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Kaggle Competition

• Released	soon

• Teams	of	2-3

• Competition	closes	Tuesday	Feb	12th, 2pm
–Winners	announced	in	class
– Report	due	Feb	14th,	9pm
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Linear	Models

Non-Linear	Models

Overfitting Loss	Functions

Learning	Algorithms	
&	Optimization

Supervised	Learning

Unsupervised	Learning

Probabilistic	Modeling

Topic	Overview
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Today	
(Unsupervised	Learning)

• Clustering

• Dimensionality	Reduction
– Matrix	Factorization
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What	is	Clustering?

• Clustering	is	the	process	of	grouping	data	
points	into	“clusters”.

• High	intra-cluster	similarity

• Low	inter-cluster	similarity
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Example

Lecture	9:	Clustering	&	Dimensionality	Reduction 6



Example
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Unsupervised	Learning

• Given: unlabeled	data:
– Only	input	features
– No	labels

• Goal: find	hidden	structure/patterns
– E.g.,	hidden	structure	is	a	clustering	of	data
– A	generative	model	of	data	P(x)	
• Discussed	further	in	future	lectures

– I.e.,	a	low	dimensional	summary	of	the	data
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S = xi{ }i=1
N



Why	is	Clustering	Useful?

• Clustering	is	a	“summary”	of	data
– Can	just	inspect	cluster	centers
– Or	inspect	a	few	data	points	per	cluster
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Image	Source:	http://research.microsoft.com/en-us/people/jrwen/mm04.pdf

 
When we choose k = 6, the search results are grouped into six 
categories, as shown in figure 7. From the semantic prospective, 
these clusters are far better than figure 5 which used low level 
visual feature. Clearly, there are six semantic concepts in the re-
sults. The first category is about Pluto of solar system, having 157 
images; the second category contained 46 images about a movie 
“The adventures of Pluto Nash: The man on the moon”; the third 
category is about the carton figure Pluto, having 70 images; the 
fourth category contained 110 images about a theme park of Pluto; 
the fifth category contained 28 images on site 
“http://pluto.njcc.com/~lfrankel/” and the sixth category contained 
89 images on the site “http://pluto.njcc.com/~jhein/”. These im-
ages are retrieved because the URL of these images contain the 
word of “Pluto”. 

When we try to cluster the search results into 21 clusters, some 
clusters above were further split into smaller clusters, even though 
the images are related to the same topic. This might be due to the 
use of textual feature only.  

6.2.3 Clustering Using Graph Based Representation 
As we mentioned in Section 4.2, clustering using only graph 
based representation always generate too many clusters. In “pluto” 
case, the top 500 results are clustered into 167 clusters. The max 
cluster number is 87, and there are 112 clusters with only one 
image. Figure 8 shows part of the clusters. 

 

 

 

6.2.4 Combining Textual Feature and Link Graph 
In this sub-section, we combined the textual and link features. 
Figure 10 shows the Eigengap as a function of k. Clearly, there is 
only one peak value at k = 6. Thus the combination of textual 
feature and image link graph actually reveal the semantic structure 
of the image set (image search results). Figure 9 shows some sam-
ple images from each semantic category. 
For each semantic category, we can further re-organize them using 
visual feature. Figure 11 shows the re-organized semantic cate-
gory “Pluto in solar system” by using the low level visual features. 
This makes it more comfortable for user’s browsing. 

 

6.3 Discussion  
How to determine the number of clusters is still an open problem. 
Many works on clustering assume the number of clusters is given 
[14][21]. While in image search result clustering, it is almost im-
possible to determine the number of clusters before clustering. In 
spectral clustering settings, we can use the difference of the con-
secutive eigenvlaues to determine the number of clusters while the 

Figure 9. Six clusters of search results of query “pluto” using 
combination of textual feature and image link graph. Each row 
is a cluster  

Figure 7. Six clusters of search results of query “pluto” using 
textual feature. Each row is a cluster  

Figure 10. The Eigengap curve with k for the “pluto” case 
using textual and link combination 
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Figure 8. Five clusters of search results of query “pluto” 
using image link graph. Each row is a cluster  

Figure 11. Reorganization result of the category “Pluto in 
solar system” using low level visual feature.  
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Why	is	Clustering	Useful?

• Clustering	is	a	“summary”	of	data
– Can	just	inspect	cluster	centers
– Or	inspect	a	few	data	points	per	cluster

• Compact	pre-processing	of	data	before	
supervised	training
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)

Lecture	9:	Clustering	&	Dimensionality	Reduction 15



Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)

Lecture	9:	Clustering	&	Dimensionality	Reduction 24



Centroid	Based	Clustering	
(K-Means)
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Centroid	Based	Clustering	
(K-Means)
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K-Means	Objective
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S = xi{ }i=1
N

argmin
S=C1∪...∪CK , c1,...,cK{ }

x − ck
2

x∈Ck

∑
k
∑

Clustering Cluster	Centers

argmin
S=C1∪...∪CK

Ck var Ck( )
k
∑

Equivalent!



EM	Algorithm	for	K-Means
(Expectation/Maximization)

• E-Step
– Estimate	Ck
– Estimate	cluster	membership

• M-Step
– Estimate	ck
– Estimate	model	parameters
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argmin
S=C1∪...∪CK , c1,...,cK{ }

x − ck
2

x∈Ck

∑
k
∑

Clustering Cluster	Centers

S = xi{ }i=1
N



E-Step

• For	each	x:
– Assign	to	cluster	Ck with	smallest	distance	to	ck

Lecture	9:	Clustering	&	Dimensionality	Reduction 29

S = xi{ }i=1
Nargmin

S=C1∪...∪CK , c1,...,cK{ }
x − ck

2

x∈Ck

∑
k
∑

Centroid)Based)Clustering))
(K#Means)*
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M-Step

• For	each	ck:
– Compute	ck =	mean(Ck)
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Centroid)Based)Clustering))
(K#Means)*
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S = xi{ }i=1
Nargmin

S=C1∪...∪CK , c1,...,cK{ }
x − ck

2

x∈Ck

∑
k
∑



Interpretation

• Summarize	data	by	cluster	membership
• Learn	clustering	to	minimize	intra-cluster	variance
– “Best	reconstruction	of	the	data”
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Centroid)Based)Clustering))
(K#Means)*
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argmin
S=C1∪...∪CK , c1,...,cK{ }

x − ck
2

x∈Ck

∑
k
∑

argmin
S=C1∪...∪CK

Ck var Ck( )
k
∑



Recap:	K-Means

• Centroid-based	Clustering
– Defines	clusters	using	a	notional	of	centrality
– E.g.,	all	items	in	the	cluster	must	be	close	to	each	other

• Solve	using	EM	algorithm
– Also	probabilistic	variant	(Gaussian	Mixture	Models)

• Useful	when	centrality	assumption	is	good
– But	bad	when	centrality	assumption	is	bad…
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Thought	Experiment

Lecture	9:	Clustering	&	Dimensionality	Reduction 33

What	is	good	clustering?



Linkage	Based	Clustering
(Hierarchical	Clustering)

• K-Means	used	centroid	clustering	structure
– Clustered	data	points	are	“close”	to	cluster	center

• Sometimes	a	linkage	structure	is	better…
– Employ	hierarchical	clustering
– E.g.,	agglomerative	clustering
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Agglomerative	Clustering
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Agglomerative	Clustering

• Equivalent	to	finding	minimum	spanning	tree
– Kruskal’s Algorithm
– http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

• Order	that	edges	are	added	defines	the	cluster	
hierarchy

• Equivalent	to	finding	a	binary	tree	partitioning	
with	progressively	smaller	partition	distances
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Recap:	Clustering

• Unsupervised	learning
– Finds	the	clustering	structure	of	input	features

• Centroid	based	
– Clusters	should	be	clumped	together
– K-Means

• Linkage	Based
– Clusters	can	be	organized	hierarchically	
– Agglomerative	Clustering

• Works	great	when	clustering	assumption	is	good!
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Limitations	of	Clustering
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Principal	Component	Analysis
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Summarizing	Data

• Summarize	data	using	smaller	#attributes

• Clustering:	summarize	data	via	clusters
– K-Means:	summarize	via	cluster	membership
– Gaussian	Mixture	Model:	Summarize	via	distribution	over	K	clusters

• PCA:	summarize	via	orthogonal	projections
– Define	new	feature	representation
– Rotation	+	Projection
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S = xi{ }i=1
N



Principal	Component	Analysis
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Principal	Component	Analysis
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New	Feature	Representation!



Orthogonal	Matrix

• A	matrix	U	is	orthogonal	if	UUT =	UTU	=	I
– For	any	column	u:		uTu =	1
– For	any	two	columns	u,	u’:		uTu’	=	0
– U	is	a	rotation	matrix,	and	UT	is	the	inverse	rotation
– If	x’	=	UTx,	then	x	=	Ux’
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Principal)Component)Analysis)
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44)

x

x’
PCA	finds	a	specific	
orthogonal	U



Properties	of	Orthogonal	Matrices

• x’	=	UTx,		x	=	Ux’

• Norm	preserving:

• Preserves	Total	Variance:	
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Principal)Component)Analysis)
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N
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D

∑

Assuming	zero	mean

x 'T x ' = UT x( )
T
UT x( ) = xTUUT x = xT x



Principal	Component	Analysis
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Summarize	Using	1	Feature?



Principal	Component	Analysis
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Principal)Component)Analysis)

Lecture)12:)Clustering)&)Dimensionality)Reduc<on) 50)

Summarize	Using	1	Feature?



Principal	Component	Analysis
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Summarize	Using	1	Feature?
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Principal)Component)Analysis)
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u1u1
T xu

1

T x

Works	with	arbitrary	subsets	of	
columns	of	orthogonal	U

E.g.,	U’	=	[u1,u5,u20]

“projection”

“reconstruction”



PCA	Formal	Definition

• Define	M=matrix	of	all	data:

• Mean	center:	

• PCA:
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X = x1,..., xN[ ]∈ ReD×N

X = X − x,.., x[ ]

XXT =UΛUT

Orthogonal Diagonal
Symmetric



Properties	of	PCA

• Each	column	of	U	is	an	Eigenvector
• Each	λ is	an	Eigenvalue
– λ1 ≥	λ2	≥	…	≥	λD

Lecture	9:	Clustering	&	Dimensionality	Reduction 49

XXT =UΛUT

Assuming	zero	mean
Λ =
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λ2
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Interpretation

• Σdd’ is	the	covariance	of	features	d	&	d’	in	training	data.

• The	first	column	u1 is	the	single	direction	of	greatest	variation
– λ1 is	the	total	variationalong	u1:
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Σ = XXT =UΛUT

Assuming	zero	mean

Feature	Covariance	
Matrix:

PCA	Solution

Principal)Component)Analysis)
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λ1 = u1
T xi( )

2

i=1

N

∑ = x 'i
(1)( )

2

i=1

N

∑

u1u2



• The	first	column	u1 is	the	single	direction	that	minimizes	the	
squared	loss	of	reconstructing	the	original	x’s
– I.e.,	minimizes	the	amount	of	residual	variation

• One	can	prove	that:

• (From	definition	in	previous	slide)

Principal)Component)Analysis)Lecture)12:)Clustering)&)Dimensionality)Reduc<on)

50)

Interpretation	Continued
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Principal)Component)Analysis)
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u1 = argmin
u: uTu=1

xi −uu
T xi

2

i=1

N

∑

u1u1
T x

u
1

T x

“Residual”
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Definition:	u1 is	the	direction	that	captures	the	most	variation	

u1 = argmax
u: uTu=1

uT xi
2

i=1

N

∑

Step	1:	for	any	x,	its	residual	direction	is	orthogonal	to	u1

x −u1u1
T xResidual:

x −u1u1
T x( )

T
u1 = x

Tu1 − x
Tu1u1

Tu1 = x
Tu1 − x

Tu1 = 0

Step	2:	establish	relationship	and	complete	proof

xi −uu
T xi

2

i=1

N

∑ = xi −uu
T xi( )

T
xi −uu

T xi( )
i=1

N

∑ = xi
T xi − 2xi

TuuT xi + xi
TuuTuuT xi( )

i=1

N

∑

                        = xi
T xi − xi

TuuT xi( )
i=1

N

∑              = xi
T xi( )

i=1

N

∑ − xi
TuuT xi( )

i=1

N

∑



Interpretation	Continued
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Principal)Component)Analysis)
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Principal)Component)Analysis)
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-

Find	the	u1 that	minimizes	the	residual	squared	norm:

u1u1
T x



Solving	PCA	
(Iterative	Algorithm)

• Given:

• Init:

• For	d=1,…,D
– Solve:

– Update:
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Assuming	zero	mean

ud = argmin
u: uTu=1

Xd −uu
TXd Fro

2

X1 = X

Xd+1 = Xd −udud
T Xd

X = x1,..., xN[ ]∈ ReD×N



Property	of	PCA

• The	first	K	columns	of	U	are	guaranteed	to	be	
the	K-dimensional	subspace	that	captures	the	
most	variability	of	X

• We	just	proved	K=1	a	few	slides	ago
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XXT =UΛUT

Principal)Component)Analysis)
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Dimensionality	Reduction

• Solve	PCA:

• Use	first	K	columns	of	U	to	create	K-dim	representation:

• This	creates	a	compact	summary	of	original	dataset
– E.g.,	K	=	50,		D	=	1,000,000
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XXT =UΛUT

x ' =U1:K
T x



Example:	Eigenfaces
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http://www.cs.princeton.edu/~cdecoro/eigenfaces/

PCA	on	a	corpus	of	faces.		
Every	pixel	is	a	“feature”
Visualizing	the	top	Eigenvectors	of	U



Example:	Eigenfaces
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http://www.cs.princeton.edu/~cdecoro/eigenfaces/

U1:KU1:K
T xVisualizing	Projection	

using	top	K	Eigenvectors:



CS	155	Eigenfaces

59

Avg Face
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Singular	Value	Decomposition

• SVD	operates	on	X,	as	opposed	to	XXT

• Equivalence	between	SVD	&	PCA

• V	corresponds	to	new	representation	x’
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X =UΣVT

Orthogonal

DiagonalOrthogonal

XXT = UΣVT( ) UΣVT( )
T
=UΣVTVΣUT =UΣ2UT



Eigenfaces	Step	1

• Flatten	each	image	into	vector
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HxWx3

X

(3*H*W)xN

Each	Column	is	Image

225000-dimensional!



Eigenfaces	Step	2

• Mean	center
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X’ X= -

Per-column	subtraction

Mean



Eigenfaces	Step	3

• Singular	Value	Decomposition:
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X’ U

Σ VT

=

X ' =UΣVT

Diagonal	Matrix



Eigenfaces	Step	4

• Merging	Σ into	U	and	V:
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U’

Σ1/2

U= V’

Σ1/2

V=

X ' =UΣVT =U 'V 'T



Interpreting	U	&	V

• Each	col	of	U’	is	an	“Eigenface”
• Each	col	of	V’T =	coefficients	of	a	student
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=

Principal)Component)Analysis)
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X’ U’

225000-dimensional!

V’T
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Limitations	of	Eigenfaces

• Each	dimension	is	a	pixel	(&	color	channel)
– Not	semantically	meaningful
– Squared	reconstruction	error	in	pixel	space

• Suppose	each	dimension	had	more	meaning
– E.g.,	dim	1	=	location	of	left	eye
– Then	U	components	would	have	cleaner	visualization
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Summary

• Clustering	&	PCA	(and	SVD)	reduce	the	
dimensionality	of	data	representation.

• For	each	data	point
– Store	K	numbers
– Cluster	membership	probabilities	
– Coefficients	in	K-dimensional	projection

• Nice	visualization	&	interpretation?
– Depends	on	semantics	of	raw	dimensions…
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Next	2	Lectures

• Latent	Factor	Models

• Matrix	Factorization	with	Missing	Values
– E.g.,	the	“Netflix	Problem”

• Embeddings
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