
Machine	Learning	&	Data	Mining
CS/CNS/EE	155

Lecture	5:
Decision	Trees,	Bagging	&	

Random	Forests

1

Announcements

• Homework	2	due	tomorrow
– Some	issues	arose	with	Gradescope for	HW1
– We	will	be	posting	on	Piazza	with	a	list	of	TODO’s

• Homework	3	will	be	easier	than	HW1	&	HW2

• Kaggle Competition	is	after	Homework	4

2

3

Linear	Models

Non-Linear	Models

Overfitting Loss	Functions

Learning	Algorithms	
&	Optimization

Supervised	Learning

Unsupervised	Learning

Probabilistic	Modeling

Topic	Overview

This	Lecture

• Focus	on	achieving	highest	possible	accuracy
– Decision	Trees
– Bagging
– Random	Forests
– Highly	non-linear	models

• Next	Lecture
– Boosting
– Ensemble	Selection

4

Decision	Trees

5

Person Age Male? Height	>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male?

Age>8? Age>11?

1 0 1 0

Yes

Yes Yes No

No

No

6

x y

(Binary)	Decision	Tree

Don’t	overthink	this,	it	is	
literally	what	it	looks	like.

(Binary)	Decision	Tree

Male?

Age>8? Age>11?

1 0 1 0

Yes

Yes Yes No

No

No

Internal	Nodes

Leaf	Nodes

Root	Node

Every	internal	node	has	a	binary	
query	function	q(x).

Every	leaf	node	has	a	prediction,
e.g.,	0	or	1.

Prediction	starts	at	root	node.
Recursively	calls	query	function.
Positive	response	è Left	Child.
Negative	response	è Right	Child.
Repeat	until	Leaf	Node.

Alice
Gender:	Female
Age:	14

Input:

Prediction:	Height	>	55”	

7

Queries

• Decision	Tree	defined	by	Tree	of	Queries

• Binary	query	q(x)	maps	features	to	0	or	1

• Basic	form:	q(x)	=	1[xd >	c]
– 1[x3 >	5]
– 1[x1 >	0]
– 1[x55 >	1.2]

• Axis	aligned	partitioning	of	input	space

8

9

Basic	Decision	Tree	Function	Class

• “Piece-wise	Static”	Function	Class
– All	possible	partitionings over	feature	space.
– Each	partition	has	a	static	prediction.

• Partitions	axis-aligned
– E.g.,	No	Diagonals

• (Extensions	next	week)

10

Decision	Trees	vs Linear	Models

• Decision	Trees	are	NON-LINEAR	Models!

• Example:

11

No	Linear	Model	
Can	Achieve	0	Error

Simple	Decision	Tree
Can	Achieve	0	Error

x1>0

1x2>0

0 1

Decision	Trees	vs Linear	Models

• Decision	Trees	are	NON-LINEAR	Models!

• Example:

12

No	Linear	Model	
Can	Achieve	0	Error

Simple	Decision	Tree
Can	Achieve	0	Error

x1>0

1x1>1

1 0

Decision	Trees	vs Linear	Models

• Decision	Trees	are	AXIS-ALIGNED!
– Cannot	easily	model	diagonal	boundaries

• Example:

13

Simple	Linear	SVM	can	
Easily	Find	Max	Margin

Decision	Trees	Require
Complex	Axis-Aligned	
Partitioning

Wasted	
Boundary

More	Extreme	Example

14

Decision	Tree	wastes	most	of	model	
capacity	on	useless	boundaries.

(Depicting	useful	boundaries)

Decision	Trees	vs Linear	Models

• Decision	Trees	are	often	more	accurate!

• Non-linearity	is	often	more	important
– Just	use	many	axis-aligned	boundaries	to	
approximate	diagonal	boundaries	

– (It’s	OK	to	waste	model	capacity.)

• Catch:	requires	sufficient	training	data
–Will	become	clear	later	in	lecture

15

Real	Decision	Trees

16
Image	Source:	http://www.biomedcentral.com/1471-2105/10/116

Can	get	much	larger!

Male?

Age>9? Age>11?

1 0 1 0

Yes

Yes Yes No

No

No

17

Decision	Tree	Training
Every	node	=	partition/subset	of	S
Every	Layer	=	complete	partitioning	of	S
Children	=	complete	partitioning	of	parent

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

S

x y

Thought	Experiment

• What	if	just	one	node?
– (I.e.,	just	root	node)
– No	queries
– Single	prediction	for	all	data

18

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

S

x y

1

19

20

Simplest	Decision	Tree	is	just	single	Root	Node
(Also	a	Leaf	Node)

Corresponds	to	Entire	Training	Set

Makes	a	Single	Prediction:	
Majority	class	in	training	set

Thought	Experiment	Continued

• What	if	2	Levels?
– (I.e.,	root	node	+	2	children)
– Single	query	(which	one?)
– 2	predictions	
– How	many	possible	queries?

21

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

S

x y

Query?

? ?

Yes No

22

23

#Possible	Queries	=	#Possible	Splits
=D*N

(D	=	#Features)
(N	=	#training	points)

How	to	choose	“best”	query?

Impurity

• Define	impurity	function:

– E.g.,	0/1	Loss:

24

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S)	=	1 L(S1)	=	0

S1 S2

L(S2)	=	1

Impurity	
Reduction

=	0

Classification	Error
of	best	single	prediction

No	Benefit	From
This	Split!

Impurity

• Define	impurity	function:

– E.g.,	0/1	Loss:

25

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S)	=	1 L(S1)	=	0

S1

S2

L(S2)	=	1

Impurity	
Reduction

=	0

Classification	Error
of	best	single	prediction

No	Benefit	From
This	Split!

Impurity

• Define	impurity	function:

– E.g.,	0/1	Loss:

26

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S)	=	1 L(S1)	=	0

S1 S2

L(S2)	=	0

Impurity	
Reduction

=	1

Classification	Error
of	best	single	prediction

Choose	Split	with
largest	impurity
reduction!

Impurity	=	Loss	Function

• Training	Goal:
– Find	decision	tree	with	low	impurity.

• Impurity	Over	Leaf	Nodes	=	Training	Loss

27

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑L(S) = L(S ')

S '
∑

S’	iterates	over	leaf	nodes
Union	of	S’	=	S	
(Leaf	Nodes	=	partitioning	of	S)

Classification	Error	on	S’

Problems	with	0/1	Loss

• What	split	best	reduces	impurity?

28

S

L(S)	=	1

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

L(S1)	=	0

All	PartitioningsGive	Same
Impurity	Reduction!

S1 S2 S1 S2

L(S2)	=	1 L(S1)	=	0 L(S2)	=	1

Problems	with	0/1	Loss

• 0/1	Loss	is	discontinuous

• A	good	partitioning	may	not	improve	0/1	Loss…
– E.g.,	leads	to	an	accurate	model	with	subsequent	split…

29

S

L(S)	=	1 L(S)	=	1 L(S)	=	0

S1 S2 S1 S2

S3

è è

Surrogate	Impurity	Measures

• Want	more	continuous	impurity	measure

• First	try: Bernoulli	Variance:

30

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

pS’

L(
S’
) P	=	1/2,		L(S’)	=	|S’|*1/4

P	=	1,						L(S’)	=	|S’|*0
P	=	0,						L(S’)	=	|S’|*0

Perfect	Purity

Worst	Purity

L(S ') = S ' pS ' (1− pS ') =
pos*#neg

| S ' |
pS’ =	fraction	of	S’	that	are	

positive	examples

Assuming	 |S’|=1

Bernoulli	Variance	as	Impurity

• What	split	best	reduces	impurity?

31

S

L(S)	=	5/6 L(S1)	=	0

S1 S2 S1 S2

L(S2)	=	1/2 L(S1)	=	0 L(S2)	=	3/4

L(S ') = S ' pS ' (1− pS ') =
pos*#neg

| S ' |

Best!

pS’ =	fraction	of	S’	that	are	
positive	examples

Interpretation	of	Bernoulli	Variance

• Each	partition	=	distribution	over	y
– y is	Bernoulli	distributed	with	expected	value	pS’
– Goal: partitioning	where	each	y	has	low	variance

32

S

L(S)	=	5/6 L(S1)	=	0

S1 S2 S1 S2

L(S2)	=	1/2 L(S1)	=	0 L(S2)	=	3/4

Best!

Other	Impurity	Measures

• Entropy:

– aka:	Information	Gain:

– (aka:	Entropy	Impurity	Reduction)
– Most	popular.

• Gini Index:

33
See	also:	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
(Terminology	is	slightly	different.)

L(S ') = − S ' pS ' log pS ' + 1− pS '() log 1− pS '()()

pS’

L(
S’
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Define:	0*log(0)	 =	0

IG(A,B | S ') = L(S ')− L(A)− L(B)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

pS’

L(
S’
)

L(S ') = S ' 1− pS '
2 − 1− pS '()2()

Other	Impurity	Measures

• Entropy:

– aka:	Information	Gain:

– (aka:	Entropy	Impurity	Reduction)
– Most	popular.

• Gini Index:

34
See	also:	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
(Terminology	is	slightly	different.)

L(S ') = − S ' pS ' log pS ' + 1− pS '() log 1− pS '()()

pS’

L(
S’
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Define:	0*log(0)	 =	0

IG(A,B | S ') = L(S ')− L(A)− L(B)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

pS’

L(
S’
)

L(S ') = S ' 1− pS '
2 − 1− pS '()2()

Most	Good	Impurity	Measures	
Look	Qualitatively	The	Same!

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

35

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

1 S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

36

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male? S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

1 0
L(S’)=1

Step	2:
L(S)	=	5/3

L(S’)=2/3

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

37

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male? S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

1 0
Step	2:
L(S)	=	5/3

Step	3:	Loop	over	all	leaves,	find	best	split.

L(S’)=2/3 L(S’)=1

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

38

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male? S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

Age>8? 0
Step	2:
L(S)	=	5/3

1 0Step	3:
L(S)	=	1

L(S’)=0

L(S’)=1

L(S’)=0

Try

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

39

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male? S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

1 Age>11?
Step	2:
L(S)	=	5/3

1 0Step	3:
L(S)	=	2/3

L(S’)=0 L(S’)=0

L(S’)=2/3

Try

Top-Down	Training

• Define	impurity	measure	L(S’)
– E.g.,	L(S’)	=	Bernoulli	Variance

40

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Male? S

x y

Step	1:
L(S)	=	12/7

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Loop: Choose	split	with	greatest	impurity	
reduction	 (over	all	leaf	nodes).

Repeat: until	stopping	condition.

Age>8? Age>11?
Step	2:
L(S)	=	5/3

1 0Step	3:
L(S)	=	2/3

L(S’)=0 L(S’)=0

1 0

L(S’)=0 L(S’)=0

Step	4:
L(S)	=	0

41

42

Properties	of	Top-Down	Training

• Every	intermediate	step	is	a	decision	tree
– You	can	stop	any	time	and	have	a	model

• Greedy	algorithm
– Doesn’t	backtrack
– Cannot	reconsider	different	higher-level	splits.

43

S S1 S2 S1 S2

S3

è è

When	to	Stop?

• If	kept	going,	can	learn	tree	with	zero	training	error.	
– But	such	tree	is	probably	overfitting to	training	set.

• How	to	stop	training	tree	earlier?
– I.e.,	how	to	regularize?

44

Which	one	has	better	test	error?

Stopping	Conditions	(Regularizers)

• Minimum	Size: do	not	split	if	resulting	children	are	smaller	
than	a	minimum	size.

• Maximum	Depth: do	not	split	if	the	resulting	children	are	
beyond	some	maximum	depth	of	tree.

• Maximum	#Nodes:	do	not	split	if	tree	already	has	maximum	
number	of	allowable	nodes.

• Minimum	Reduction	in	Impurity: do	not	split	if	resulting	
children	do	not	reduce	impurity	by	at	least	δ%.

45See	also,	Section	5	in:	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

46

Pseudocode for	Training

See	TreeGrowing (Fig	9.2)	in	http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Online Submission ID: 0406

• Is the phone at 3rd input frame a vowel?
• Is the phone at 2nd input frame a vowel??
• Is the place of articulation of the phone at 3rd input frame

at central??

• Is the phone at 8th input frame a sibilant consonant??
• Is the phone at 8th frame a vowel starting with /a/?
• Is the phone at 8th input frame a front consonant?

Figure 5: The most important queries as measured by raw fre-
quency (top) and weighted frequency depending on the size of the
corresponding data partition (bottom).

Algorithm 3 TRAIN(): Top-Down Decision Tree Training
1: input: S,Q, Nmin, L
2: T TREE(S) // root node
3: repeat
4: Q ;
5: for every leaf node ⌧ in T do
6: for every q 2 Q do
7: S1 {(x̂, ŷ) 2 ⌧.data| q(x̂) = 1}
8: S2 {(x̂, ŷ) 2 ⌧.data| q(x̂) = 0}
9: if |S1| � Nmin ^ |S2| � Nmin then

10: ⌧1 TREE(S1, L)
11: ⌧2 TREE(S2, L)
12: Q Q [{(⌧, q, ⌧1, ⌧2)}
13: end if
14: end for
15: end for
16: if |Q| > 0 then
17: (⌧, q, ⌧1, ⌧2) argmin(⌧ 0,q0,⌧ 0

1,⌧
0
2)
⌧ 0.`�(⌧ 0

1.`+⌧ 0
2.`)

18: ⌧.q q
19: ⌧.left ⌧1
20: ⌧.right ⌧2
21: end if
22: until |Q| = 0
23: return: T

2. For each leaf node ⌧ , we consider all possible ways of con-447

verting it into an internal node by queries q 2 Q that will split448

the data residing in that leaf node (Lines 5-15). We do not449

consider splits that result in leaf nodes that are too small, i.e.,450

smaller than some pre-specified value, Nmin (Line 9).451

3. We choose the leaf node ⌧ and query q that results in the452

largest decrease in the impurity of the training data when ⌧453

is split into two leaf nodes using q (Lines 16-21).454

4. Repeat Steps 2 and 3 until some termination condition is met,455

such as each leaf node only containing a sufficiently small456

number of data points (consequence of Lines 4, 9, 12 & 22).457

There are two crucial inter-related steps remaining. The first is to458

define a procedure for making predictions for a node in the tree.459

The second is to define a suitable notion of impurity decrease as460

required in Step 3 above. Given a prediction ⌧.ŷ at node ⌧ , the461

conventional data-driven approach defines the impurity of ⌧ using462

training error over the partition ⌧.data,463

L⌧.data(⌧.ŷ) =
X

(x̂,ŷ)2⌧.data

`(⌧.ŷ, ŷ). (4)

For (4), we extend the conventional squared error (used for conven-464

tional decision tree regression training) to the multivariate squared465

L2 distance, `(a,b) = ka� bk2. The prediction for ⌧ would then466

be the ŷ that minimizes (4). These two steps are described in Lines467

7-8 of the initialization procedure TREE() in Algorithm 1. In the468

case of squared L2 error, the predictor ⌧.ŷ is simply the mean of469

the ŷ in ⌧.data. This averaging requires all ŷ 2 ⌧.data to have the470

same dimensions.471

In order for each ⌧.ŷ to be a reliable prediction, the error estimate472

⌧.` must also be reliable. This requirement necessitates setting473

Nmin such that the training data partitions in the leaf nodes are474

sufficiently large to prevent overfitting. Typically, Nminy must in-475

crease with larger Kx and Ky , which leads to smaller and thus less476

expressive decision trees for the same amount of training data. For477

our experiments, we set Nmin = 30.478

6 Retargeting to CG Characters479

Our decision tree predictor only generates animations for the ref-480

erence face representation. One approach for retargeting the pre-481

dicted animation onto CG characters is via mesh deformation trans-482

fer (cf. [Sumner and Popović 2004]). First, for a neutral pose, all483

vertices on the triangulated source mesh corresponding to the shape484

component of the reference face representation (see Figure 2) are485

manually matched to vertices on the triangulated target mesh (a CG486

character). Each triangle in the target mesh is then corresponded to487

the closest triangle on the source mesh, provided their normals are488

in the same direction and they are within a maximum distance.3 Fi-489

nally, a linear system is solved to deform the triangles on the target490

mesh so that they approximate the deformations on the source mesh491

for any source pose. To ensure that only the mouth of the character492

moves, constraints are added such that triangles not associated with493

mouth movements follow the identity transformation.494

Afterwards, the deformed target mesh is projected onto the charac-495

ter’s rig by solving an optimization over the rig parameters that con-496

trol the mouth and jaw. Rig optimization finds valid mesh shapes497

(i.e., correspondingto rig parameterizations) that have low distance498

to the retargeted mesh shapes. For the rigs used in this paper, we499

employ gradient descent to minimize ||vdt�vrig||, where vdt are the500

stacked vertex coordinates from the deformation transferred mesh,501

and vrig are the corresponding vertices resulting from a particular502

configuration of the rig parameters. Figure 9 shows an example503

source mesh and the retargeted pose after rig optimization on a se-504

lection of CG characters. Note that mesh deformation transfer does505

not transfer non-geometric information captured in the appearance506

component of the AAM, such as the position of the tongue.507

The speed of the rig optimization is variable depending on the com-508

plexity of the rig evaluation in Maya and the number of parameters509

being optimized, and it can be slow for complex rigs. To accel-510

erate this process, rather than retargeting every animated frame,511

we instead perturb the shape component of the AAM by ±3 stan-512

dard deviations for each of the six dimensions (Figure 2 illustrates513

the first three modes) and retarget the resulting shapes to the rig514

once. The optimized parameter weights and stored and animation515

can then be directly transferred to the rig as a linear combination of516

the 12 shapes in rig parameter space very quickly.517

We emphasize that this retargeting process only needs to be pre-518

computed once for every target CG character. In particular, one519

only needs to retarget the animation prediction in every leaf node520

of the decision tree. Afterwards, the entire animation process is521

fully automatic and computationally lightweight. The retargeting522

procedure described above is also arguably the simplest effective523

3The iteration step described in [Sumner and Popović 2004] is skipped
as all the vertices in the source mesh are matched to vertices in the target
mesh.

6

Stopping	condition	is	minimum	
leaf	node	size:	Nmin

Select	from	Q

Online Submission ID: 0406

Algorithm 1 TREE(): Initialize Decision (Sub-)Tree Data Structure
1: input: S //data partition
2: input: L //loss function
3: Initialize data structure T :
4: T .data S // pointer to training data partition
5: T .q NULL // decision query
6: T .left NULL // subtree for positive query response
7: T .right NULL // subtree for negative query response
8: T .` L(S) // impurity/loss on training data partition
9: return: T

predicting a “sliding window” series of overlapping fixed-285

length subsequences. Second, we extend conventional deci-286

sion tree regression to predict fixed-length subsequences.2287

• We define an expressive query set to use for training an ac-288

curate decision tree. We also analyze of the queries used in289

our learned tree and show that they correspond to known in-290

tuitions of visual speech (see Supplementary Material).291

5.1 Decision Tree Preliminaries292

Let S = {(xi, yi)}Ni=1 denote a training set of phoneme/animation293

sequence pairs. Following conventional decision tree regression294

[Quinlan 1986; Maimon and Rokach 2005], our goal is to learn295

a decision tree predictor h(x) such that the error between h(x) and296

the ground truth y over the training set S,297

LS(h) =
X

(x,y)2S

`(h(x), y), (2)

is small. Because the model predicts high dimensional multivariate298

outputs, we use squared L2 error `(a, b) = ka� bk2, although one299

can employ any convex error function without significant modifica-300

tion to our approach. Section 5.4 describes the standard top-down301

approach to training decision trees.302

A decision tree can be instantiated recursively using the data struc-303

ture intialization procedure denoted TREE() and described in Algo-304

rithm 1. Each node in the decision tree corresponds to a partition305

of the training data. The first call to TREE() instantiates a singleton306

decision tree with exactly one node (i.e., a single leaf node) that307

corresponds to the entire training data. Each node has pointers to308

a left and right child (which are NULL for leaf nodes), with each309

child capable of being instantiated using TREE(). For an internal310

node T , its two children correspond to a complete binary partition-311

ing of the training data contained in T .data. The partitioning is312

induced by the binary query function T .q. Training data that re-313

spond positively to T .q are partitioned to the left child, and the rest314

are partitioned to the right child. In essence, the decision tree learns315

a partitioning of the training data (based on queries of the input x)316

such that the y’s in the resulting partitions are homogenous. See317

Section 5.3 for more details on the query set Q.318

At test time, only T .q, T .left, T .right, and T .ŷ are required.319

For any input x, one traverses the tree from the root to a leaf node320

using the query functions T .q stored at each internal node. One321

then predicts y using the T .ŷ stored at the resulting leaf node. The322

use of squared L2 error allows this formulation to be extended from323

conventional univariate regression to any bounded-size multivariate324

regression, such as predicting fixed-length subsequences. We show325

in Section 5.2 how to deal with variable-length sequences.326

2We are conducting a broader study of our decision tree approach that in-
troduces further algorithm and modeling extensions to support general con-
tinuous output spatiotemporal applications [Anonymized in preparation].

Algorithm 2 Creating Fixed-Length Subsequences
1: input: z, K // a sequence and a window size
2: R (K � 1)/2 // K is assumed to be odd
3: T |z|
4: Ŝ ;
5: for t = R+ 1, . . . , T �R do
6: Create fixed-length output ẑ z(t�R,...,t+R)

7: Ŝ Ŝ [{ẑ}
8: end for
9: return: Ŝ

Frame no
0 5 10 15 20 25

P
re

d
ic

te
d
 A

A
M

 p
a
ra

m
e
te

r
1

-100

0

100

200

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Label - s s s s ih ih ih g g g r r ae ae ae ae f f f f -

(a) x

y

x̂1, x̂2, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ S I G G R A P H ”

s s ih ih ih
s ih ih ih g
ih ih ih g g
ih ih g g g
ih g g g r

Input speech:

…

…

(b)

(c)

(d)

(e)

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

P
ar

am
et

er
 1

-50

0

50

100

s ih g r ae f

�

�

�

� �

�

� � � � � �

� �

�

Figure 3: Depicting decision tree prediction pipeline. We start with
a frame-by-frame sequence of phonemes x as input (a). We convert
x into a sequence of overlapping fixed-length inputs (x̂1, x̂2, . . .)
(b). We apply our learned decision tree to predict on each x̂i

(c), which results in a sequence of overlapping fixed-length outputs
(ŷ1, ŷ2, . . .) (d). We blend (ŷ1, ŷ2, . . .) by averaging frame-wise to
arrive at our final output sequence y (e). Note the center frame of
ŷi is highlighted, but all predicted values contribute to y. Only the
first predicted parameter value is shown for clarity.

5.2 Sliding Window Fixed-Length Subsequences327

Conventional decision trees cannot be directly applied to variable-328

length inputs and outputs. We address this issue by decomposing329

the problem into predicting overlapping fixed-length subsequences330

ŷ given input subsequences x̂, i.e., a “sliding window” prediction331

problem. This decomposition results a in a decision tree problem332

over fixed-length inputs x̂ and outputs ŷ. Our resulting prediction333

pipeline is depicted in Figure 3, and can be described as:334

1. We first decompose x into a sequence of overlapping fixed-335

length inputs (x̂1, x̂2, . . . , x̂T) by running Algorithm 2 using x336

and window size Kx. Note that the choice of Kx must match337

the choice used when training the decision tree.338

2. For each x̂j , we traverse the decision tree from the root339

node T to a leaf node ⌧ , and predict using ŷj ⌧.ŷ.340

This results in a sequence of overlapping fixed-length outputs341

(ŷ1, ŷ2, . . . , ŷT).342

3. We construct the final output y by blending together343

(ŷ1, ŷ2, . . . , ŷT) using the frame-wise mean.344

4

Classification	vs Regression

47

Classification Regression

Labels are	{0,1} Labels	are	Real Valued

Predict	Majority	Class	in	
Leaf	Node

Predict Mean	of	Labels	in	
Leaf	Node

Piecewise Constant	
Function	Class

Piecewise Constant	
Function	Class

Goal: Minimize	0/1	Loss Goal:	Minimize	squared loss

Impurity	Based	on	Fraction	
of	Positives	vs	Negatives

Impurity	=	Squared Loss

Recap:	Decision	Tree	Training

• Train	Top-Down
– Iteratively	split	existing	leaf	node	into	2	leaf	nodes	

• Minimize	Impurity	(=	Training	Loss)
– E.g.,	Entropy

• Until	Stopping	Condition	(=	Regularization)
– E.g.,	Minimum	Node	Size

• Finding	optimal	tree	is	intractable
– E.g.,	tree	satisfying	minimal	leaf	sizes	with	lowest	impurity.

48

Recap:	Decision	Trees

• Piecewise	Constant	Model	Class
– Non-linear!
– Axis-aligned	partitions	of	feature	space

• Train	to	minimize	impurity	of	training	data	in	
leaf	partitions
– Top-Down	Greedy	Training

• Often	more	accurate	than	linear	models
– If	enough	training	data

49

Bagging
(Bootstrap	Aggregation)

50

Outline

• Recap:	Bias/Variance	Tradeoff

• Bagging
– Method	for	minimizing	variance	
– Not	specific	to	Decision	Trees

• Random	Forests
– Extension	of	Bagging
– Specific	to	Decision	Trees

51

Outline

• Recap:	Bias/Variance	Tradeoff

• Bagging
– Method	for	minimizing	variance	
– Not	specific	to	Decision	Trees

• Random	Forests
– Extension	of	Bagging
– Specific	to	Decision	Trees

52

Test	Error

• “True”	distribution: P(x,y)	
– Unknown	to	us

• Train: hS(x)	=	y	
– Using	training	data:	
– Sampled	from	P(x,y)

• Test	Error:

• Overfitting: Test	Error	>>	Training	Error

S = (xi, yi){ }i=1
N

LP (hS) = E(x,y)~P(x,y) L(y,hS (x))[]

53

Person Age Male? Height	>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height >	55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Margare
t

10 0 1

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1…

L(h)	=	E(x,y)~P(x,y)[L(h(x),y)]		
Test	Error:

h(x)y

Training	Set	STrue	Distribution	P(x,y)

54

Bias-Variance	Decomposition

• For	squared	error:

ES LP (hS)[] = ES E(x,y)~P(x,y) L(y,hS (x))[]!" #$

ES LP (hS)[] = E(x,y)~P(x,y) ES hS (x)−H (x)()2"
#

$
%+ H (x)− y()2"

#&
$
%'

H (x) = ES hS (x)[]

“Average	prediction	on	x”

Variance	Term Bias	Term

55

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Example	P(x,y)

x

y

56

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

hS(x)	Linear

57

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

hS(x)	Quadratic

58

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

hS(x)	Cubic

59

Bias-Variance	Trade-off

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5VarianceBias VarianceBias VarianceBias

60

Overfitting	vs Underfitting

• High	variance	implies	overfitting
– Model	class	unstable
– Variance	increases	with	model	complexity
– Variance	reduces	with	more	training	data.

• High	bias	implies	underfitting
– Even	with	no	variance,	model	class	has	high	error
– Bias	decreases	with	model	complexity
– Independent	of	training	data	size

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100
0

0.5

1

1.5

61

62

63

Decision	Trees	are	Low	Bias,	
High	Variance	Models
Unless	you	Regularize	a	lot…	

…but	then	often	worse	than	Linear	Models

Highly	Non-Linear,	Can	Easily	Overfit

Different	Training	Samples	Can	Lead	to	
Very	Different	Trees

64

Bagging

• Goal:	reduce	variance

• Ideal	setting:	many	training	sets	S’
– Train	model	using	each	S’
– Average	predictions

ES[(hS(x)	- y)2]	=	ES[(Z-ž)2]	+	ž2

Variance BiasExpected	Error
On	single	(x,y)

Z	=	hS(x)	– y	
ž =	ES[Z]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
“Bagging	Predictors” [Leo	Breiman,	1994]

Variance	reduces	linearly
Bias	unchanged

sampled	independently

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

S’P(x,y)

65

Bagging

• Goal:	reduce	variance

• In	practice:	resample	S’	with	replacement
– Train	model	using	each	S’
– Average	predictions

from	S

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
“Bagging	Predictors” [Leo	Breiman,	1994]

Variance	reduces	sub-linearly
(Because	S’	are	correlated)
Bias	often	increases	slightly

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

S’S

Bagging	=	Bootstrap	Aggregation
66

“Bootstrapping”

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

P(x,y)

ES[(hS(x)	- y)2]	=	ES[(Z-ž)2]	+	ž2

Variance BiasExpected	Error
On	single	(x,y)

Z	=	hS(x)	– y	
ž =	ES[Z]

Recap: Bagging	for	DTs

• Given: Training	Set	S

• Bagging: Generate	Many	Bootstrap	Samples	S’
– Sampled	with	replacement	from	S
• |S’|	=	|S|

– Train	Minimally	Regularized	DT	on	S’
• High	Variance,	Low	Bias

• Final	Predictor: Average	of	all	DTs
– Averaging	reduces	variance

67

14 ERIC BAUER AND RON KOHAVI

german
0.00

5.00

10.00

15.00

20.00

25.00

30.00

segment
0.00

2.00

4.00

6.00

8.00

hypothyroid
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

sick-euthyroid
0.00

0.50

1.00

1.50

2.00

2.50

3.00

DNA-nominal
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

chess
0.00

0.50

1.00

1.50

2.00

2.50

3.00

led24
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

waveform-40
0.00

5.00

10.00

15.00

20.00

25.00

30.00

satimage
0.00

5.00

10.00

15.00

20.00

mushroom
0.00

0.10

0.20

0.30

0.40

0.50

nursery
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

letter
0.00

5.00

10.00

15.00

20.00

25.00

adult
0.00

5.00

10.00

15.00

20.00

shuttle
0.00

0.05

0.10

0.15

0.20

0.25

1
0.00

5.00

10.00

15.00MC4

bagged MC4

bagged MC4 without pruning with prob. estimates

bagged MC4 without pruning with prob. estimates and backfitting

Bias is below variance

Figure 5. The bias-variance decomposition for MC4 and three versions of Bagging. In most cases,
the reduction in error is due to a reduction in variance (e.g., waveform, letter, satimage, shuttle),
but there are also examples of bias reduction when pruning is disabled (as in mushroom and
letter).

“An	Empirical	Comparison	of	Voting	Classification	Algorithms:	Bagging,	Boosting,	and	Variants”
Eric	Bauer	&	Ron	Kohavi,	Machine Learning	36,	105–139	(1999)	
http://ai.stanford.edu/~ronnyk/vote.pdf

Variance

DT Bagged	DT

Be
tt
er

68

Bias

Why	Bagging	Works

• Define	Ideal	Aggregation	Predictor	hA(x):
– Each	S’	drawn	from	true	distribution	P

• We	will	first	compare	the	error	of	hA(x)	vs hS(x)

• Then	show	how	to	adapt	comparison	to	Bagging

69

hA (x) = ES~P(x,y) hS (x)[]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
“Bagging	Predictors” [Leo	Breiman,	1994]

Decision	Tree	Trained	on	S

Analysis	of	Ideal	
Aggregate	Predictor

(Squared	Loss)

70

hA (x) = ES~P(x,y) hS (x)[]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
“Bagging	Predictors” [Leo	Breiman,	1994]

Decision	Tree	Trained	on	S

ES L y,hS (x)()!" #$= ES y− hS (x)()2!
"

#
$

 = ES y2!" #$− 2ES yhS (x)[]+ES hS (x)2!" #$

 = y2 − 2yES hS (x)[]+ES hS (x)2!" #$

 ≥ y2 − 2yES hS (x)[]+ES hS (x)[]2

 = y2 − 2yhA (x)+ hA (x)2

 = y− hA (x)()2

 = L y,hA (x)()

Expected	Loss	of	hS
on	single	(x,y)	

Linearity	of	Expectation

E[Z2]	≥	E[Z]2
(Z=hS’(x))

Definition	of	hA

Loss	of	hA

Key	Insight

• Ideal	Aggregate	Predictor	Improves	if:

• Bagging	Predictor	Improves	if:

71

ES hS (x)
2!" #$> ES hS (x)[]2 = hA (x)2

ES hS (x)
2!" #$> ES ES '~S hS ' (x)[]2!

"
#
$= ES hB (x)

2!" #$

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
“Bagging	Predictors” [Leo	Breiman,	1994]

Large	improvement	if	hS(x)	is	“unstable”	(high	variance)
hA(x)	is	guranteed to	be	at	least	as	good	as	hS(x).

Improves	if	hB(x)	is	much	more	stable	than	hS(x)
hB(x)	can	sometimes	be	more	unstable	than	hS(x)

Bias	of	hB(x)	can	be	worse	than	hS(x).

Random	Forests

72

Random	Forests

• Goal: reduce	variance
– Bagging	can	only	do	so	much
– Resampling	training	data	asymptotes

• Random	Forests:	sample	data	&	features!
– Sample	S’	
– Train	DT
• At	each	node,	sample	features	

– Average	predictions

“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Further	de-correlates	trees

Top-Down	Random	Forest	Training

74

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

1

S’

x y

Loop: Sample	T	random	splits	at	each	Leaf.
Choose	split	with	greatest	impurity	
reduction.

Repeat: until	stopping	condition.

Step	1:

“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Top-Down	Random	Forest	Training

75

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Age>9?

S’

x y

Step	1:

Loop: Sample	T	random	splits	at	each	Leaf.
Choose	split	with	greatest	impurity	
reduction.

Repeat: until	stopping	condition.

1 0Step	2:

Randomly	decide	only	look	at	age,
Not	gender.

“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

1

Top-Down	Random	Forest	Training

76

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Age>9?

S’

x y

Step	1:

Loop: Sample	T	random	splits	at	each	Leaf.
Choose	split	with	greatest	impurity	
reduction.

Repeat: until	stopping	condition.

Male? 0Step	2:

“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Randomly	decide	only	look	at	gender.

1 1Step	3:

Try

Top-Down	Random	Forest	Training

77

Name Age Male? Height	
>	55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 10 0 0

Age>9?

S’

x y

Step	1:

Loop: Sample	T	random	splits	at	each	Leaf.
Choose	split	with	greatest	impurity	
reduction.

Repeat: until	stopping	condition.

1 Age>8?Step	2:

“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Randomly	decide	only	look	at	age.

01Step	3:

Try

Recap:	Random	Forests

• Extension	of	Bagging	to	sampling	Features

• Generate	Bootstrap	S’	from	S
– Train	DT	Top-Down	on	S’
– Each	node,	sample	subset	of	features	for	splitting
• Can	also	sample	a	subset	of	splits	as	well

• Average	Predictions	of	all	DTs

78
“Random	Forests	– Random	Features”	[Leo	Breiman,	1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Better

Average	performance	over	many	datasets
Random	Forests	perform	the	best

An Empirical Evaluation of Supervised Learning in High Dimensions

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 100 1000 10000 100000 1e+006

cu
m

ul
at

iv
e

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

modest dimensions, but lose ground to random forests,
neural nets, and SVMs as dimensionality increases.
Also, linear methods such as logistic regression begin
to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100 1000 10000 100000 1e+006

m
ov

av
g

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 2. Moving average standardized scores of each
learning algorithm as a function of the dimension.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100 1000 10000 100000 1e+006

av
er

ag
e

sc
or

e

dimension

SVM-L
SVM-L+P

SVM-K
SVM-L+K

SVM-L+K+P

Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.

“An	Empirical	Evaluation	of	Supervised	Learning	in	High	Dimensions”
Caruana,	Karampatziakis &	Yessenalina,	ICML	2008

Random	Forests

Next	Lecture

• Boosting
– Method	for	reducing	bias

• Ensemble	Selection
– Very	general	method	for	combining	classifiers	
– Multiple-time	winner	of	ML	competitions

• Recitation	Next	Week:
– Deep	Learning	Tutorial	(Keras)

80

