
D E E P L E A R N I N G
PA RT O N E - I N T R O D U C T I O N

C S / C N S / E E 1 5 5 - M A C H I N E L E A R N I N G & D ATA M I N I N G

I N T R O D U C T I O N &
M O T I VAT I O N

data

la
b

el
s

!3

!4

regression classification

x

y

y is continuous y is binary or categorical

y

x

!5

classification example

logistic regression
regress to the logistic transform

log
p(y = 1|x)

1� p(y = 1|x) = w|x+ b

p(y = 1|x) = 1

1 + e�(w|x+b)

minimize the binary cross entropy
loss function to find
the optimal and .w b

L

gradient descent

w w � ↵rwL

b b� ↵
@L
@b

x1

x2
y = 0
y = 1

x = (x1, x2)

linear decision boundary

!6

classification example

we need a non-linear
decision boundary

x1

x2
y = 0
y = 1

x = (x1, x2)

option 1: use non-linear terms,

(x1, x2) ! (x2
1, x

2
2, x1x2, x1, x2)

expand andx w

!7

classification example

x1

x2

y = 0
y = 1

x = (x1, x2) in both cases, transform the data
into a representation that is

linearly separable

option 2: use multiple linear
decision boundaries to compose

a non-linear boundary

option 1: use non-linear terms,

(x1, x2) ! (x2
1, x

2
2, x1x2, x1, x2)

expand andx w

we need a non-linear
decision boundary

!8

boolean operations

y = 0
y = 1

x1

x2

AND

x1

x2

OR

AND and OR are both linearly separable

x1

x2

XOR

XOR is not linearly separable,
but can be separated using

AND and OR

ANDOR

!9

boolean operations

OR

x1

x2

AND

x2

x1

x1

x2

NOT

x1

x2

AND

x1

x2

building XOR from AND and OR
composing non-linear boundaries from linear boundaries

!10

recapitulation

to fit more complex data, we need more expressive non-linear functions

we can form non-linear functions by composing stages of processing

depth: the number of stages of processing

deep learning: learning functions with multiple stages of processing

x1

x2
y = 0
y = 1

!11

you certainly can!

but we will see that with enough stages of linear boundaries,
we can approximate any non-linear function

wait…why not just use non-linear terms?

x1

x2
y = 0
y = 1

(x1, x2) ! (x2
1, x

2
2, x1x2, x1, x2)

D E E P N E U R A L N E T W O R K S

!13

artificial neuron

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

!14

weights
sums

⌃

non-linearities

x1

x2

xM

1

input
features

!15

weights
sums

⌃

non-linearities

output
features

⌃

x1

x2

xM

1

input
features

!16

weights
sums

⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

!17

multiple neurons form a layer

weights
sums

⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

!18

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

!19

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

!20

multiple layers form a network

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

!21

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

output feature sumnon-linearity

artificial neuron: weighted sum and non-linearity

h = �(s)

s = w0 + w1x1 + w2x2 + · · ·+ wMxM = w|x

sum

bias

weights

input features

!22

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

artificial neuron: weighted sum and non-linearity

=

= �()

input features
weightssum

output feature

sumnon-linearity

!23

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

h = �(s)

layer: parallelized weighted sum and non-linearity

s = W|xsj = w|
j x

one sum
per weight vector

vector of sums
from weight matrix

!24

layer: parallelized weighted sum and non-linearity

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

input features

weights

sum

output feature

sumnon-linearity

=

= �()

!25

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

network: sequence of parallelized weighted sums and non-linearities

DEFINE , , ETC.x(1) ⌘ hx(0) ⌘ x

s(1) = W(1)|x(0)

x(1) = �(s(1))

1st layer

s(2) = W(2)|x(1)

x(2) = �(s(2))

2nd layer

!26

network: sequence of parallelized weighted sums and non-linearities

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

= �()�()�()

input1st weights2nd weightsoutput

!27

recapitulation

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

we have a method for building expressive non-linear functions

deep networks are universal function approximators (Hornik, 1991)

with enough units & layers, can approximate any function

reinterpretation

the dot product is the distance between a point and a plane

each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

calculating the weighted sum corresponds to finding the shortest
distance between the input point and the weight hyperplane

!28

x1

x2

xM

⌃

1

inputs
distance from
hyperplane

reinterpretation

the non-linearity transforms this distance,
creating a field that changes non-linearly with distance

distance

plane

transformed
distance

plane

!29

x1

x2

xM

distance
⌃

transformed
distance

inputs

1

reinterpretation

a weight vector therefore becomes a filter if its hyperplane faces a
cluster of points within a region or subregion

the unit selects for the abstract feature shared by the cluster of points

!30

!31

at each stage,
1. cut the space up with hyperplanes
2. evaluate distance of each point to each hyperplane
3. transform these distances according to non-linear function
4. transformed distances become points in new space

repeat until the data are sufficiently linearized
can separate clusters with hyperplanes

reinterpretation

neural networks are functions / function approximators

can approximate a variety of functions,
particularly conditional probability distributions

big picture

their nested (deep) structure enables a broader set of functions

output = NN(inputs)

= LayerL(LayerL�1(. . .Layer1(inputs) . . .))

B A C K P R O PA G AT I O N

(hypothesis space)
all possible functions

!34

neural networks are universal function approximators,
but we still must find an optimal approximating function

we do so by adjusting the weights

optimal
approximating

function

!35

learning as optimization

Loss

Weight
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L
@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

!36

backpropagation

use chain rule to calculate gradients

a neural network defines a function of composed operations

fL(wL, fL�1(wL�1, . . . f1(w1,x) . . .))

chain rule example

input parametersx

evaluate parameter derivatives:

y = w2e
w1x

w1, w2

@y

@w1
,
@y

@w2

output y

define

v ⌘ ew1x

u ⌘ w1x

y = w2v

v = eu

then
@y

@w2
= v = ew1x

@y

@w1
=

@y

@v

@v

@u

@u

@w1
= w2 · ew1x · x

chain rule

and the loss is a function of the network outputL

!37

backpropagation
recall

s(1) = W(1)|x(0) s(2) = W(2)|x(1)

x(1) = �(s(1)) x(2) = �(s(2))

1st layer 2nd layer Loss

L

rW (1)L,rW (2)L, . . .calculate let’s start with the final layer: rW (L)L

to determine the chain rule ordering, we’ll draw the dependency graph

L
x(L)s(L)

W(L)

x(L�1)

TARGET

derivative
function

!38

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

!39

backpropagation

now let’s go back one more layer…

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

again we’ll draw the dependency graph:

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L�1)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

!40

backpropagation

notice that some of the same terms appear in both gradients

specifically, we can reuse to calculate gradients in reverse order
@L
@s(`)

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

@L
@W(L)

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

@L
@W(L�1)

!41

backpropagation

notice that some of the same terms appear in both gradients

specifically, we can reuse to calculate gradients in reverse order
@L
@s(`)

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

@L
@W(L)

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

@L
@W(L�1)

!42

backpropagation

BACKPROPAGATION ALGORITHM

!43

backpropagation

BACKPROPAGATION ALGORITHM

calculate
@L

@W(L)
L

x(L)s(L)

W(L)

x(L�1)s(L�1)x(L�2)

W(L�1)

!44

backpropagation

BACKPROPAGATION ALGORITHM

calculate
@L

@W(L)

store
@L
@s(L)

L
x(L)s(L)

W(L)

x(L�1)s(L�1)x(L�2)

W(L�1)

!45

backpropagation

BACKPROPAGATION ALGORITHM

calculate
@L

@W(L)

store
@L
@s(L)

for ` = [L� 1, . . . , 1]

use
@L

@s(`+1) to calculate
@L

@W(`)
L

x(L)s(L)

W(L)

x(L�1)s(L�1)x(L�2)

W(L�1)

!46

backpropagation

BACKPROPAGATION ALGORITHM

calculate
@L

@W(L)

store
@L
@s(L)

for ` = [L� 1, . . . , 1]

use
@L

@s(`+1) to calculate
@L

@W(`)

@L
@s(`)store

L
x(L)s(L)

W(L)

x(L�1)s(L�1)x(L�2)

W(L�1)

!47

backpropagation

BACKPROPAGATION ALGORITHM

calculate
@L

@W(L)

store
@L
@s(L)

for ` = [L� 1, . . . , 1]

use
@L

@s(`+1) to calculate
@L

@W(`)

@L
@s(`)store

return
@L

@W(1)
, . . . ,

@L
@W(L)

!48

recapitulation

most deep learning software libraries automatically calculate gradients

backpropagation calculates the loss gradients w.r.t. internal weights

“credit assignment” via chain rule

update weights using gradient of loss

Loss

Weight

gradient is propagated backward through the network

“automatic differentiation” or “auto-diff”

can calculate gradients for any differentiable operation

I M P L E M E N TAT I O N

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!51

implementation

def nn_layer(x, W):

import numpy as np

s = np.dot(W.T, x)
return np.maximum(s, 0) # ReLU

!52

implementation

class nn_layer(object):

import numpy as np

s = np.dot(self.W.T, x)

return np.maximum(s, 0) # ReLU

self.W = np.random.rand(num_input, num_output)

def __init__(self, num_input, num_output):

self.W = 0.5 * (self.W - 0.5)

initialize W from uniform(-0.25, 0.25)

def __call__(self, x):

!53

implementation

most deep learning software libraries automatically handle this for you

we need to manually implement backpropagation and weight updates

can be difficult for arbitrary, large computation graphs

and many more

just build the computational graph and define the loss

T I P S & T R I C K S

!55

non-linearities

the non-linearities are essential

different non-linearities result in different
functions and optimization surfaces

without them, the network collapses to a linear function

= �()�()�()

= =

linear

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

!57

vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small
derivative

small
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)

!58

ReLU

in the positive region, ReLU does not saturate,
preventing gradients from vanishing in deep networks

derivative = 1

derivative = 0

but in practice, this doesn’t seem to be a significant problem

in the negative region, ReLU saturates at zero,
resulting in ‘dead units’ where the gradient is zero

ReLU(x) = max(x, 0)

!59

normalization

can we prevent the gradients from saturating non-linearities
from becoming too small?

keep the inputs within the dynamic range of the non-linearity

we can normalize the activations before applying the non-linearity

stay near
here

x(`)

s(`)

s s� shift
scale

!60

batch normalization

batch norm. normalizes each layer’s activations
according to the statistics of the batch

adds stochasticity, improves generalization

keeps internal activations in similar range, speeding up training

Batch Normalization, Szegedy & Ioffe, 2015

s(`) �
s(`) � µB

�B
+ �

µB,�B are the batch mean and std. deviation

�,� are additional parameters (affine transformation)

!61

why does batch norm. work?

changing weights during training results in changing outputs;
input to the next layer changes, making it difficult to learn

during training end of trainingbeginning of training

histogram of unit activations

internal covariate shiftoriginal motivation:

Batch Normalization, Szegedy & Ioffe, 2015

batch norm. should stabilize the activations during training

!62

why does batch norm. work?

batch norm. does not seem to significantly reduce
internal covariate shift

rather, it seems that batch norm. stabilizes and
smooths the optimization surface

but actually…

How Does Batch Normalization Help Optimization?, Santurkar et al., 2018

gradient difference before and after updating previous layers

!63

regularization

neural networks are amazingly flexible…
given enough parameters, they can perfectly fit random noise

regularization combats overfitting

stochasticity (uncertainty) constraints

early stopping

val
train

Loss

Iterations

dropout

by formalizing prior beliefs on the model or data

weight penalties

w1

w2

L2

SGDbatch
norm

!64

initialization

learning is formulated as an optimization problem,
which can be sensitive to initial conditions

common strategies for weight initialization:

“causes the network to blow up and/or not learn”

uniform

w ⇠ U(�a, a) w ⇠ N (0,�)

Gaussian

!65

optimization

stochastic gradient descent (SGD):
use stochastic gradient estimate to descend the surface of the loss function

w = w � ↵r̃wL

recent variants use additional terms to maintain“memory” of
previous gradient information and scale gradients per parameter

!66

optimization

local minima and saddle points are largely not an issue

stochastic gradient descent (SGD):
use stochastic gradient estimate to descend the surface of the loss function

w = w � ↵r̃wL

recent variants use additional terms to maintain“memory” of
previous gradient information and scale gradients per parameter

in many dimensions, can move in exponentially more directions

http://sebastianruder.com/optimizing-gradient-descent/index.html

!67

connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

residual & highway
connections

Deep residual learning for image recognition, He et al., 2016

Highway networks, Srivastava et al., 2015

dense (concatenated)
connections

Densely connected convolutional networks, Huang et al., 2017

information may not be able to propagate easily
make shorter paths to output

A B U F F E T O F I D E A S

!69

attention

extraction

xatt. = x[a]
hard attention

Recurrent Models of Visual Attention, Mnih et al., 2014

re-weighting

xatt. = a� x
soft attention

Show, Attend and Tell, Xu et al., 2015

!70

gradients of non-differentiable operations

stochastic
operations

Gaussian Categorical

z ⇠ N (z;µ,�2) z ⇠ Cat.(z;µ)

examples of non-differentiable operations

zero gradient
zero gradient

in
fin

ite
g

ra
d

ie
ntdiscontinuous

operations

non-analytical
operations

agent action environment reward

!71

gradients of non-differentiable operations

calculate

r✓Ez⇠p(z;✓) [f(z)]

r✓Ez⇠p(z;✓) [f(z)] = Ez⇠p(z;✓) [f(z)r✓ log p(z; ✓)]

Score Function Estimator (REINFORCE) Williams, 1992

✓ z f(z)

Pathwise Derivative Estimator (Reparameterization) Kingma & Welling, 2014
Rezende et al., 2014

✓ z f(z)

✏
r✓Ez⇠p(z;✓) [f(z)] = E✏⇠p(✏) [r✓f(z(✏; ✓))]

Schulman et al., 2015

✓ z f(z)

stochastic

e.g. z ⇠ N (z;µ,�2) ! z = µ+ ✏ · �

!72

learning to optimize

optimization is a task �✓ = f(✓,r✓L)
update estimate using current estimate and curvature

are the parameters of the optimizee✓

is the optimizerf

learn to perform optimization

optim
ize

e

optim
ize

e

optim
ize

e

optim
ize

r

optim
ize

r

optim
ize

r

✓t�1 ✓t ✓t+1

�✓t�1 �✓t �✓t+1

r✓t�1L r✓tL r✓t+1L

adapted from Andrychowicz et al., 2016

!73

adversarial examples

current neural networks are susceptible to adversarial data examples:
optimize the data away from correct output

rx

data doesn’t change qualitatively, yet is classified incorrectly

Evtimov et al.
OpenAI
Szegedy et al., 2014, Intriguing properties of neural networks

!74

Bayesian neural networks

prevent overfitting in low-density data regions

maintain uncertainty in the network activations and/or weights

place prior probabilities on these quantities

Hernandez-Lobato, J. M.

!75

generalization

neural networks are incredibly flexible and can fit random noise

Understanding deep learning requires re-thinking generalization, Zhang et al., 2017

conventional wisdom of an abstract hierarchy of features may not hold

however, different learning behavior between fitting noise and data

!76

information bottleneck

information bottleneck theory: maximize mutual information between
the input and output while discarding all other input information

deep networks learn representations that compress the input while
preserving the relevant information for predicting the output

Schwartz-Ziv & Tishby (2017)
quantamagazine.org

P E R S P E C T I V E

!78

history

“Instead of trying to produce a
program to simulate the adult mind,

why not rather try to produce one
which simulates the child’s?

If this were then subjected to an
appropriate course of education

one would obtain the adult brain.”

-Alan Turing, 1950

!79

history
1943 - McCulloch & Pitts introduce the Threshold Logic
Unit to mimic a biological neuron

Walter Pitts Warren McCulloch

Frank Rosenblatt

1957 - Frank Rosenblatt introduces the Perceptron, with
more flexible weights and a learning algorithm.

1969 - Minsky & Papert show that the
perceptron is unable to learn the XOR function,
essentially stopping all research on neural
networks in the first “AI winter.”

Marvin Minksy Seymour Papert

!80

1986 - Rumelhart, Hinton, and Williams introduce
the backpropagation learning algorithm, which, in
fact, had already been derived as early as 1960.
Interest in neural networks increases as it is shown
that non-linear functions can be learned.David

Rumelhart
Geoff
Hinton

Ronald
Williams

history

John Hopfield

1982 - Hopfield introduces Hopfield networks, a type of recurrent
network that is able to store auto-associative memory states.

Geoff HintonTerry Sejnowski

1985 - Sejnowski & Hinton provide a method of
training restricted Boltzmann machines (RBMs), a
type of unsupervised generative model.

!81

history

Yann LeCun

1989 - Yann LeCun introduces convolutional neural networks,
which perform well on handwritten digit recognition.

Jürgen
Schmidhuber

Sepp
Hochreiter

1995 - Hochreiter & Schmidhuber introduce long short-term
memory (LSTM), which uses gating mechanisms to read and
write from a memory cell.

Geoff
Hinton

Peter
Dayan

Radford
Neal

Rich
Zemel

1995 - Hinton et al. introduce the Helmholtz
machine, a generative model that uses a
separate “inference model” to perform
posterior inference, similar to modern auto-
encoders.

!82

history

mid-2000s - 2011 - Deep learning slowly begins to gain traction as methods, primarily
for unsupervised pre-training of networks, are developed. Other techniques, such as
non-saturating non-linearities, are introduced as well. Developments in hardware and
software allow these models to be trained on GPUs, hugely speeding up the training
process. However, deep learning is not yet mainstream.

mid-1990s - mid-2000s - Interest in neural networks fade, due to data and
computational constraints as well as training difficulties (e.g. vanishing gradients).
The field moves toward SVMs, kernel methods, etc. This is the second “AI winter.”

Geoff
Hinton

2006 - Hinton et al. introduce a method for
training deep belief networks through greedy
layer-wise training. This work helps to ignite the
move back to neural networks, which are
rebranded as “deep learning.”

Simon
Osindero

Yee Whye
Teh

!83

history

Geoff
Hinton

2011, 2012 - Huge improvements on several
machine learning benchmarks (speech recognition,
computer vision) definitively show that deep
learning outperforms other techniques for these
tasks. The field grows enormously, dominating
much of machine learning.

Ilya
Sutskever

Alex
Krizhevsky

2012 - ? - Research in deep learning skyrockets as people join and new discoveries
are made. New methods and discoveries make significant contributions to
supervised learning, reinforcement learning, generative modeling, etc.

Minh et al., 2014 He et al., 2016Goodfellow et al., 2014
Rezende et al., 2014

Kingma & Welling, 2014

we are in a golden era for research on neural networks

!84

big picture

deep networks are a tool,
real progress depends on developing better learning algorithms

deep networks are
function approximators

x

y
x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

x y

parameterize conditional
probability distributions

most success has been in
supervised learning

(fit the posterior of a latent
variable using labels)

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

x

yp(y|x)

in deep (model-free) RL,
can approximate an agent’s

value function or policy

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

x

⇡(a|x) Env. Reward

!85

deep learning has allowed us to extend our learning
algorithms to many new and relevant domains

big picture

“hello”

deep learning has also enabled the development
of new learning algorithms

Generative Adversarial
Networks (GANs)

can learn more complex conditional probabilities

!86

but many (human-relevant) tasks are unsolved

big picture

data hardware compute theorysoftware

progress depends on…

!87

looking forward

deep learning in its current form may get replaced

but only by something that allows us to more easily
approximate more complex probability distributions

?x p(y|x)

N E X T T I M E

!89

Mask R-CNN

convolutional neural networks
&

recurrent neural networks

AlexNet

LSTM, Chris Olah DNC, DeepMind

