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Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.

F

1 INTRODUCTION

Edge detection has remained a fundamental task in computer
vision since the early 1970’s [18], [15], [43]. The detection
of edges is a critical preprocessing step for a variety of
tasks, including object recognition [47], [17], segmentation
[33], [1], and active contours [26]. Traditional approaches to
edge detection use a variety of methods for computing color
gradients followed by non-maximal suppression [7], [19], [50].
Unfortunately, many visually salient edges do not correspond
to color gradients, such as texture edges [34] and illusory
contours [39]. State-of-the-art edge detectors [1], [41], [31],
[21] use multiple features as input, including brightness, color,
texture and depth gradients computed over multiple scales.

Since visually salient edges correspond to a variety of visual
phenomena, finding a unified approach to edge detection is
difficult. Motivated by this observation several recent papers
have explored the use of learning techniques for edge detection
[13], [49], [31], [27]. These approaches take an image patch
and compute the likelihood that the center pixel contains an
edge. Optionally, the independent edge predictions may then
be combined using global reasoning [1], [41], [49], [2].

Edges in a local patch are highly interdependent [31].
They often contain well-known patterns, such as straight lines,
parallel lines, T-junctions or Y-junctions [40], [31]. Recently, a
family of learning approaches called structured learning [36]
has been applied to problems exhibiting similar characteristics.
For instance, [29] applies structured learning to the problem
of semantic image labeling for which local image labels are
also highly interdependent.

In this paper we propose a generalized structured learning
approach that we apply to edge detection. This approach
allows us to take advantage of the inherent structure in edge
patches, while being surprisingly computationally efficient.
We can compute edge maps in realtime, which is orders of
magnitude faster than competing state-of-the-art approaches.
A random forest framework is used to capture the structured

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS [1] on which the popular gPb detector [1]
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.

information [29]. We formulate the problem of edge detection
as predicting local segmentation masks given input image
patches. Our novel approach to learning decision trees uses
structured labels to determine the splitting function at each
branch in the tree. The structured labels are robustly mapped to
a discrete space on which standard information gain measures
may be evaluated. Each forest predicts a patch of edge pixel
labels that are aggregated across the image to compute our
final edge map, see Figure 1. Since the aggregated edge maps
may be diffuse, the edge maps may optionally be sharpened
using local color and depth cues. We show state-of-the-art
results on both the BSDS500 [1] and the NYU Depth dataset
[44]. We demonstrate the potential of our approach as a general
purpose edge detector by showing the strong cross dataset
generalization of our learned edge models.
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A Data-Driven Approach for Realistic Speech Animation
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Figure 1: A decision tree is used to learn the regression from input phoneme labels to output speech animation parameters. The tree generates
continuous, natural-looking speech animation parameters that represent a reference face of an actor and can be retargeted to the face of any
computer generated character. Predictions are made by traversing the tree from root to leaf node evaluating the learned set of discriminative
queries.

Abstract1

In this paper, we present a simple and effective machine learning2

approach for automatically generating natural looking speech an-3

imation that synchronizes to target audio speech. Our approach is4

easy to deploy, requires minimal parameter tuning, generalizes well5

to novel input speech sequences, and is easily composable with ex-6

isting retargeting approaches. This paper provides detailed a de-7

scription of our end-to-end approach, including discussing design8

decisions, and analyzing the relative importance of different sys-9

tem components. We show that realistic speech animation can be10

created for any input speech on a range of characters using a variety11

of voices. We also provide an extensive empirical evaluation, both12

quantitative and subjective, and demonstrate substantial improve-13

ments over previous approaches.14

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional15

Graphics and Realism—Animation; I.2.7 [Artificial Intelligence]:16

Natural Language Processing—Speech recognition and synthesis.17

Keywords: Speech Animation, Visemes, Machine Learning.18

1 Introduction19

Automated speech animation (also known as lip synchronization or20

lip sync) is an important and time-consuming aspect of character21

animation. Broadly speaking, speech animation is the task of mov-22

ing the facial features of a graphics model to give the impression of23

speech (e.g., synchronize with the spoken audio), and the goal of24

automated speech animation is to perform this task in a (near-)fully25

automated fashion.26

The use of speech animation in practice has typically involved an27

unpleasant trade-off between production speed and quality. At one28

extreme, large budget productions employ many professional ani-29

mators who can spend several hours manually animating just a few30

short seconds of speech, and key-framing every frame (or every31

few frames). At the other end, high-volume or low-budget produc-32

tions use overly simplified libraries of lip shapes combined with33

naive interpolation methods to quickly generate low-quality speech34

animation. In the middle are mid-budget productions that use the35

latter approach as an initialization, and them employ a few artists to36

somewhat refine the animation.37

As humans, we are all experts on faces and are able to identify asyn-38

chrony between audio and visual speech, causing poor speech ani-39

mation to appear somewhat distracting. Furthermore, the McGurk40

effect shows that mismatch between visual and audio speech can41

change what the viewer perceives to have heard [McGurk and Mac-42

Donald 1976]. Thus, proper speech animation is crucial for effec-43

tive animation in general.44

In this paper, we show that a simple and fast machine learning ap-45

proach can achieve dramatic improvements upon previous work in46

automatic speech animation. We present an audio-to-visual speech47

animation pipeline based on a recently proposed sliding window48

regression approach [Kim et al. 2015] that can generate realistic49

speech animation. The key performance gains are due to:50

• Utilizing complex predictors such as deep neural networks51

[Rumelhart et al. 1988] and decision trees [Maimon and52

Rokach 2005] that can learn highly non-linear mappings from53

phonetic inputs to animation outputs. We find that both neu-54

ral networks and decision trees perform well, with neural net-55

works performing the best.56

• Utilizing a multivariate sliding window predictor [Kim et al.57

2015] that captures natural variation and coarticulation in58

acoustic and visual speech. One key tuning parameter is the59

size of the sliding window. We find that this parameter is easy60

to tune, in part due to how quickly our predictors train.61

• Making predictions in a relatively compact yet expressive Ac-62

tive Appearance Model space [Cootes et al. 2001; Matthews63

and Baker 2004]. This allows for predictions to be easily com-64

posed with various retargeting approaches and thus mapped to65

arbitrary graphics characters.66

In summary, our approach is simple to employ, requires minimal67

parameter tuning or feature engineering, generalizes well to novel68

input speech sequences, and is easily composable with existing re-69

targeting approaches. Our approach also extends trivially to ensem-70

ble machine learning methods such as random forests; however, we71

find the quantitative performance gains to be minimal, and the sub-72

jective differences to be neglible.73

This paper provides a detailed description of our end-to-end ap-74

proach, including discussing design decisions, and analyzing the75

relative importance of different system components. We show that76

our approach is easy to deploy with respect to design decisions77
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Edge	Detection Speech	Animation

4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

Embeddings of	Visual	Style (Briefly)	Generating	Faces
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.
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Challenges

• Output	Space?

• 400x300	Image
– 120000	Pixels
– 2120000	Labels!
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Today	(first	half): Learning	Reductions

• Convert	complicated	problem	into	simpler	ones
– Use	complex	models	for	simpler	problems
– E.g.,	decision	trees,	neural	nets

• Recompose	predictions	for	complicated	problem

5



Strong	Local	Properties

• Local	patterns	matter
– E.g.,	image	patches

• Complex	relationship
– Non-linear
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Weak	Global	Properties

• Edge	detections	local

• Can	ignore	most	
of	image
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rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Sliding	Window	Approach
(Decomposition)

• Train	model	to	predict
patches
– E.g.,	16x16

• Slide	across	image

• What	model?
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Recall:	Binary	Decision	Tree

Male?

Age>8? Age>11?

1 0 1 0

Yes

Yes Yes No

No

No

Internal	Nodes

Leaf	Nodes

Root	Node

Every	internal	node	has	a	binary	
query	function	q(x).

Every	leaf	node	has	a	prediction,
e.g.,	0	or	1.

Prediction	starts	at	root	node.
Recursively	calls	query	function.
Positive	response	è Left	Child.
Negative	response	è Right	Child.
Repeat	until	Leaf	Node.

Alice
Gender:	Female
Age:	14

Input:

Prediction:	Height	>	55”	

9



Structured	Decision	Tree

• Each	leaf	node	predicts	a	16x16	edge	matrix
– Average	of	all	training	patch	labels	

• Prediction	is	very	fast!
– Slide	predictor	across	image,	average	results
– No	need	for	Viterbi-type	algorithms

• What	is	splitting	criterion?
• What	is	query	set?

10



Structured	Information	Gain

11

“Structured	Random	Forests	for	Fast	Edge	Detection”
Dollár &	Zitnick,	ICCV	2013

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|m), were limited to using m  2. Our experiments
indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y 0 = {0, 1}d⇥d for the latter, where d indicates
patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).

Good! Bad!



Structured	Information	Gain

1. First	map	labels	to	coordinate	system
A. For	each	coordinate,	choose	pair	of	pixels
B. Set	coordinate	to	1	if	in	same	segment,	0	o.w.
• Coordinate	1	=	0
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“Structured	Random	Forests	for	Fast	Edge	Detection”
Dollár &	Zitnick,	ICCV	2013
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	approach	more	complicated.)



Structured	Information	Gain

1. First	map	labels	to	coordinate	system
A. For	each	coordinate,	choose	pair	of	pixels
B. Set	coordinate	to	1	if	in	same	segment,	0	o.w.
• Coordinate	1	=	0
• Coordinate	2	=	1
• Etc…
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	approach	more	complicated.)

For	each	training	example!



Structured	Information	Gain

1. First	map	labels	to	coordinate	system
A. For	each	coordinate,	choose	pair	of	pixels
B. Set	coordinate	to	1	if	in	same	segment,	0	o.w.
• Coordinate	1	=	0
• Coordinate	2	=	1
• Etc…

2. Cluster	training	labels	
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For	each	training	example!
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Multiclass	Entropy

• Reduced	training	labels	to	K	clusters
– Can	treat	as	multiclass	classification

• Impurity	measure	=	multiclass	entropy

15

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|m), were limited to using m  2. Our experiments
indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y 0 = {0, 1}d⇥d for the latter, where d indicates
patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).



Query	Set

• Features	about	color	gradients
– Image	gets	darker	from	column	1	to	column	5
– Image	gets	more	blue	from	row	7	to	row	3
– Etc…
– 7228	features	total
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Fig. 4. Visualizations of matches and errors of SE+MS+SH compared to BSDS ground truth edges. Edges are thickened to two
pixels for better visibility; the color coding is green=true positive, blue=false positive, red=false negative. Results are shown at three
thresholds: high precision (T⇡.26, P⇡0.88, R=.50), ODS threshold (T⇡.14, P=R⇡.75), and high recall (T⇡.05, P=.50, R⇡0.93).

5 RESULTS
In this section we analyze the performance of our structured
edge (SE) detector in detail. First we analyze the influence
of parameters in §5.1 and test SE variants in §5.2. Next, we
compare results on the BSDS [1] and NYUD [44] datasets
to the state-of-the-art in §5.3 and §5.4, respectively, reporting
both accuracy and runtime. We conclude by demonstrating the
cross dataset generalization of our approach in §5.5.

The majority of our experiments are performed on the
Berkeley Segmentation Dataset and Benchmark (BSDS500)
[35], [1]. The dataset contains 200 training, 100 validation,
and 200 testing images. Each image has hand labeled ground
truth contours. Edge detection accuracy is evaluated using
three standard measures: fixed contour threshold (ODS), per-
image best threshold (OIS), and average precision (AP) [1].
To evaluate accuracy in the high recall regime, we additionally
introduce a new measure, recall at 50% precision (R50), in
§5.2. Prior to evaluation, we apply a standard non-maximal
suppression technique to our edge maps to obtain thinned
edges [7]. Example detections on BSDS are shown in Figure 3
and visualizations of edge accuracy are shown in Figure 4.

5.1 Parameter Sweeps
We set all parameters with the help of the BSDS validation set
which is fully independent of the test set. Parameters include:

structured forest splitting parameters (e.g., m and k), feature
parameters (e.g., image and channel blurring), and model
and tree parameters (e.g. number of trees and data quantity).
Training takes ⇠20 minute per tree using one million patches
and is parallelized over trees. Evaluation of trees is parallelized
as well, we use a quad-core machine for all reported runtimes.

In Figures 5-7 we explore the effect of choices of splitting,
model and feature parameters. For each experiment we train
on the 200 image training set and measure edge detection
accuracy on the 100 image validation set (using the standard
ODS performance metric). All results are averaged over 5
trials. First, we set all parameters to their default values
indicated by orange markers in the plots. Then, keeping all but
one parameter fixed, we explore the effect on edge detection
accuracy as a single parameter is varied.

Since we explore a large number of parameters settings, we
perform our experiments using a slightly reduced accuracy
model that is faster to train. Specifically we train using fewer
patches (2 · 105 versus 106) and utilize sharpening (SH) but
not multiscale detection (MS). Also, the validation set is
more challenging than the test set and we evaluate using 25
thresholds instead of 99, further reducing accuracy (.71 ODS).
Finally, we note that sweep details have changed slightly from
the our previous work [14]; most notably, the sweeps now
utilize sharpening but not multiscale detection.

“Structured	Random	Forests	for	Fast	Edge	Detection”
Dollár &	Zitnick,	ICCV	2013

(Actual	approach	more	complicated.)



Putting	it	Together	

• Create	new	training	set	Ŝ =	{(x,ŷ)}
– x	=	16x16	image	patch
– ŷ =	16x16	ground	truth	edges

• Train	structured	DT	on	Ŝ

• Predict	by	sliding	DT	over	input	image
– Average	predictions

17

“Structured	Random	Forests	for	Fast	Edge	Detection”
Dollár &	Zitnick,	ICCV	2013

(Actual	approach	more	complicated.)
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Recomposition
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.
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ODS OIS AP FPS

Human .80 .80 - -
Canny .60 .64 .58 15
Felz-Hutt [11] .61 .64 .56 10
Hidayat-Green [16] .62† - - 20
BEL [9] .66† - - 1/10
gPb + GPU [6] .70† - - 1/2‡

gPb [1] .71 .74 .65 1/240
gPb-owt-ucm [1] .73 .76 .73 1/240
Sketch tokens [21] .73 .75 .78 1
SCG [31] .74 .76 .77 1/280
SE-SS, T=1 .72 .74 .77 60

SE-SS, T=4 .73 .75 .77 30
SE-MS, T=4 .74 .76 .78 6

Table 1. Edge detection results on BSDS500 [1]. Our Structured
Edge (SE) detector achieves top performance on BSDS while be-
ing 1-4 orders of magnitude faster than methods of comparable
accuracy. Three variants of SE are shown utilizing either single
(SS) or multiscale (MS) detection with variable number of evalu-
ated trees T . SE-SS, T = 4 achieves nearly identical accuracy as
gPb-owt-ucm [1] but is dramatically faster. [†Indicates results were
measured on BSDS300; ‡indicates a GPU implementation.]

5. Results

In this section we show results on two different object
contour datasets measuring both detection accuracy and
runtime performance. We conclude by demonstrating the
cross dataset generalization of our approach by testing on
each dataset using decision forests learned on the other.

BSDS 500: We begin by testing on the popular Berkeley
Segmentation Dataset and Benchmark (BSDS 500) [25, 1].
The dataset contains 200 training, 100 validation and 200
testing images. Each image has hand labeled ground truth
contours. Edge detection accuracy is evaluated using three
measures: fixed contour threshold (ODS), per-image best
threshold (OIS), and average precision (AP) [1]. Prior to
evaluation, we apply a standard non-maximal suppression
technique to our edge maps to obtain thinned edges [5]. Ex-
ample detections on BSDS are shown in Figure 2.

We evaluate our Structured Edge (SE) detector computed
at a single scale (SS) and at multiple scales (MS). For SE-
SS we show two results with T = 1 and T = 4 evaluated
decision trees at each location. Precision/recall curves are
shown in Figure 5 and results are summarized in Table 1.
Our multiscale approach either ties or outperforms the state-
of-the-art approaches [1, 31, 21], while being multiple or-
ders of magnitude faster than [1, 31] and 6⇥ faster than [21]
(all frame rates are reported on an image size of 480⇥ 320
for all methods). With only minimal loss in accuracy, our
single scale approach further improves the runtime by 5⇥
to 10⇥. In fact, with T = 1, we can perform at a frame

ODS OIS AP FPS

gPb [1] (rgb) .51 .52 .37 1/240
SCG [31] (rgb) .55 .57 .46 1/280
SE-SS (rgb) .58 .59 .53 30

SE-MS (rgb) .60 .61 .56 6
gPb [1] (depth) .44 .46 .28 1/240
SCG [31] (depth) .53 .54 .45 1/280
SE-SS (depth) .57 .58 .54 30

SE-MS (depth) .58 .59 .57 6
gPb [1] (rgbd) .53 .54 .40 1/240
SCG [31] (rgbd) .62 .63 .54 1/280
SE-SS (rgbd) .62 .63 .59 25

SE-MS (rgbd) .64 .65 .63 5

Table 2. Edge detection results on the NYU Depth dataset [33]
for RGB-only (top), depth-only (middle), and RGBD (bottom).
Across all modalities on all measures SE outperforms both gPb
and SCG while running 3 orders of magnitude faster.

rate of 60hz. This is considerably faster than [1, 31] while
reducing the ODS score from 0.74 to 0.72. Note that the
GPU implementation [6] of [1] only achieves an ODS score
of 0.70 with a runtime of 2 seconds.

In comparison to other learning-based approaches to
edge detection, we considerably outperform [9] which com-
putes edges independently at each pixel given its surround-
ing image patch. We slightly outperform sketch tokens [21]
in both accuracy and runtime performance. This may be the
result of sketch tokens using a fixed set of classes for se-
lecting split criterion at each node, whereas our structured
forests can captured finer patch edge structure.

NYU dataset: The NYU Depth dataset (v2) [33] contains
1, 449 pairs of RGB and depth images with corresponding
semantic segmentations. Ren and Bo [31] adopted the data
for edge detection allowing for testing edge detectors us-
ing multiple modalities including RGB, depth, and RGBD.
We use the exact experimental setup proposed by [31] using
the same 60%/40% training/testing split (and use 1/3 of the
training data as a validation set) with the images reduced to
320 ⇥ 240 resolution (preprocessing scripts available from
[31]). In [31] and our work, we treat the depth channel in
the same manner as the other color channels. Specifically,
we recompute the gradient channels over the depth channel
(with identical parameters) resulting in 11 additional chan-
nels. Example SE results are shown in Figure 4.

In Table 2 we compare our approach to the state-of-the-
art approaches gPb-owt-ucm (adopted to utilize depth) and
SCG [31]. Precision/recall curves for all approaches are
shown in Figure 3. Across all measures, our approaches
(SE-SS and SE-MS) perform significantly better than SCG
when using RGB only and depth only as an input. For
RGBD our multi-scale approach performs considerably bet-

6

Comparable	accuracy	
vs state-of-the-art	

Much	faster!

“Structured	Random	Forests	for	Fast	Edge	Detection”
Dollár &	Zitnick,	ICCV	2013

Accuracy	
Measures

Speed
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Speech	Animation
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Automatically	Animate	to	Input	Audio?
(Given	Training	Data)

21

A	Decision	Tree	Framework	for	Spatiotemporal	Sequence	Prediction
Taehwan	Kim,	Yisong	Yue,	Sarah	Taylor,	Iain	Matthews.		KDD	2015
A	Deep	Learning	Approach	for	Generalized	Speech	Animation
Sarah	Taylor,	Taehwan	Kim,	Yisong	Yue,	et	al.		SIGGRAPH	2017



Training	Data

• ~2500	Sentences
– Recorded	at	30	Hz
– ~10	hours	of	recorded	speech

• Active	Appearance	Model
– Actor’s	lower	face
– 30	degrees	of	freedom	(also	100+)

Data	from	[Taylor	et	al.,	2012]22



bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1
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put/output pairs drawn from P (x, y),
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correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

Prediction	Task
Input	sequence

Output	sequence

Goal: learn	predictor

Phoneme	sequence

Sequence	of	face	configurations
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minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.
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Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

X

Y

Temporal	curvature	can	vary	smoothly	or	sharply
(Depends	on	context	– this	is	the	co-articulation	problem)

Minimal	long-range	dependencies
(prediction =	construction =	election…)
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Co-Articulation	is	Hard	to	Get	Right
(Strong	Local	Properties)



Weak	Global	Properties

• No	need	to	model	entire	chain	directly

• Motivates	sliding	window	approach!
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bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.
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Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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Query	Set	for	Speech	Animation
Frame	8	is	a	
vowel	that
contains	/a/?

Frame	8	is	
a	sibilant	
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contains	/o/?

Frames	indexed	by	1-11	(center	is	frame	6)

… … … …
yes no

yes no noyes

Full	tree	has	5K+	leaf	nodes
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Multivariate	Regression	Tree

• Prediction:

• Training	loss:	multivariate	squared	loss:

150
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Prediction	on	New	Speaker
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A	Decision	Tree	Framework	for	Spatiotemporal	Sequence	Prediction
Taehwan	Kim,	Yisong	Yue,	Sarah	Taylor,	Iain	Matthews.		KDD	2015
A	Deep	Learning	Approach	for	Generalized	Speech	Animation
Sarah	Taylor,	Taehwan	Kim,	Yisong	Yue,	et	al.		SIGGRAPH	2017
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ŷ1, ŷ2, . . .

h(x̂)

“ S I G G R A P H ”

s s ih ih ih
s ih ih ih g
ih ih ih g g
ih ih g g g
ih g g g r

Input speech:

…

…

(b)

(c)

(d)

(e)

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

P
ar

am
et

er
 1

-50

0

50

100

s ih g r ae f

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

33



Side-by-Side	User	Study

Comparing	our	approach	versus	competitor	on	50	held-out	 test	sentences.

“A	Decision	Tree	Framework	for	Spatiotemporal	Sequence	Prediction”
Kim,	Yue,	Taylor,	Matthews,	KDD	2015,	http://projects.yisongyue.com/visual_speech 34



Side-by-Side	User	Study
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Aside: Retargeting
Reference	face	è target	face

(Semi-)Automatic:
Deformation	Transfer	[Sumner	&	Popovic 2004]
Finds	linear	transform (requires	reference	pose)

Manual:
Pose	basis	shapes	&	linear	blending
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Learning	Reductions	Recap

• Know	how	to	solve	“standard”	ML	problems
– Classification,	regression,	etc.
– SVMs,	logistic	regression,	decision	trees,	neural	nets,	etc.

• “Reduce”	complex	problems	to	simple	ones?	
– Variable-length	trajectories	èmultivariate	regression

• Similar	to	other	reduction	problems
– E.g.,	NP-complete	reductions
– Some	learning	reductions	have	provable	guarantees

Many	toolkits	available!

Still	non-trivial!
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Other	Learning	Reductions

• Multiclass	è Binary
• Cost-weighted	è Unweighted
• Ranking	è Binary	
• Sequential	èMulticlass
• And	many	more…
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4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

Learning	Visual	Style
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Learning	Visual	Clothing	Style	with	Heterogeneous	Dyadic	Co-occurrences	
Andreas	Veit,	Balazs Kovacs,	Sean	Bell,	Julian	McAuley,	Kavita Bala,	Serge	Belongie,	ICCV	2015

Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences

Andreas Veit⇤ 1, Balazs Kovacs⇤ 1, Sean Bell1, Julian McAuley3, Kavita Bala1, Serge Belongie1,2

1 Department of Computer Science, Cornell University 2 Cornell Tech
3 Department of Computer Science and Engineering, UC San Diego

Abstract

With the rapid proliferation of smart mobile devices,
users now take millions of photos every day. These include
large numbers of clothing and accessory images. We would
like to answer questions like ‘What outfit goes well with this
pair of shoes?’ To answer these types of questions, one has
to go beyond learning visual similarity and learn a visual
notion of compatibility across categories. In this paper, we
propose a novel learning framework to help answer these
types of questions. The main idea of this framework is to
learn a feature transformation from images of items into a
latent space that expresses compatibility. For the feature
transformation, we use a Siamese Convolutional Neural
Network (CNN) architecture, where training examples are
pairs of items that are either compatible or incompatible.
We model compatibility based on co-occurrence in large-
scale user behavior data; in particular co-purchase data
from Amazon.com. To learn cross-category fit, we introduce
a strategic method to sample training data, where pairs of
items are heterogeneous dyads, i.e., the two elements of a
pair belong to different high-level categories. While this ap-
proach is applicable to a wide variety of settings, we focus
on the representative problem of learning compatible cloth-
ing style. Our results indicate that the proposed framework
is capable of learning semantic information about visual
style and is able to generate outfits of clothes, with items
from different categories, that go well together.

1. Introduction

Smart mobile devices have become an important part of
our lives and people use them to take and upload millions
of photos every day. Among these photos we can find large
numbers of clothing and food images. Naturally, we would
like to answer questions like “What outfit matches this pair
of shoes?” or “What desserts would go well along this
entrée?” A straightforward approach to answer this type

⇤These two authors contributed equally; the order is picked at random.

Figure 1: Example similar and dissimilar items predicted by
our model. Each row shows a pair of clusters; items on the
same side belong to the same clothing category and clus-
ter. (a): each row shows two clusters that are stylistically
compatible; (b): each row shows incompatible clusters.

of questions would be to use fine grained recognition of
subcategories and attributes, e.g., “slim dark formal pants,”
with a graph that informs which subcategories match to-
gether. However, these approaches require significant do-
main knowledge and do not generalize well to the intro-
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http://vision.cornell.edu/se3/projects/clothing-style/



Training	Data

• Ground	set	of	items	
– ~1M	items
– Image	of	item	x
– Category	of	item	c

• Coat,	belt,	pants,	socks,	etc.

• Pairwise	relationships
– “frequently	bought	together”
– Interpret	as	visually	compatible
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Training	Goal	
(ignoring	regularization)
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argmin
Θ

L+ Φ(xi ),Φ(x j )( )
(i, j )∈D
∑ + L− Φ(xi ),Φ(x j )( )

(i, j )∈ !D
∑

All	Model	
Parameters

Compatible	
Pairs

Incompatible	
Pairs

Only	pairs	in	different	categories.

Embedding	of	image Embedding	of	image

Penalizes	too	far Penalizes	too	close



Recall:	Convolutional	Neural	Networks
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Siamese	Convolutional	Neural	Networks

49
More	details:	http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf

CNNxi

CNNxj

φi

φj

L Φ(xi ),Φ(x j )( )Same	Model!



Recap:	Training	Goal
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argmin
Θ

L+ Φ(xi ),Φ(x j )( )
(i, j )∈D
∑ + L− Φ(xi ),Φ(x j )( )

(i, j )∈ !D
∑

All	Model	
Parameters

Compatible	
Pairs

Incompatible	
Pairs

Only	pairs	in	different	categories.

Embedding	of	image Embedding	of	image

Penalizes	too	far Penalizes	too	close

Model	Embedding	via	Siamese	Convolutional	Neural	Network!



Training	Details

• Want	embedding	dimension	smaller
– E.g.,	128	rather	than	4096

• Need	to	subsample	negative	pairs
– Most	items	are	not	frequently	bought	together
– Negative	component	can	overwhelm	objective
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Figure 3: Visualization of a 2D embedding of the style space trained with strategic sampling computed with t-SNE [19]. The
embedding is based on 200,000 images from the test set. For a clear visual representation we discretize the style space into a
grid and pick one image from each grid cell at random. See the supplemental for the full version.

aggregated co-purchase data from Amazon. In particular,
we define two items to be compatible, comp(a, b), if “a and
b are frequently bought together” or “customers who bought
a also bought b”. These are terms used by Amazon.com.
Further, the relationships in the dataset do not come directly
from the users, but reflect Amazon’s recommendations [13],
which are based on item-to-item collaborative filtering. For
example, two items of similar style tend to be bought to-
gether or by the same customer. Many of the relationships
in the co-purchase graph are not based on visual similarity,
but on an implicit human judgment of compatibility. We ex-
pect the aggregated user behavior data to recover the com-
patibility relationships between products. However, there
are challenges associated with using user behavior data, as it
is very sparse and often noisy. While users tend to buy prod-
ucts they like, not buying a product does not automatically
imply a user dislikes the item. Specifically in the Amazon
dataset, two items that are not labeled as compatible are not
necessarily incompatible.

4. Learning the style space

Given a query image, we want to answer questions like:
“What item is compatible with the query item, but belongs
to a different category?” More formally, let the query image

be denoted by Iq and the item depicted in the image be q.
The membership of the item q to a category Ci is denoted by
q 2 Ci. Further, let comp(q, r) denote the boolean function
that items q and r are compatible with one another. Then,
our goal is to learn a function r = retrieve(Iq, j) to retrieve
an item r such that comp(q, r) and q 2 Ci, r 2 Cj , i 6= j.
To retrieve compatible items, we learn a feature transfor-
mation f : Iq ! sq from the image space I into the style
space S, where compatible items are close together. Then,
we can use the style space descriptor sq to look up compat-
ible neighbors to q.

The data on co-purchased items represents the aggre-
gated preferences of the Amazon customers and defines a
latent space that captures the customers’ consensus on style.
We are especially interested in the specific space that cap-
tures style compatibility of clothing items from different
categories. Since Siamese CNNs learn a space defined by
the training data, choosing the right sampling method of the
training examples is important.

In this section, we first describe our novel sampling strat-
egy to generate training sets that represent notions of style
compatibility across categories. Then, we show how to train
a Siamese CNN to learn a feature transformation from the
image space into the latent style space.

http://www.cs.cornell.edu/~andreas/iccv15.pdf



Suggesting	Outfits
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4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

Upper
Garment

Lower
Garment

Footware

http://www.cs.cornell.edu/~andreas/iccv15.pdf



Suggesting	Outfits

• Given	query	item	i
– Embedding	ϕi=Φ(xi|Θ)
– Category	ci

• For	other	categories
– Recommend	item	with	closest	embedding	ϕ

• Not	robust	to	label	noise!
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http://www.cs.cornell.edu/~andreas/iccv15.pdf



Label	Noise

• Amazon	category	labels	are	noisy
– Eg.,	some	pants	mis-categorized	as	shoes

• Pants	are	visually	very	similar

55

Relationships between products

Pants Shoes

Φ(			) Φ(			)

Relationships between products

≈
Mis-categorized!



Making	Robust	Suggestions

• Mis-categorizations	are	rare
– Instead	of	predicting	closest	shoe…
– Predict	closest	cluster	of	shoes!

• Preprocessing:	cluster	every	category	

• Given	input	query	(category=pants)
– Find	closest	cluster	center	(category=shoes)
– Output	shoes	item	close	to	cluster	center

56
http://www.cs.cornell.edu/~andreas/iccv15.pdf



Compute	Coherence	of	Outfit
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Outfits in the wild

Least coordinated

Most coordinated
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Temporal dynamics

http://cseweb.ucsd.edu/~jmcauley/pdfs/www16a.pdf
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https://arxiv.org/abs/1710.10196 https://www.youtube.com/watch?v=XOxxPcy5Gr4

(Briefly)	Generating	Faces



Latent-Variable	Generative	Models

60

Neural	NetZ

https://arxiv.org/abs/1710.10196

Analogous	to	U	matrix	in	SVDAnalogous	to	Vmatrix	in	SVD

Generative	Adversarial	Network	(GAN)
(discussed	further	in	Deep	Generative	Models	lecture)



Next	Few	Lectures

• Probabilistic	Modeling,	HMMs,	etc.

• Thursday	Recitation:	Probability
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