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Lecture 9:
Clustering & Dimensionality Reduction
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Kaggle Competition

e Released soon
e Teams of 2-3

* Competition closes Tuesday Feb 12t 2pm

— Winners announced in class
— Report due Feb 14th, 9pm
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Topic Overview

Supervised Learning

Non-Linear Models Learnlng. A|.gor|.thms Probabilistic Modeling
& Optimization

Unsupervised Learning
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Today

(Unsupervised Learning)

* Clustering

* Dimensionality Reduction
— Matrix Factorization
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What is Clustering?

* Clustering is the process of grouping data
points into “clusters”.

* High intra-cluster similarity

* Low inter-cluster similarity
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Example
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Example
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Unsupervised Learning

 Given: unlabeled data: g = {x.}fv
— Only input features N
— No labels

* Goal: find hidden structure/patterns

— E.g., hidden structure is a clustering of data
— A generative model of data P(x)

e Discussed further in future lectures

— l.e., alow dimensional summary of the data
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Why is Clustering Useful?

* Clusteringis a “summary” of data
— Can just inspect cluster centers
— Or inspect a few data points per cluster
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Images Related to “Pluto”

Each Rowis a Cluster

Image Source: http://research.microsoft.com/en-us/people/jrwen/mm04.pdf
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Why is Clustering Useful?

* Clusteringis a “summary” of data
— Can just inspect cluster centers
— Or inspect a few data points per cluster

 Compact pre-processing of data before
supervised training
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Centroid Based Clustering
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Centroid Based Clustering

(K-Means)
@
@, © o ) @)
&) Q ) Q
O e ¢ o
Q ) o © @)
@ o ® O Q o Q
o) Q 1)
Q O e
® o © -
o - O @
@ @ ®
O o
® @) GGQ .
o © . ©
@ @
e o)

Lecture 9: Clustering & Dimensionality Reduction

13



Centroid Based Clustering

(K-Means)
6 <‘A>
o ® o ‘i ) o OG ¢
o o, © @ Q

Ge O @
@ @ ®
O o
66 eege
6669
@ @
e Q

Lecture 9: Clustering & Dimensionality Reduction

14



Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering

(K-Means)
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering
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Centroid Based Clustering

(K-Means)
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K-Means Objective

N
5 = {xi},-=1 argmin 2 2 [~ Ck”

S=F1U...UCK",|{61 CK} k XECk
/ '

Equivalent! Clustering Cluster Centers

argmin E‘C var(C, )

$=C,U..UC, T
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EM Algorithm for K-Means

(Expectation/Maximization)

(g {xi}: argmin E E Hx ckH

S= C1U UCK {cl CK} k xEC,
T

t 1

° E_Step Clustering Cluster Centers

— Estimate C,
— Estimate cluster membership

* M-Step
— Estimate ¢,
— Estimate model parameters
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E-Step
argmin > Y [x-c ' so{x)

S=C1U...UCK, {cl 9""CK} k ,X,'ECk

e For eachx:

— Assign to cluster C, with smallest distance to c,
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M-Step

. 2
argmin 2 E Hx - ckH

S=C1U...UCK, {Cl 9""CK} k ,X,'ECk

* For each c,:
— Compute ¢, = mean(C,)
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Interpretation

 Summarize data by cluster membership

* Learn clustering to minimize intra-cluster variance
— “Best reconstruction of the data”

O
e o . e e o) 09 2
< o Q@ e .
o Oz‘jz O °0® 3o ° argmin E E ||x—ck||
® . o ) o @ ® S=C1U...UCK, {Cl ,...,CK} k XECk
@ e ¢ 4
® e ©
O OO OOO
o A .
o ° % o argmin 2|Ck|var(Ck)
®. @ e e §=C,U..UCk
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Recap: K-Means

* Centroid-based Clustering

— Defines clusters using a notional of centrality
— E.g., all items in the cluster must be close to each other

* Solve using EM algorithm

— Also probabilisticvariant (Gaussian Mixture Models)

e Useful when centrality assumption is good

— But bad when centrality assumption is bad...

Lecture 9: Clustering & Dimensionality Reduction
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Thought Experiment

What is good clustering?
8 .! \ . l
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Linkage Based Clustering

(Hierarchical Clustering)

* K-Means used centroid clustering structure

— Clustered data points are “close” to cluster center

 Sometimes a linkage structureis better...
— Employ hierarchical clustering
— E.g., agglomerative clustering
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Agglomerative Clustering
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Agglomerative Clustering

* Equivalent to finding minimum spanning tree
— Kruskal’s Algorithm

— http://en.wikipedia.org /wiki/Kruskal%27s algorithm

* Order that edges are added defines the cluster
hierarchy

* Equivalent to finding a binary tree partitioning
with progressively smaller partition distances
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Recap: Clustering

 Unsupervised learning

— Finds the clustering structure of input features
Centroid based

— Clusters should be clumped together

— K-Means

* Linkage Based
— Clusters can be organized hierarchically
— Agglomerative Clustering

 Works great when clustering assumption is good!
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Limitations of Clustering

Lecture 9: Clustering & Dimensionality Reduction

38



Principal Component Analysis
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Summarizing Data

e Summarize data using smaller #attributes § = {xi}]j1

* Clustering: summarize data via clusters
— K-Means: summarize via cluster membership
— Gaussian Mixture Model: Summarize via distribution over K clusters

 PCA: summarize via orthogonal projections

— Define new feature representation

— Rotation + Projection
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Principal Component Analysis
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Principal Component Analysis
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New Feature Representation!
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Orthogonal Matrix

* A matrix U is orthogonal if UUT=U'U = |

Forany columnu: u'u=1

For any two columnsu, u’: u'u’=0

U is a rotation matrix, and UTis the inverse rotation

If x’ = U, then x = UX’

PCA finds a specific
orthogonal U
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Properties of Orthogonal Matrices

e xX’=U"X, x =Ux’
* Norm preserving:
x'Tx'—(U x) (UTx)=xTUUTx=xTx

* Preserves Total Variance:

D) - 33

d=1 i=

Mw

Q.

=1

Assumingzero mean
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Principal Component Analysis

Summarize Using 1 Feature?
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Principal Component Analysis

Summarize Using 1 Feature?
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Principal Component Analysis

Summarize Using 1 Feature?

“projection”

1 & wils

“reconstruction”

Works with arbitrary subsets of
columns of orthogonal U

E.g., U =[u,ug, Uyl
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PCA Formal Definition

e Define M=matrix of all data:
X =[x,...,xy | ERe”

* Mean center:
X=X-[X,.,X]

e PCA:
XX =UAU"

& TN\
Symmetric
Orthogonal Diagonal
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Properties of PCA

xXT =UAU" 4

Assumingzero mean

* Each column of U is an Eigenvector
 Each Ais an Eigenvalue

_)\12)\22...2)\[)

(XXT)ud =Au,
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Interpretation

Feature Covariance 3= XXT _ UAUT
Matrix: ~—_

Assumingzero mean PCA Solution

* 24y isthe covariance of features d & d’ in training data.

* Thefirst column u, is the single direction of greatest variation

— A, isthe total variationalonguy:
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Interpretation Continued

* The first column uy is the single direction that minimizes the
squared loss of reconstructing the original x’s

— l.e., minimizes the amount of residual variation

 One can prove that:

= argmm

w ul u=1

-—-Mll.x

“Residual”

* (From definitionin previousslide)
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Definition: u, is the direction that captures the most variation

= argmaXEHu X, H

w ul u=1

Step 1: foranyx, its residual directionis orthogonalto u;
: T
Residual: X —u U, X
r \' o7 T T . T T =0

Step 2: establish relationship and complete proof

N N

N
2 T
T T
X; —uu Xl.H = E(xi—uu .Xl.) ( X, —uu X) E(.XX 2X uux+x l/tl/t uu X)

i

(XX XI/tI/tX) i( ) i(xuux)

i=1 i=1

NMz L



Interpretation Continued

Find the u, that minimizes the residual squared norm:

T
wu x
1
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Solving PCA

(Iterative Algorithm)
* Given: X=[x1,m,xN]EReDXN Assuming zero mean
* Init: X =X

e Ford=1,...,D

— Solve: 2

. T
U, = arggmnHXd —uu X,

u. u u=1

Fro

— Update:
T
Xy =X, —uu; X,

Lecture 9: Clustering & Dimensionality Reduction
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Property of PCA
XX' =UAU"

* The first K columns of U are guaranteed to be
the K-dimensional subspace that captures the
most variability of X

 We just proved K=1 a few slides ago
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Dimensionality Reduction

+ Solve PCA: xXx!' =UAU"!

e Use first K columns of U to create K-dim representation:

1 T
A = Ul:Kx

* This creates a compact summary of original dataset
— E.g., K=50, D = 1,000,000

Lecture 9: Clustering & Dimensionality Reduction
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Example: Eigenfaces

PCA on a corpus of faces.
Every pixel is a “feature”
Visualizingthe top Eigenvectors of U

http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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Example: Eigenfaces

Visualizing Projection T
usingtop K Eigenvectors: Ul:KUl:Kx

http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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CS 155 Eigenfaces

alal I0

U k\ ‘
Avg Face E

.
ng & Dimensionality Reduction

-\

\

Lecture 9: Clusteri



10 eigenfaces

50 eigenfaces

75 eigenfaces 100 eigenfaces

-

Lecture 9: Clustering & Dimensionality Reduction

5 eigenfaces 10 eigenfaces 15 eigenfaces

20 eigenfaces 30 eigenfaces 50 eigenfaces

75 eigenfaces 100 eigenfaces 150 eigenfaces
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Singular Value Decomposition

X=UZV"
T ‘\ \Orthogonal

Orthogonal  Diagonal

* SVD operates on X, as opposed to XX’
* Equivalence between SVD & PCA
XX" =(UsV")(UsV') =USV'VEUT =USU”

* \/ corresponds to new representation x’

Lecture 9: Clustering & Dimensionality Reduction
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Eigenfaces Step 1

* Flatten each image into vector

225000-dimensional!

(3*H*W)xN

Each ColumnisImage
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Eigenfaces Step 2

* Mean center

Mean

|

Per-column subtraction
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Eigenfaces Step 3

e Singular Value Decomposition: X'=UXV?!
f

i\

Diagonal Matrix
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Eigenfaces Step 4

* MergingZintoUandV: X'=UZV' =U'V"

21/2
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Interpreting U & V

e Each col of U’ is an “Eigenface”

 Each col of V'T = coefficients of a student

VT

= U’
slal 0
225000-dimensional! - . . .
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24.138 ,-29.3105 -24.9924 ,-2.3168 -50.2606 , -16.9522 6.1785, 3.4943

13.5041 , 22.731 17.7202 , -8.7631 36.4135 , -3.6669

-51.484 , 8.5238 6.7881 , -2.3789 6.5127 , 7.5933
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Limitations of Eigenfaces

e Each dimension is a pixel (& color channel)

— Not semantically meaningful N |
— Squared reconstruction error in pixel space n ' ri

Of -
@ & W S

* Suppose each dimension had more meaning

— E.g., dim 1 =location of left eye

— Then U components would have cleaner visualization
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Summary

e Clustering & PCA (and SVD) reduce the
dimensionality of data representation.

* For each data point
— Store K numbers
— Cluster membership probabilities
— Coefficients in K-dimensional projection

* Nice visualization & interpretation?
— Depends on semantics of raw dimensions...



Next 2 Lectures

e Latent Factor Models

* Matrix Factorization with Missing Values
— E.g., the “Netflix Problem”

* Embeddings
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