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we want to learn non-linear decision boundaries
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we can do this by composing linear decision boundaries



neural networks formalize a method for building these composed functions

input
features

hidden

features

weights .

linearities

deep networks are universal function approximators



a geometric interpretation

the dot product is the shortest distance between a point and a plane

each artificial neuron defines a (hyper)plane: b

0=wo+ wix1 + woxo + ... WNT N ><

summation: distance from plane to input

non-linearity: convert distance into non-linear field

plang g example
distance " =l transformed
distance



1. cut the space up with hyperplanes
2. evaluate distances of points to hyperplanes
3. non-linearly transform these distances to get new points

repeat until data have been linearized



cat

“Alexa, what is the weather
going to be like today?”

m torques



today

: 3 il ) S
images audio & text virtual/physical control tasks

to scale deep networks to these domains,
we often need to use inductive biases



INDUCTIVE BIASES




object recognition object detection object segmentation

L

motor scooter

motor scooter legpard

go-kart jaguar

moped cheetah
bumper car snow leopard »
golfcart Egyptian cat P a0 -

Krizhevsky et al., 2012 Ren et al., 2016

ultimately, we care about solving tasks

text question answering

1 Mary moved to the bathroom.
2 John went to the hallway.
3

Where is Mary? bathroom

text translation

Analysts believe the country is unlikely to slide back into full-blown conflict, but recent

4 Daniel went back to the hallway.

5 Sandra moved to the garden.

Source o 6 Where is Daniel? hallway 4
events have unnerved foreign investors and locals. s
n 0 7 John moved to the office.
N . Les analystes estiment que le pays a peu de chances de retomber dans un conflit total,
PBMT . e . - . . , 5.0 8 Sandra j ed to the bathroom.
mais les événements récents ont inquiété les investisseurs étrangers et locaux. % i S <
. " v = = — J where 1s an na way
Selon les analystes, il est peu probable que le pays retombe dans un conflit généralisé, 10 Mary moved he hallway
GNMT mais les événements récents ont attiré des investisseurs étrangers et des habitants 2.0 i ) .
I 11 Daniel tr d to the office.
OCauX. - . . e is Daniel? office 11
Human Les analystes pensent que le pays ne devrait pas retomber dans un conflit ouvert, mais 5.0 o ant e

les récents événements ont ébranlé les investisseurs étrangers et la population locale. 14 John moved:to the badroon

15 Where ndra? bathroom 8

WU et al., 201 6 1 Sandra 's.;.'il‘.L

2 Sandra wen

to the office.

to the bathroom.

3 Where is ira? bathroom 2

Weston et al., 2015
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ultimately, we care about solving tasks

autonomous driving

object manipulation

Levine, Finn, et al., 2016 Waymo
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survival & reproduction

ultimately, we care about solving tasks

muscle actuation navigation

cellular signaling,
maintenance

social/mating
behavior

vision
hunting,
foraging
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two components for solving any task

oriors learning



param. values param. constraints

w1
4 L2

model 1

model 2

priors

knowledge assumed beforehand

architecture activities, outputs

LJoL X JOoX JO)

o) Jolol X IO
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it's a balance!

strong priors, minimal learning weak priors, much learning
o fast/easy to learn and deploy e slow/difficult to learn and deploy
* may be too rigid, unadaptable e flexible, adaptable

for a desired level of performance on a task...

choose priors and collect data to obtain a model
that achieves that performance in the minimal amount of time
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priors are essential - always have to make some assumptions,
cannot integrate over all possible models

we are all initialized from evolutionary priors

humans seem to have a larger capacity for learning than other organisms

17 livescience.com



up until now, all of our machines have been purely based on priors

these machines can perform tasks that are impossible to hand-design

...but they are mostly still based on priors!

18 Kormushev et al.



we can exploit known structure in spatial and sequential data
to impose priors (i.e. inductive biases) on our models

inductive: inferring general laws from examples

X

this allows us to learn models in complex, high-dimensional domains
while limiting the number of parameters and data examples

19



CONVOLUTIONA
NEURAL NETWORKS




task: object recognition

—Pp Yisong

discriminative mapping from image to object identity

21



images contain all of the information about the
binary latent variable Yisong/Not Yisong

extract the relevant information about this
latent variable to form conditional probability

inference:  p(Yisong|

notice that images also contain other nuisance
information, such as pose, lighting, background, etc.

want to be invariant to nuisance information

22



data, label collection

the mapping is too difficult to
define by hand,

need to learn from data

Not Yisong

then, we need to choose

a model architecture...

23



standard neural networks require a fixed input size...

150 x 150 x 3 205 x 205 x 3 280 x 280 x 3

67,500
235,200
fewer parameters, clearer patterns,
ﬁ
but unclear patterns but more parameters
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convert to grayscale...

205 x 205 x 1 280 x 280 x 1

22,500

78,400
fewer parameters, clearer patterns,
ﬁ
but unclear patterns but more parameters
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A
10,000
v

reshape

100 x 100 x 1
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<---------- 10,000 -------->

how many units do we need?
INPUT

#units x 10,000 = # weights

/G

1 cmmmeceaaa-- > 10,000
4

: 10 =mmmmmenn-- > 100,000

»‘a @ ‘ L 100 mmeeeeee-- > 1,000,000

2 1,000 =--------- > 10,000,000

0

, 10,000 -------e- » 100,000,000
@ a @ ‘ v 100,000 =--===---- » 1,000,000,000
1,000,000 ===-==-- » 10,000,000,000

if we want to recognize even a few basic patterns at each location,
the number of parameters will explode!



to reduce the amount of learning,
we can introduce inductive biases

exploit the spatial structure of image data

28



locality
nearby areas tend to contain stronger patterns

nearby pixels tend to be similar and vary
in particular ways

nearby patches tend to share characteristics
and are combined in particular ways

nearby regions tend to be found

in particular arrangements

EEEENE
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translation invariance

relative (rather than absolute) positions are relevant

Yisong's identity is independent of absolute location of his pixels

30



let's convert locality and translation invariance into inductive biases

inputs can be
restricted to regions

O—#

locality

nearby areastend @~ 2= 0 0mm === >
to contain stronger
patterns

same filters can be applied

' throughout the input
translation roughout the inpu

invariance >

relative positions
are relevant
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these are the inductive biases of convolutional neural networks

— special case of standard (fully-connected) neural networks

weight savings

convolutional

fully-connected

” (same weights)

weight savings

convolutional

fully-connected

these inductive biases make the number of weights independent of the input size!




convolve a set of filters with the input

filter weights:

o N O
— DD
N O BN

take inner (dot) product of filter and each input location

measures degree of filter feature at input location

— feature map

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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use padding to preserve spatial size

typically add zeros around the perimeter

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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use stride to downsample the input

stride = 2

only compute output at some integer interval

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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filters are applied to all input channels

’ 3 x 3 x 3 filter tensor

each filter results in a new output channel

36



pooling locally aggregates values in each feature map

TN\

downsampling and invariance
can be applied with padding and stride

predefined operation: maximum, average, etc.

37



convolutional pop-quiz

input feature map filters output feature map

36

if we use stride=1 and padding=0 then...
how many filters are there? 36 same as the number of output channels
what size is each filter? 3 x 3 x 16  channels match the number of input channels
what is the output filter map size? 3 x 3 x 36  result of only valid convolutions

38



Caltech-101

101 classes,
9,146 images

Caltech-256

256 classes,
30,607 images

natural image datasets

ﬂdﬁnﬁlﬂ!l
AN\ VES

CIFAR-10

10 classes,
60,000 images

CIFAR-100 ImageNet
Competition Full
100 classes, 1,000 classes, 21,841 classes,
60,000 images 1.2 million images 14 million images
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convolutional models for classification
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convolutional models for detection, segmentation, etc.
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43 https://www.youtube.com/watch?v=pWénZXeWIGM




convolutional models for image generation
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CelebA-HQ
1024 x 1024

Progressive growing

https://www.youtube.com/watch?v=XOxxPcy5Gr4



filter visualization

Zeiler; 2013
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filter visualization
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filter visualization

Zeiler; 2013




filter visualization

Zeiler, 2013
49



filter visualization

Zeiler; 2013
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filter visualization
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filter visualization

Zeiler; 2013




filter visualization

Zeiler, 2013
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filter visualization

Zeiler; 2013
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filter visualization

o - {
i 2 s,

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

Qs e F - SUOY L

55 https://distill.pub/2017 /tfeature-visualization/



Output

Hidden
Layer

Hidden
Layer

Hidden
Layer

Input

convolutions applied to sequences
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WaveNet
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https://deepmind.com/blog/wavenet-launches-google-assistant/



convolutions in non-euclidean spaces

Hidden layer Hidden layer
Input S e L Output
RelLU RelLU
Spline CNN Graph Convolutional Network

Fey et al., 2017 57 Kipf & Welling, 2016



recapitulation

we can exploit spatial structure to impose inductive biases on the model

locality translation invariance
this limits the number of parameters required,

reducing flexibility in reasonable ways

can then scale these models to complex data sets to perform difficult tasks

detection segmentation

generation

58



RECURRENT
NEURAL NETWORKS




task: speech recognition

waveform

END

outputs

Graves & Jaitly, 2014

mapping from input waveform to sequence of characters

60



the input waveform contains all of the information
about the corresponding transcribed text

waveform

form a discriminative mapping:  p(text sequence|-sgm i)

again, there is nuisance information in the waveform coming from the
speaker’s voice characteristics, volume, background, etc.



data, label collection

W “OK Google...”
the mapping is too difficult to gt m
define by hand, D | “Hey Siri..."
need to learn from data
“Yo Alexa...”
Audio Transcriptions

but how do we define

the network architecture?




problem: inputs can be of variable size

standard neural networks can only handle data of a fixed input size



wait, but convolutional networks can handle variable input sizes...
can't we just use them?

Output ¢

- |
yes, we could " ./1 ooyt

Hidden
Layer

mt @ @ @0 0 00000000 O®0 0O

however, this relies on a fixed input window size

we may be able to exploit additional structure in sequence data
to impose better inductive biases



the structure of sequence data

sequence data also tends to obey

locality: nearby regions tend to form stronger patterns

translation invariance: patterns are relative rather than absolute

but has a single axis on which extended patterns occur

65



to mirror the sequential structure of the data,
we can process the data sequentially

L L 11 ]

HIDDEN —_—, —> —> — —p @ —p —p

999999

each set of colored arrows denotes shared weights

OUTPUT

maintain an internal representation during processing

— potentially infinite effective input window
— fixed number of parameters

66



a recurrent neural network (RNN) can be expressed as

Hidden State

T hy = o(Wy [hi—1,x¢])

Output

Yt — O'(W;,ht)

6/



basic recurrent networks are also a special case

of standard neural networks with skip connections and shared weights

A

<---same--»

deddidd

‘ Depth = Steps

68



therefore, we can use standard backpropagation to train,
resulting in backpropagation through time (BPTT)

= === Gradient

69



orimary difficulty of training RNNs involves
propagating information over long horizons

TTTTTTTTTTT

— = > > > = > > —> — —>

HHIHHIH

e.g. input at one step is predictive of output at much later step

learning extended sequential dependencies
requires propagating gradients over long horizons

e vanishing / exploding gradients
e |arge memory/computational footprint

70



naive attempt to fix information propagation issue

add skip connections across steps

information, gradients can propagate more easily

but...

® ncreases computation
* must set limit on window size



add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
fy = o(Wilhy1,%¢])

Input Gate
iy = o(W{[hi—1,%x¢])

Cell State
Ct = ft O Ci_1 + it ® tanh(W(T: [ht—h Xt])

Output Gate
o = o(Wllhy1,x¢])

Hidden State
h; = o; ® tanh(c;)

Output
Yt = O'(W;,ht)

/2



hi_,

add trainable memory to the network
read from and write to "cell” state

Long Short-Term Memory (LSTM)

Forget Gate
f; = o(Wg[hi—1,x¢])

Yyt

Input Gate
iy = U(WIT [ht—laxt})

Cell State
c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate

h
»> o;=0(Wlh; 1,x4])

Hidden State
h; = o; ® tanh(cy)

] Output
Xt Y = U(W;h{)
73



add trainable memory to the network
read from and write to "cell” state

Long Short-Term Memory (LSTM)

Forget Gate
f; = o(Wg[hi—1,x¢])

Yyt

Input Gate
iy = U(WIT [ht—laxt})

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate
o = o(Wilh;1,x))

Hidden State
h; = o; ® tanh(c;)

] Output
Xt Y = U(W;h{)
74



add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
fy = o(Wilhy1,%¢])

Yyt

Input Gate
iy = o(W{[hi—1,x])

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate

h
f o = o(Wilhy_1,x])

Hidden State
h; = o; ® tanh(c;)

Output
Yt = O (W; ht)
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add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
ft = O_(Wg [ht—la XtD

Yyt

Input Gate
i, = o(W{ [hi_1,x4])

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate
Oy = O'<W;r) [ht—la Xt])

Hidden State
h; = o; ® tanh(c;)

Output
Yt =0 (W; h,)
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add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
f; = o(Wglhi_1, %))

Yyt

Input Gate
ij; o (7<W;r {hft—l: Xf:D

Cell State
Ct = ft O Ci_1 + it ® tanh(W(T: [ht—h Xt])

Output Gate
Or = U(W(T) [ht—lzxt})

Hidden State
h; = o; ® tanh(c;)

Output
Yt — O_(W;hf>
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add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
ft = O_(Wg [ht—la XtD

Yyt

Input Gate
if = (T(W;r {hf,—la X?‘J)

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

" Output Gate
; Or — O'(Wg [ht—la Xt])

Hidden State
h; = o; ® tanh(c;)

Output
Yt =0 (W; h,)

/8



h:_;

add trainable memory to the network
read from and write to “cell” state

Long Short-Term Memory (LSTM)

Forget Gate
ft = O_(Wg [ht—la XtD

Yyt

Input Gate
iy = o(W{[hi—1,x])

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate

h
t o = o(Wilhy_1,x])

Hidden State
h; = o; ® tanh(c;)

] Output
Xt Yt = O’(W;hf>
79



hi_,

add trainable memory to the network
read from and write to "cell” state

Long Short-Term Memory (LSTM)

Forget Gate
f; = o(Wg[hi—1,x¢])

Input Gate
iy = U(WIT [ht—laxt})

Cell State

c; =f, ®c;1 +i; ©tanh(W]llh;_1,x;])

Output Gate

h
»> o;=0(Wlh; 1,x4])

Hidden State
h; = o; ® tanh(cy)

] Output
Xt YVt = O'(W;,ht)
80



memory networks

N— External Input External Output
" /__ ‘ Controller |
%’4 VAR
'>:>/—— ’ Read Heads ] Write Heads ‘
2 | 1
ﬁ Memory
Hopfield Network Gated Recurrent Unit (GRU) Neural Turing Machine (NTM)
Hopfield, 1982 Cho et al., 2014 Graves et al., 2014

d Memory usage

a Controller and temporal links

o|| —————( &
Weighted Sum

~{lill A== _— -l
= 5 QD = . !j
et I \ e l‘)
] = L — g [
Memory Networks (MemNN) Differentiable Neural Computer (DNC)
Weston et al., 2015 Graves, Wayne, et al., 2016

81 http://colah.github.io/posts/2015-08-Understanding-LSTMs/



bi-directional RNNs

up until now, we have considered the output of the network to only be a
function of the preceding inputs (filtering)

L L1 11 ]

HIDDEN —_—, —> — —p @ — @ — —p

D999999

but future inputs may help in determining this output (smoothing)

OUTPUT

can we make the output a function of both the future and the past inputs?

82



INPUT

HIDDEN

OUTPUT

HIDDEN

INPUT

o S

bi-directional RNNs

HHH

>
L
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0.7

0.6

0.5

0.4

0.3

0.2

audio classification

handwriting classification

7—' 07% Mé/ =)  FOREIGN MINISTER. O

\

x: haM‘ ap/)raveﬂi omy Such policy e
y: s
‘ dx

h a v? ap pro vi
g Htiviey

e (LA ) n A

text classification
food any find didn't she . hungry was  Mary

<8> A merry movie about merry period  people’s life

Mary was hungry . she didn’t find any food

Graves, et al., 2013

Eyolfsdottir, et al., 2017
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one to one

U

one to many

t
1

tons of options!

many to one

—

85

many to many many to many

http://karpathy.github.io/2015/05/21/rnn-effectiveness/






auto-regressive generative modeling

AWAWAWAWA

output becomes next input

87/



auto-regressive generative language modeling

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Pixel RNN uses recurrent networks to perform
auto-regressive image generation

generated samples

contex Gl T I P
: 7 e
SETULTL S0
BB
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el SRS R E

condition the generation of each pixel on a sequence of past pixels

89 van den Oord et al., 2016



MIDI music generation




recapitulation

we can exploit sequential structure to impose inductive biases on the model

| 1 1 1111

HIDDEN —>o—>0 0> >

ST

this limits the number of parameters required,
reducing flexibility in reasonable ways

OUTPUT

can then scale these models to complex data sets to perform difficult tasks
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recapitulation

we used additional priors (inductive biases) to
scale deep networks up to handle spatial and sequential data

without these priors, we would need
more parameters and data




we live in a spatiotemporal world

we are constantly getting sequences of spatial sensory inputs

embodied intelligent machines need to learn from
spatial and temporal patterns

94 Berkeley Al Research



CNNs and RNNs are building blocks for
machines that can use spatiotemporal data to solve tasks

O Agent LSTM
(a) Base A3C Agent A i i+ Re R
\' 3 \‘ 5 \/{ \ . v Aux DeConvNet " e y
g—g ? CO  Aux FC net \ g ) .
X Replay Buffer
Environment
- NS
rt o 0 0 a ) &~=— g ; ; ’
i tri1 tri2 tT+3. ___________________________ (d) Value Function Replay
...................... '.'....‘. TT
ol % Skewed ]
P sampling

tr—3 tr—2 tr—1
(¢) Reward Prediction

(b) Pixel Control

95 Jaderberg, Minh, Czarnecki et al., 2016



Jaderberg, Minh, Czarnecki et al., 2016
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