

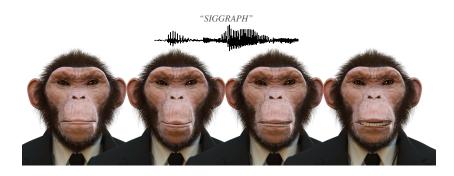
Machine Learning & Data Mining CS/CNS/EE 155

Lecture 12: Recent Applications

Today: Recent Applications

Edge Detection

Speech Animation



Embeddings of Visual Style

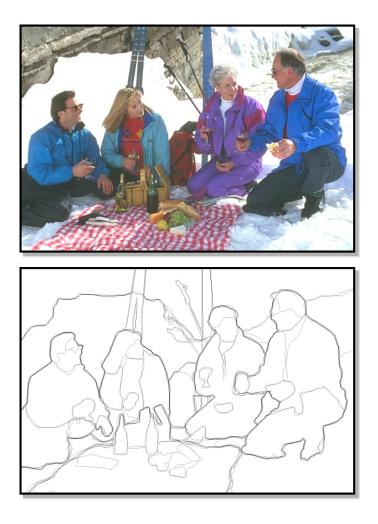
(Briefly) Generating Faces

Edge Detection

Challenges

• Output Space?

- 400x300 Image
 - 120000 Pixels
 - 2¹²⁰⁰⁰⁰ Labels!

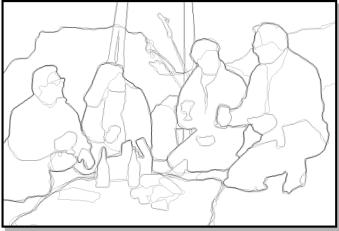


Today (first half): Learning Reductions

- Convert complicated problem into simpler ones
 - Use complex models for simpler problems
 - E.g., decision trees, neural nets
- Recompose predictions for complicated problem

Strong Local Properties

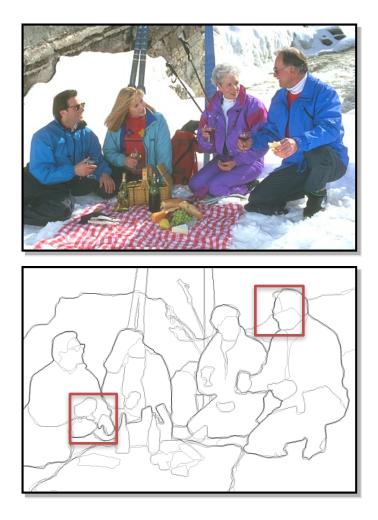
- Local patterns matter
 E.g., image patches
- Complex relationship
 Non-linear



Weak Global Properties

• Edge detections local

 Can ignore most of image



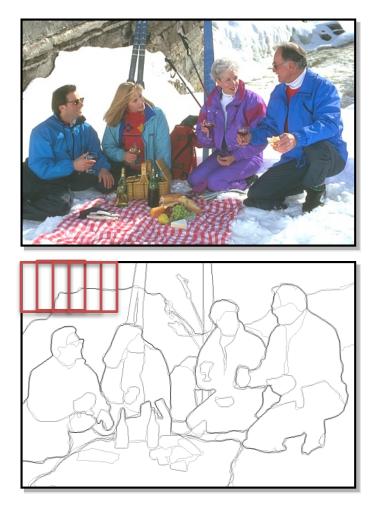
Sliding Window Approach (Decomposition)

 Train model to predict patches

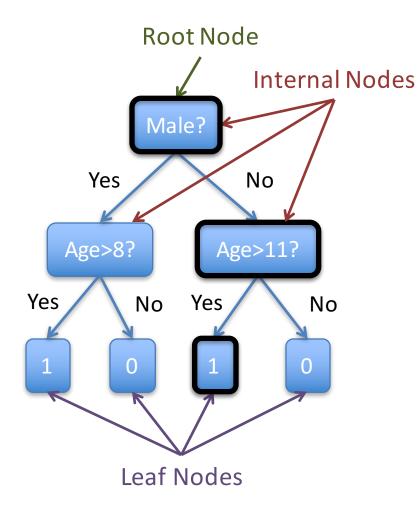
 – E.g., 16x16

• Slide across image

• What model?



Recall: Binary Decision Tree



Input:

Alice Gender: Female Age: 14

Prediction: Height > 55"

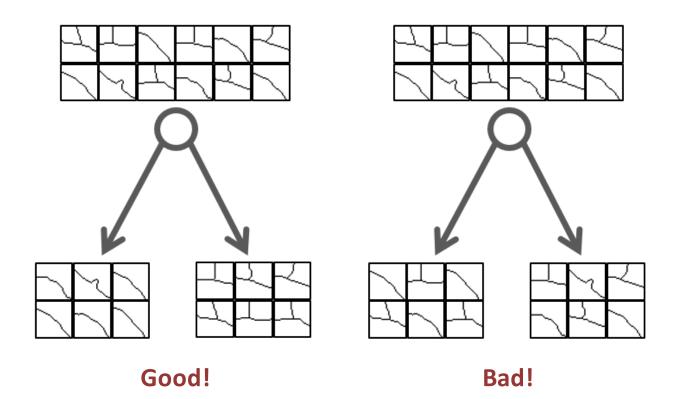
Every **internal node** has a **binary** query function q(x).

Every **leaf node** has a prediction, e.g., 0 or 1.

Prediction starts at **root node**. Recursively calls query function. Positive response → Left Child. Negative response → Right Child. Repeat until Leaf Node.

Structured Decision Tree

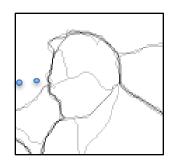
- Each leaf node predicts a 16x16 edge matrix
 Average of all training patch labels
- Prediction is very fast!
 - Slide predictor across image, average results
 - No need for Viterbi-type algorithms
- What is splitting criterion?
- What is query set?



- 1. First map labels to coordinate system
 - A. For each coordinate, choose pair of pixels
 - B. Set coordinate to 1 if in same segment, 0 o.w.
 - Coordinate 1 = 0

(Actual approach more complicated.)

- 1. First map labels to coordinate system
 - A. For each coordinate, choose pair of pixels
 - B. Set coordinate to 1 if in same segment, 0 o.w.
 - Coordinate 1 = 0
 - Coordinate 2 = 1
 - Etc...



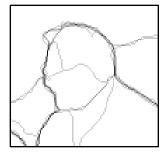
(Actual approach more complicated.)

- 1. First map labels to coordinate system
 - A. For each coordinate, choose pair of pixels
 - B. Set coordinate to 1 if in same segment, 0 o.w.
 - Coordinate 1 = 0
 - Coordinate 2 = 1
 - Etc...
- 2. Cluster training labels

(Actual approach more complicated.)

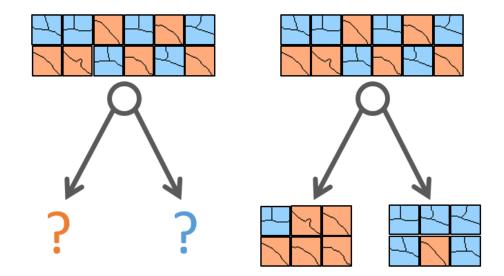
"Structured Random Forests for Fast Edge Detection" Dollár & Zitnick, ICCV 2013

For each training example!



Multiclass Entropy

- Reduced training labels to K clusters
 Can treat as multiclass classification
- Impurity measure = multiclass entropy



Query Set

- Features about color gradients
 - Image gets darker from column 1 to column 5
 - Image gets more blue from row 7 to row 3
 - Etc...
 - 7228 features total

(Actual approach more complicated.)

Putting it Together

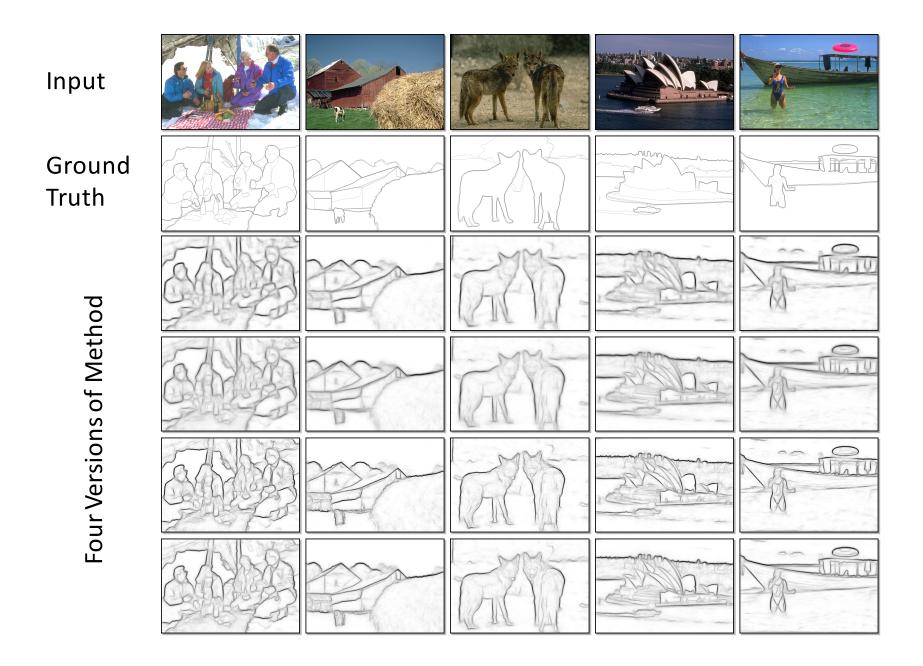
- Create new training set Ŝ = {(x,ŷ)}
 - x = 16x16 image patch
 - $-\hat{y} = 16x16$ ground truth edges
- Train structured DT on Ŝ
- Predict by sliding DT over input image

Average predictions

(Actual approach more complicated.)

"Structured Random Forests for Fast Edge Detection" Dollár & Zitnick, ICCV 2013 Decomposition

Recomposition



Comparable accuracy vs state-of-the-art

Much faster!

	ODS	OIS	AP	FPS
Human	.80	.80	-	-
Canny	.60	.64	.58	15
Felz-Hutt [11]	.61	.64	.56	10
Hidayat-Green [16]	.62†	-	-	20
BEL [9]	$.66^{\dagger}$	-	-	1/10
gPb + GPU [6]	$.70^{\dagger}$	_	-	1/2‡
gPb [1]	.71	.74	.65	1/240
gPb-owt-ucm [1]	.73	.76	.73	1/240
Sketch tokens [21]	.73	.75	.78	1
SCG [31]	.74	.76	.77	1/280
SE-SS, <i>T</i> =1	.72	.74	.77	60
SE-SS, <i>T</i> =4	.73	.75	.77	30
SE-MS, <i>T</i> =4	.74	.76	.78	6

Speech Animation

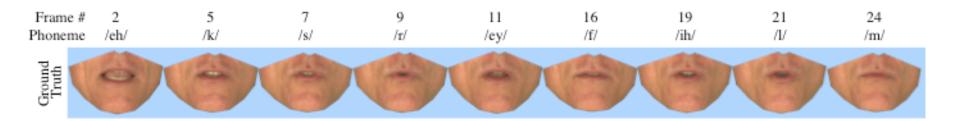
Automatically Animate to Input Audio? (Given Training Data)

A Decision Tree Framework for Spatiotemporal Sequence Prediction Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015 A Deep Learning Approach for Generalized Speech Animation Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Training Data

- ~2500 Sentences
 - Recorded at 30 Hz
 - ~10 hours of recorded speech
- Active Appearance Model
 - Actor's lower face
 - 30 degrees of freedom (also 100+)

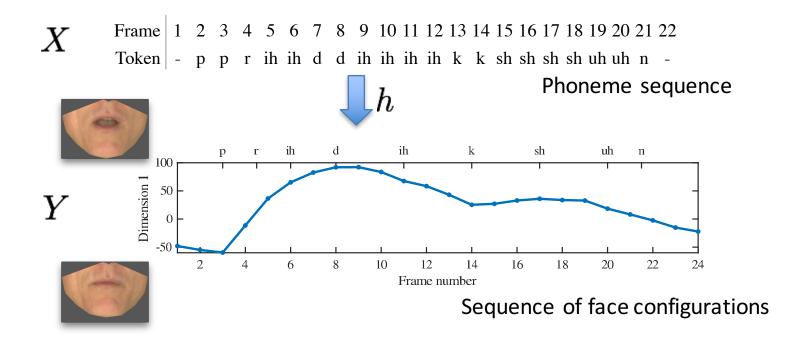


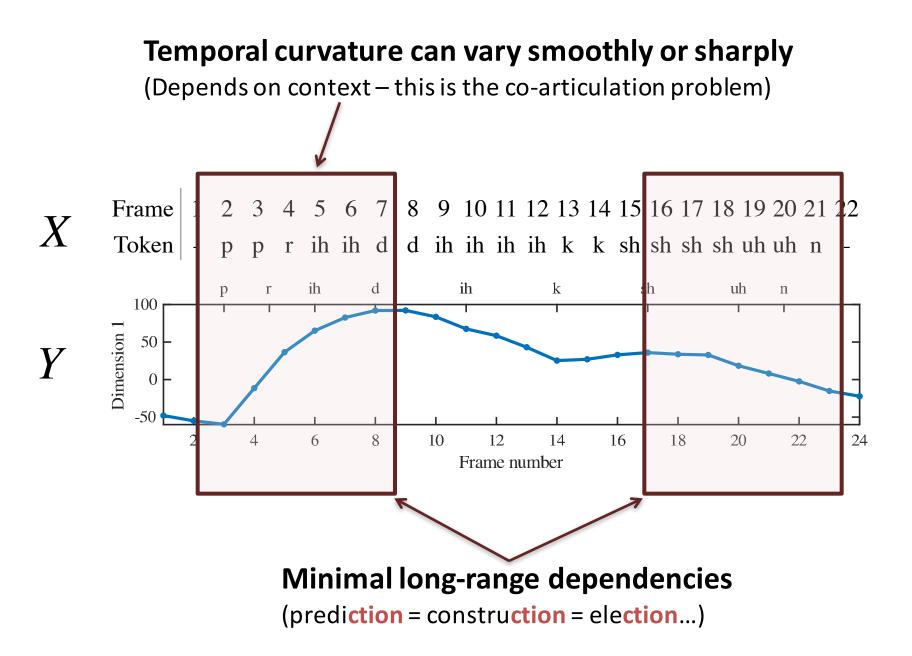


Data from [Taylor et al., 2012]₂

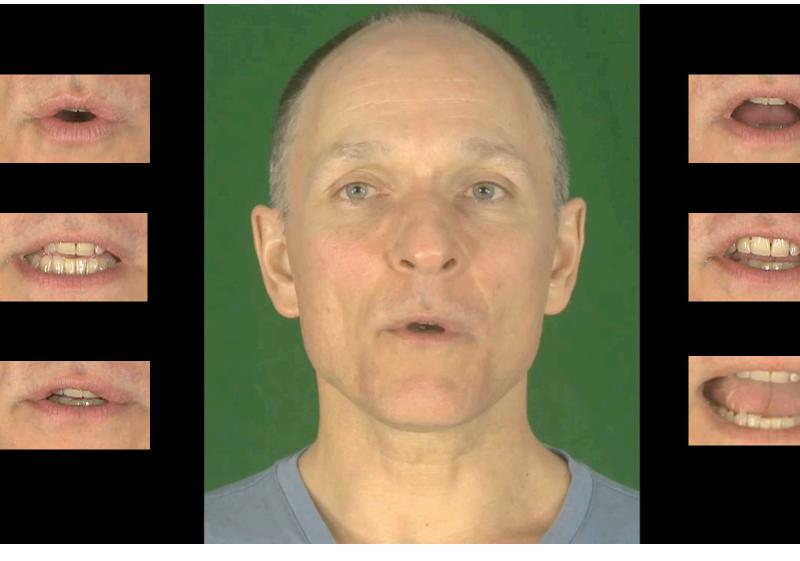
Prediction Task

- Input sequence $X = < x_1, x_2, \dots, x_{|x|} >$ Output sequence $Y = < y_1, y_2, \dots, y_{|y|} > \ , y_t \in R^D$
- **Goal:** learn predictor $h: X \to Y$





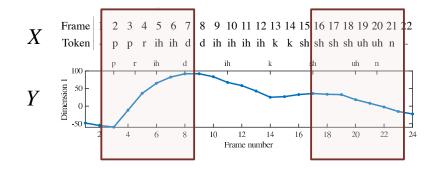
Co-Articulation is Hard to Get Right (Strong Local Properties)



/k/

Weak Global Properties

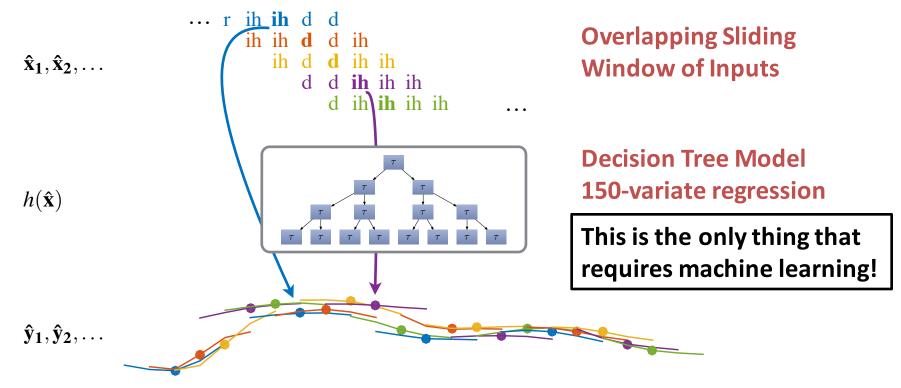
No need to model entire chain directly



Minimal long-range dependencies (prediction = construction = election...)

• Motivates sliding window approach!

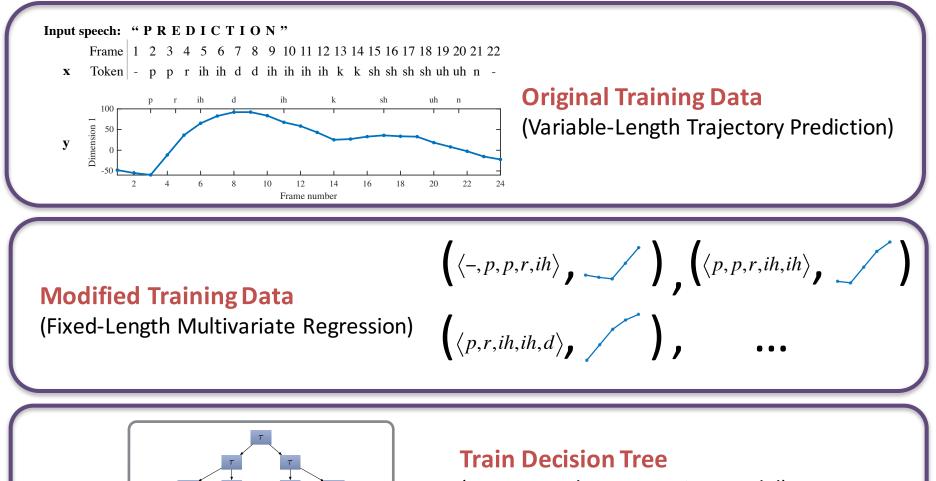
Input speech: " P R E D I C T I O N " Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 x Token p p r ih ih ih ih k k sh sh uh uh n



Aggregate Outputs

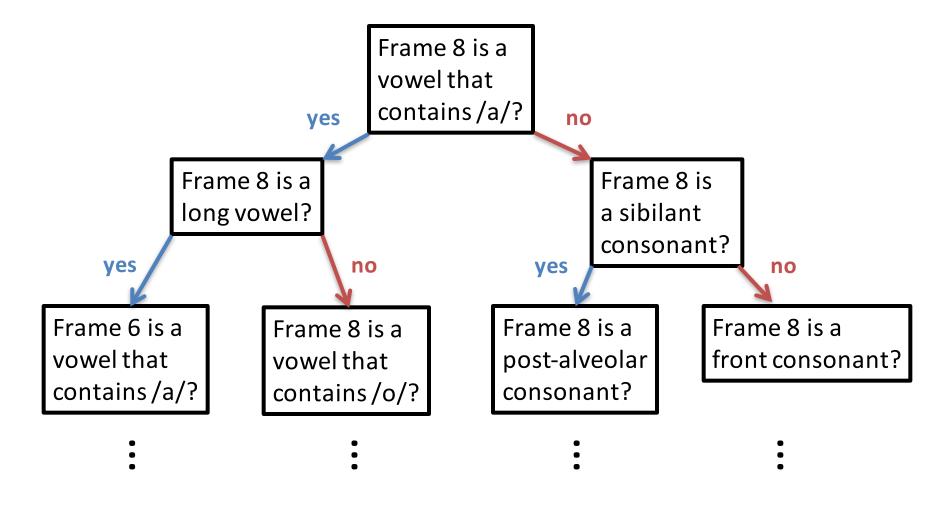
Very fast!

Training



(Or some other regression model)

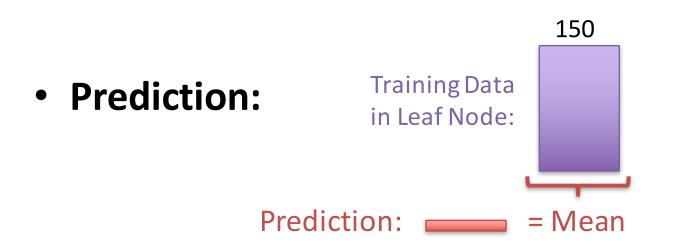
Query Set for Speech Animation



Frames indexed by 1-11 (center is frame 6)

Full tree has 5K+ leaf nodes

Multivariate Regression Tree



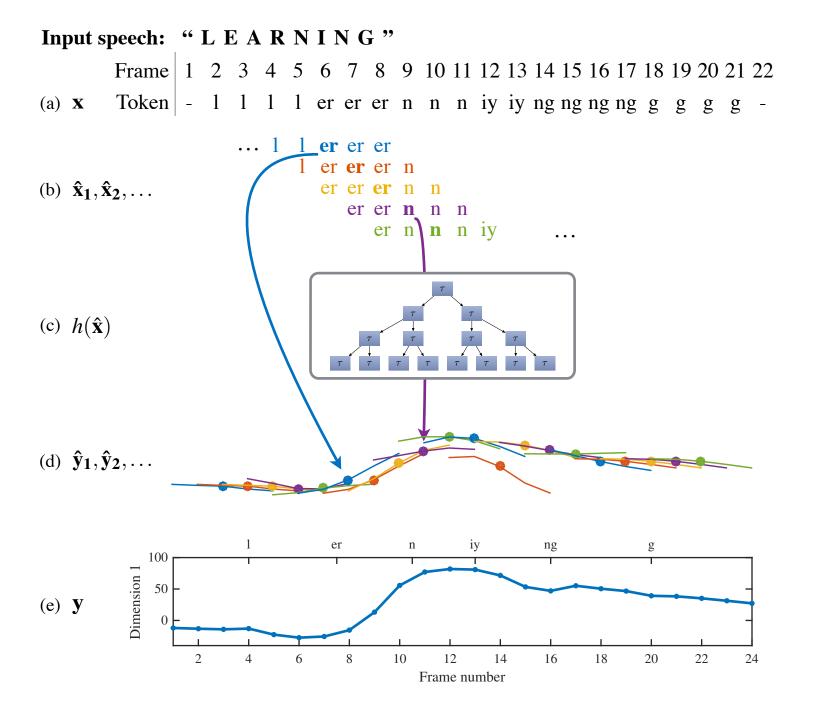
• Training loss: multivariate squared loss:

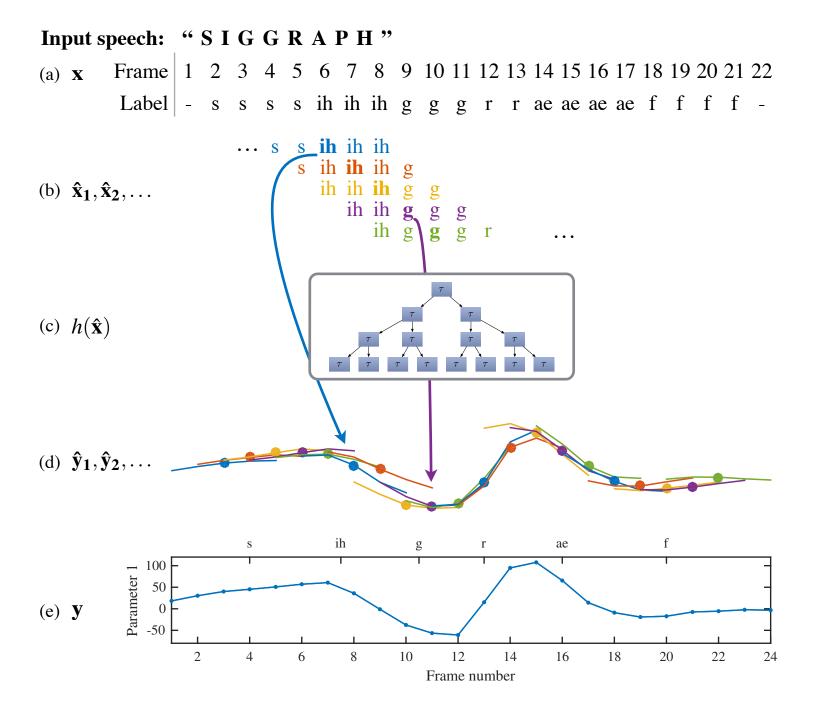
$$\sum_{Leaf} \sum_{\hat{y} \in Leaf} \left\| \hat{y}_{Leaf} - \hat{y} \right\|^2$$

Prediction on New Speaker

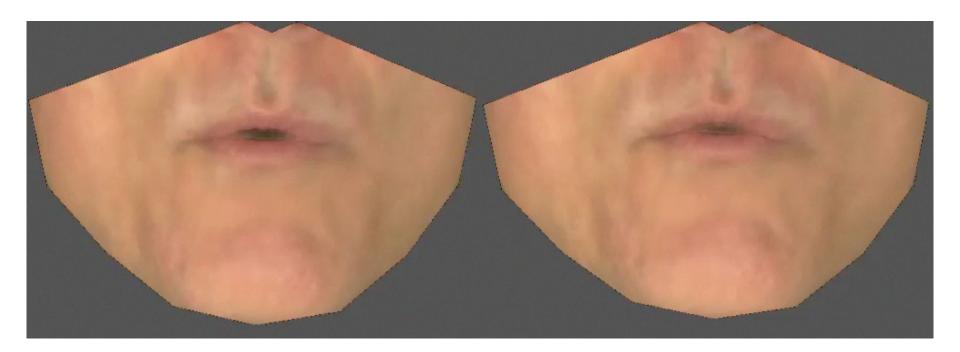


A Decision Tree Framework for Spatiotemporal Sequence Prediction Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015 A Deep Learning Approach for Generalized Speech Animation Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017





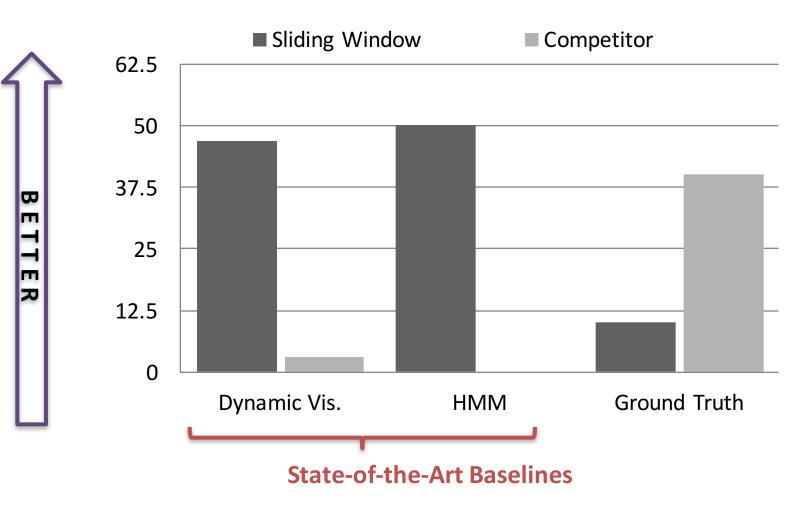
Side-by-Side User Study



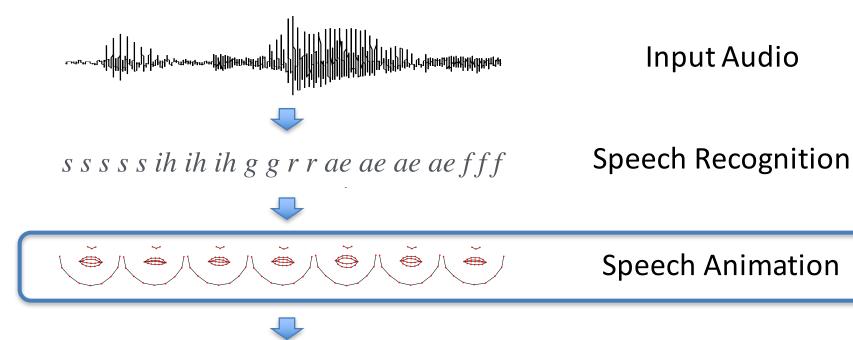
Comparing our approach versus competitor on 50 held-out test sentences.

"A Decision Tree Framework for Spatiotemporal Sequence Prediction" Kim, Yue, Taylor, Matthews, KDD 2015, <u>http://projects.yisongyue.com/visual_speech</u>

Side-by-Side User Study



Comparing our approach versus competitor on 50 held-out test sentences.

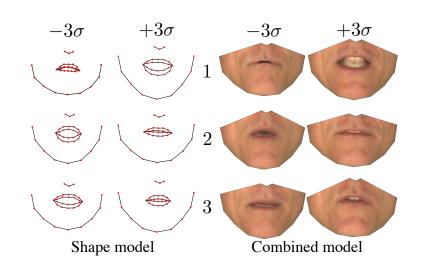


(chimp rig courtesy of Hao Li)

Retargeting E.g., [Sumner & Popovic 2004]

Editing

Aside: Retargeting



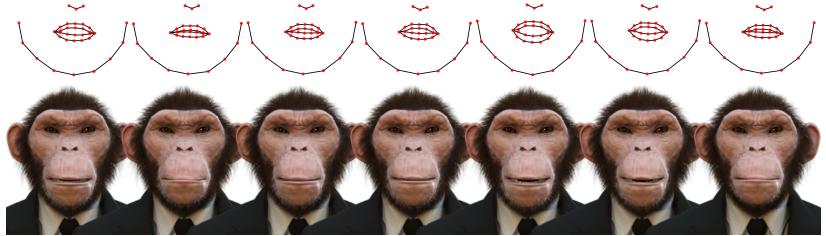
Reference face → target face

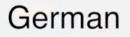
(Semi-)Automatic:

Deformation Transfer [Sumner & Popovic 2004] Finds linear transform (requires reference pose)

Manual:

Pose basis shapes & linear blending





D Disnep

Sarah Taylor Taehwan Kim

A Decision Tree Framework for Spatiotemporal Sequence Prediction Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015 A Deep Learning Approach for Generalized Speech Animation Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Sarah Taylor Taehwan Kim

A Decision Tree Framework for Spatiotemporal Sequence Prediction Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015 A Deep Learning Approach for Generalized Speech Animation Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Learning Reductions Recap

- Know how to solve "standard" ML problems
 - Classification, regression, etc.
 Many toolkits available!
 - SVMs, logistic regression, decision trees, neural nets, etc.
- "Reduce" complex problems to simple ones?
 - Variable-length trajectories

 multivariate regression
 Still non-trivial!
- Similar to other reduction problems
 - E.g., NP-complete reductions
 - Some learning reductions have provable guarantees

Other Learning Reductions

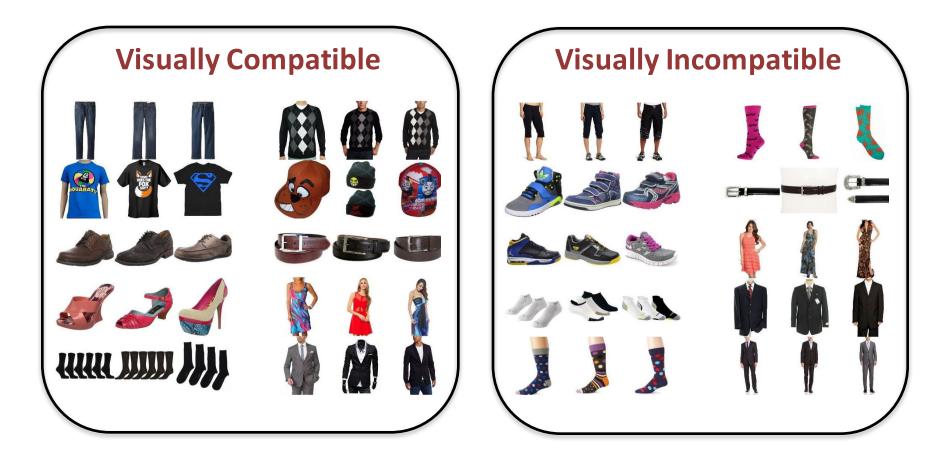
- Multiclass → Binary
- Cost-weighted
 Unweighted
- Ranking → Binary
- Sequential → Multiclass
- And many more...

http://hunch.net/~jl/projects/reductions/reductions.html

Learning Visual Style

Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, Serge Belongie, ICCV 2015



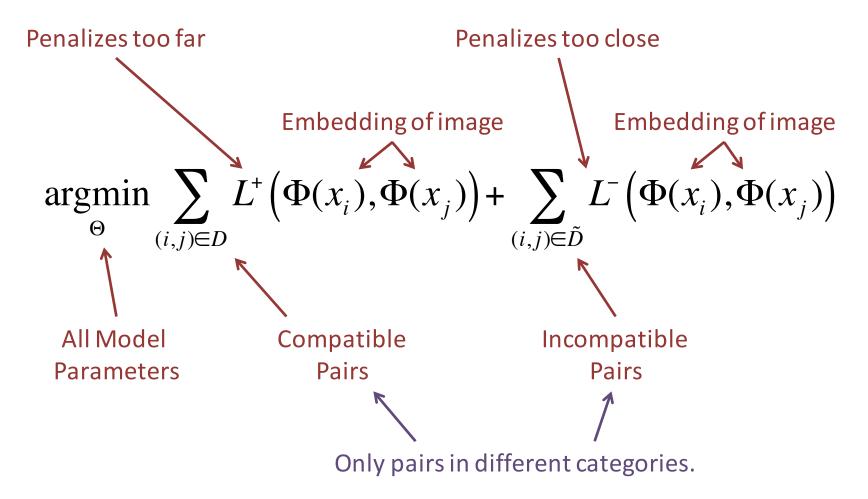
http://vision.cornell.edu/se3/projects/clothing-style/

Training Data

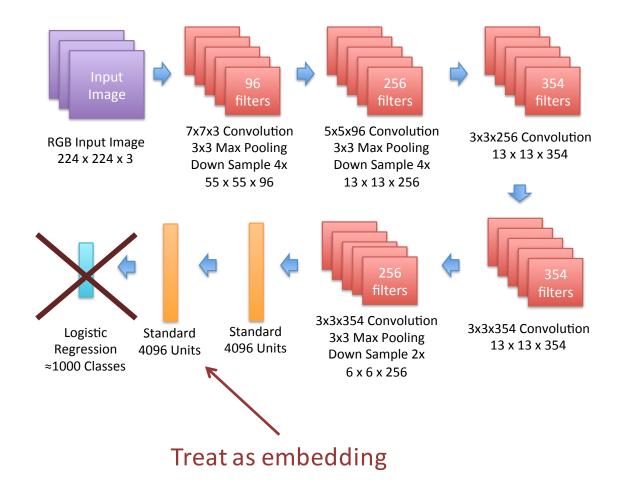
- Ground set of items
 - ~1M items
 - Image of item x
 - Category of item c
 - Coat, belt, pants, socks, etc.
- Pairwise relationships
 - "frequently bought together"
 - Interpret as visually compatible

Training Goal

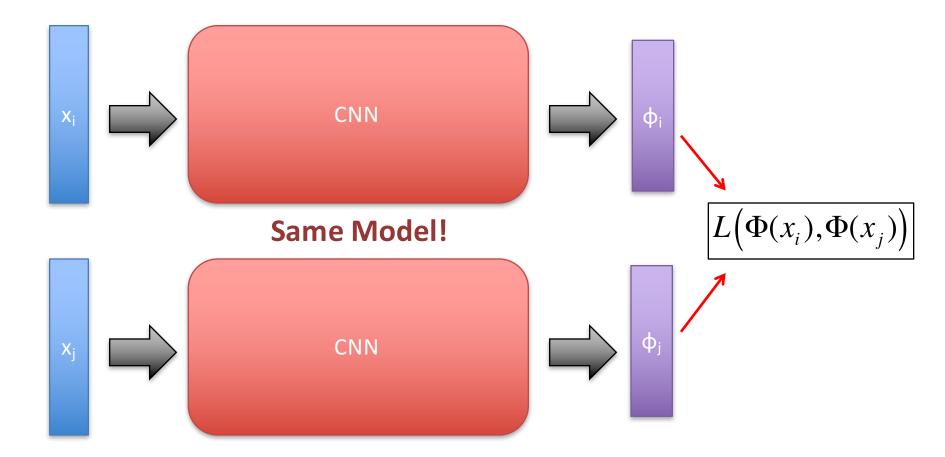
(ignoring regularization)



Recall: Convolutional Neural Networks

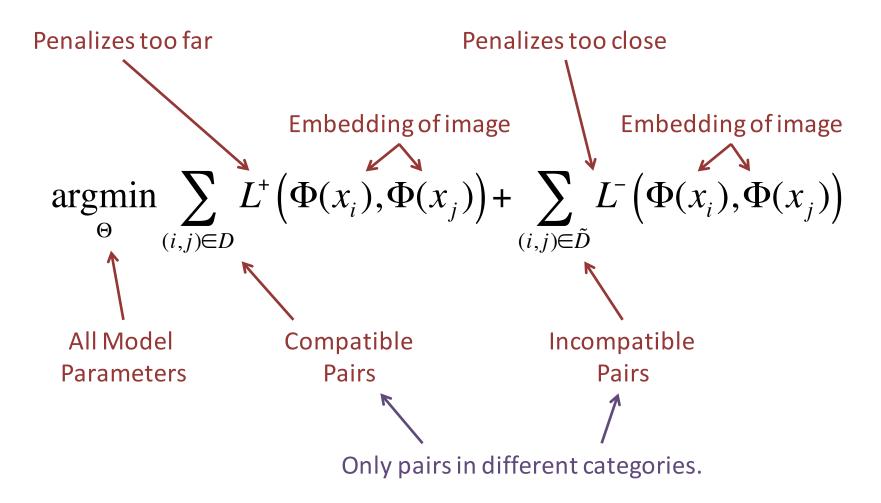


Siamese Convolutional Neural Networks



More details: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf

Recap: Training Goal

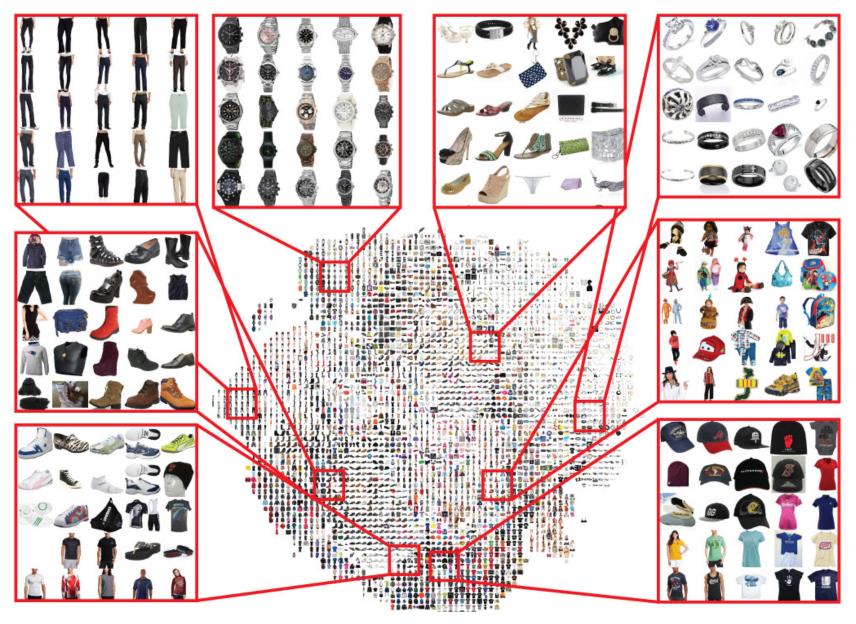


Model Embedding via Siamese Convolutional Neural Network!

Training Details

Want embedding dimension smaller
 – E.g., 128 rather than 4096

- Need to subsample negative pairs
 - Most items are not frequently bought together
 - Negative component can overwhelm objective



Suggesting Outfits

Lower Garment

Footware

Suggesting Outfits

- Given query item i
 - Embedding $\phi_i = \Phi(x_i | \Theta)$

– Category c_i

- For other categories
 - Recommend item with closest embedding $\boldsymbol{\phi}$

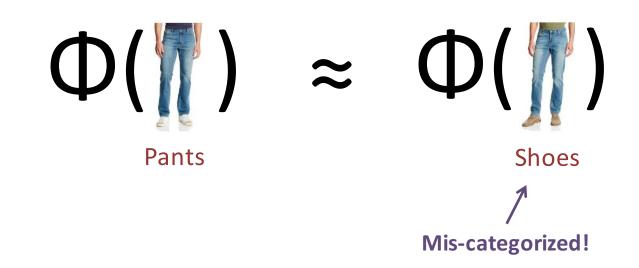
• Not robust to label noise!

Label Noise

• Amazon category labels are noisy

- Eg., some pants mis-categorized as shoes

• Pants are visually very similar



Making Robust Suggestions

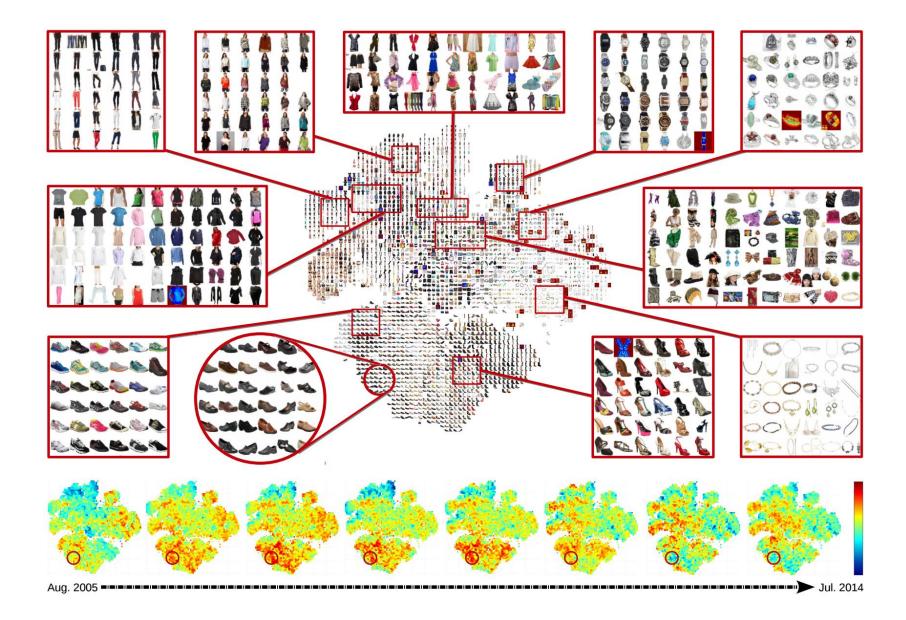
- Mis-categorizations are rare
 - Instead of predicting closest shoe...
 - Predict closest cluster of shoes!
- Preprocessing: cluster every category

- Given input query (category=pants)
 - Find closest cluster center (category=shoes)
 - Output shoes item close to cluster center

Compute Coherence of Outfit

Least coordinated

Most coordinated

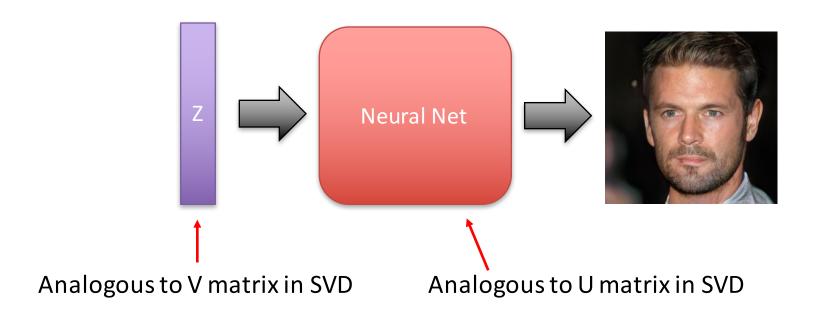


http://cseweb.ucsd.edu/~jmcauley/pdfs/www16a.pdf

(Briefly) Generating Faces

https://arxiv.org/abs/1710.10196 https://www.youtube.com/watch?v=XOxxPcy5Gr4

Latent-Variable Generative Models



Generative Adversarial Network (GAN)

(discussed further in Deep Generative Models lecture)

Next Few Lectures

• Probabilistic Modeling, HMMs, etc.

• Thursday Recitation: Probability