=SPAM)	&	y=NOT	otherwise

– Then	sample	each	xd:
• Sample	uniform	variable	R
• Set	xd=1	if	R	<	P(xd=1|y)	&	xd=0	otherwise

40

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Built-in	function	in	
python,	Matlab,	etc.

Sampling	Example

• Sample	P(y)
– R	=	0.5,	so	set	y	=	SPAM

• Sample	P(x1|y=SPAM)
– R	=	0.1,	so	set	x1 =	1

• Sample	P(x2|y=SPAM)
– R	=	0.9,	so	set	x2 =	0

41

x1=Homework x2=Winner!

y=SPAM P(x1=1|y)=0.2 P(x2=1|y)=0.5

y=NOT P(x1=1|y)=0.6 P(x2=1|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Can	be	done	in	
either	order

Sampling	Example	#2

• Sample	P(y)
– R	=	0.9,	so	set	y	=	NOT

• Sample	P(x1|y=NOT)
– R	=	0.5,	so	set	x1 =	1

• Sample	P(x2|y=NOT)
– R	=	0.05,	so	set	x2 =	1

42

x1=Homework x2=Winner!

y=SPAM P(x1=1|y)=0.2 P(x2=1|y)=0.5

y=NOT P(x1=1|y)=0.6 P(x2=1|y)=0.1

P(y)

y=SPAM 0.7

y=NOT 0.3

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Recap:	Naïve	Bayes

• Probabilistic	Generative	Model

• Make	strong	independence	assumptions
– Compact	representation
– Easy	to	train
– Easy	to	compute	various	probabilities
– Not	the	most	accurate	for	standard	prediction

43

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

Invent	Your	Own	Model

• Naïve	Bayes	is	a	special	case	of	Bayesian	
Network

• Here’s	another	one	I	just	made	up:

44

Invent&Your&Own&Model&

•  Naïve&Bayes&is&a&special&case&of&Bayesian&
Network&

40&

Y1#

X1& XD&…#X2&

…#

Y2#

P(x, y) = P(x | y)P(y)
= P(x | y)P(y1 | y2)P(y2)

= P(y1 | y2)P(y2)P(xD | y1, y2) P(xd | y1)
d∈ 1,D−1[]
∏

P(x, y) = P(x | y)P(y)
= P(x | y)P(y1 | y2)P(y2)

= P(y1 | y2)P(y2)P(xD | y1, y2) P(xd | y1)
d∈ 1,D−1[]
∏

Some	Other	Probabilistic	Models

45

Gaussian	Naïve	Bayes

• Same	independence	structure	as	Naïve	Bayes
– But	probability	functions	are	now	Gaussians
• (Instead	of	discrete	lookup	tables.)

– y	is	binary:											the	same

– Each	xd is	continuous:

46

Naïve&Bayes&Formula0on&

•  Posits&a&genera0ng&model:&
– Single&y&
– Mul0ple&x&features&
– Only%keep%track%of:%

•  P(y),%P(xd|y)%

21&

Y%

X1& XD&…%X2&

…%

P(x, y) = P(x | y)P(y) = P(y) P(xd | y)
d
∏

Graphical&Model&Diagram&

Each&xd&is&condi0onally&independent&given&y.&
“Naïve”&independence&assump0on!&

P(y)

P(xd | y) ~ N(µd,y,σ)

Hidden	Markov	Models

• Generative	model	of	sequences

• (focus	of	next	lecture)

47

Y1

X1

Y2

X2

YM

XM

…

…

P(x, y) = P(y1)P(x1 | y1) P(y j | y j−1)P(x j | y j)
j=2

M

∏

(Gaussian)	Mixture	Models

• Each	data	point	is	associated	with	a	membership	to	a	
Gaussian	distribution
– Denoted	by	z	variable

• 1D	Example	with	3	Gaussians

48

"Nonbayesian-gaussian-mixture"	 by	Benwing –
Created	using	LaTeX,	TikZ.	Licensed	under	CC	BY	3.0	via	Commons	
- https://commons.wikimedia.org/wiki/File:Nonbayesian-gaussian-mixture.svg#/media/File:Nonbayesian-gaussian-mixture.svg

K	Gaussian	Distributions

N	Data	Points

Membership	variable
per	data	point

Topic	Models	
(Latent	Dirichlet Allocation)

• Posits	that	documents	can	represented	as	a	mixture	of	topics.
– K	topics,	choose	K	a	priori

• Posits	that	topics	can	be	represented	as	a	mixture	of	words

49

"Latent	Dirichlet allocation"	by	Bkkbrad –
Own	work.	Licensed	under	GFDL	via	Commons	–
https://commons.wikimedia.org/wiki/File:Latent_Dirichlet_allocation.svg#/media/File:Latent_Dirichlet_allocation.svg

Training	set:	M	documents,	
each	with	N	words.

Topic	mixture	of	document.

Each	word	corresponds	to
a	specific	topic.

Example:	LDA	analysis	of	Sarah	Palin’s	emails
(Disclaimer:	this	was	the	top	result	of	Google	Search	“LDA	example”)

• Topics:

50
http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/

Example:	LDA	analysis	of	Sarah	Palin’s	emails
(Disclaimer:	this	was	the	top	result	of	Google	Search	“LDA	example”)

• Presidential	Campaign		
• Wildlife

51

Deep	Belief	Networks

52http://gitxiv.com/posts/jG46ukGod8R7Rdtud/a-neural-algorithm-of-artistic-style

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

5

Generative	Adversarial	Networks

53

http://www.nature.com/news/astronomers-explore-uses-for-ai-generated-images-1.21398?WT.mc_id=FBK_NatureNews

Learn	from	 labeled	images,
condition	on	“Volcano”	and	generate	new	
images,	because	why	not?

Learn	from	unlabeled	 telescope	imagery,
generate	new	images,
now	astronomers	have	more	data

“DeepFake”

54

Neural	NetZ

https://arxiv.org/abs/1710.10196

Generative	Adversarial	Network	(GAN)
(discussed	further	in	Deep	Generative	Models	lecture)

P(Z) P(Image)

WaveNet

55https://deepmind.com/blog/wavenet-generative-model-raw-audio/

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.

1

ar
X

iv
:1

60
9.

03
49

9v
2

 [c
s.S

D
]

19
 S

ep
 2

01
6

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

Generative	Multi-Agent	Models

(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals cab control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ⇠ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.

3

• Train	trajectories	of	basketball	games
• Generate	new	trajectories
• https://arxiv.org/abs/1803.07612

Recap:	Generative Probabilistic	Models

• Quantifies	Uncertainty
– Can	tolerate	missing	values

• Model	represents	a	“summary”	of	the	data
– Fit	model	parameters	to	data
– Can	use	for	inspection

• Not	trained	to	optimize	prediction	accuracy

• Can	generate	new	samples
• 10

• CS	159:	Deep	Generative	Models	(Spring	2019)

57

Next	Two	Lectures

• Hidden	Markov	Models	in	depth
– Sequence	Modeling
– Requires	Dynamic	Programming	
– Implement	aspects	of	HMMs	in	homework

• Recitation	on	Probability	Tonight!

58

