Caltech

Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 5:
Decision Trees, Bagging &
Random Forests



Announcements

 Homework 2 due tomorrow

— Some issues arose with Gradescope for HW1
— We will be posting on Piazza with a list of TODO's

e Homework 3 will be easier than HW1 & HW?2

 Kaggle Competition is after Homework 4



Topic Overview

Supervised Learning

Non-Linear Models Learnlng. A|.gor|.thms Probabilistic Modeling
& Optimization

Unsupervised Learning




This Lecture

* Focuson achieving highest possible accuracy
— Decision Trees
— Bagging
— Random Forests
— Highly non-linear models

* Next Lecture
— Boosting
— Ensemble Selection



Decision Trees



(Binary) Decision Tree

Yes No

Yes No Yes No

Don’t overthink this, itis
literally what it looks like.

Person | Age

Alice

Bob

Carol

Dave

Erin

Frank

Gena

14

10

13

8

11

9

10

Height > 55”

1




(Binary) Decision Tree

Root Node Input: Alice

Gender: Female
Internal Nodes Age: 14

Prediction: Height > 55”

Every internal node has a binary
qguery function g(x).

Every leaf node has a prediction,
e.g., 0orl.

Prediction starts at root node.

Recursively calls query function.
Positive response = Left Child.
Negative response = Right Child.
Repeat until Leaf Node.

Leaf Nodes




Queries

Decision Tree defined by Tree of Queries
Binary query g(x) maps featurestoO or 1

Basic form: q(x) = 1[x® > ]
— 1[x3 > 5]

— 1[x1 > 0]

— 1[x>> > 1.2]

Axis aligned partitioning of input space






Basic Decision Tree Function Class

* “Piece-wise Static” Function Class
— All possible partitionings over feature space.
— Each partition has a static prediction.

* Partitions axis-aligned =~ - |- - ~-- -
— E.g., No Diagonals T - T

+ (Extensionsnextweek) |- - - [ -
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Decision Trees vs Linear Models

e Decision Trees are NON-LINEAR Models!

 Example:

gu

No Linear Model
Can Achieve O Error

=
-~

P ="

Simple Decision Tree

Can Achieve O Error

\:U:’

=

, |

L
=

!

11



Decision Trees vs Linear Models

e Decision Trees are NON-LINEAR Models!

. No Linear Model Simple Decision Tree
o
Example' Can Achieve O Error Can Achieve O Error
m [ W T T
2 g bl o (=
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Decision Trees vs Linear Models

e Decision Trees are AXIS-ALIGNED!

— Cannot easily model diagonal boundaries

 Example:

Simple Linear SVM can
Easily Find Max Margin

Decision Trees Require
Complex Axis-Aligned
Partitioning

ﬁ

‘

EE

/I

Wasted /
Boundary

N\

‘N =
Luju o

—~h

D%
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More Extreme Example

Decision Tree wastes most of model
capacity on useless boundaries.

(Depicting useful boundaries)

14



Decision Trees vs Linear Models

e Decision Trees are often more accurate!

* Non-linearity is often more important

— Just use many axis-alighed boundaries to
approximate diagonal boundaries

— (It’s OK to waste model capacity.)

e Catch: requires sufficient training data

— Will become clear later in lecture
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Real Decision Trees

PhastCon content < 0.460

/N

CpGeluster p-value < 1,185~05

/

CpGeluster p-value < 6.84e-11

/\

D
AC content < 0.102 CA content < 0.402 conss
CT content < 0.662.
Average distance <0.761 T content<0.662 TG content < 0.602 PhastCon Curvature <0.716 OFE ratio <0221
elements
7\ /N 7\ <006 /X Differentially methylated /X 7\
TG content i TT content
TT content CpGeluster p-value Bending
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<0092 in sperm thc:: ;;;mmts < m 03238 : Twist<0.93 methylated <0158 AC content
/X A A A
TG content Methylated Differentially Unmethylated PGoluster p-value Unmethylated Unmethylated Methylated Methylated Unmethylated Differentially
<0.106 Average distance methylated <3426-006 GG contoft in sperm SD<0.464 Unmethylated insperm  methylated Slide constraint
A ,,.?,':ﬁ‘:hf: a,o <0.15§ A in sperm Roll constraint /\ R
) Unmethylated ' CuatIte i st Differentially <0721
Differentially TG content OFE ratio Unmethylated
CT content < 0.794 05 methylated
methylated <060 MSPEM  Methylated Differentially <0444 GHG content < 0-602 W in sperm
A methylated A PhastCon elemer
Unmethylated in sperm ~ Slide constraint AR content Methylated Methylated ) ) Unmethylated ¢y ryaturey <o,oe Unmethylated Unmethylated
<0366 <0210 Unmethylied Unmethylatsd Unmethylated Differentialy <070 in sperm
GG content methylated Unmethylated
/X <039 in sperm /\ nmetya
Differentially Differentially Unmethylated In sperm
GT content < 0.657 U"i':f:g:'ed GC content methylated methylated in spzm.
<022
Unmethylated AT content
A Methylated Differentially A <0.581
Unmethylated Cleavage, Unmethylated Methylated Unmethylated methylated Methylated Unmethylated
: CA content < 0.364 in sperm
<0.278 GA conteny
/X A
AG content Unmethylated in sperm
<0209
/X Methylated Difforentially
Unmethylated y 5 methylated
AC content in sperm methylated
"
Unmethylated
o B Ca n et m UCh Ia I el I
Unmethylated g g ®

Unmethylated Unmethylated in sperm

Image Source: http://www.biomedcentral.com/1471-2105/10/116
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Decision Tree Training

Every node = partition/subset of S Name | Age | Male? | Height
Every Layer = complete partitioning of S S 55”

Children =complete partitioning of parent : Alice 14 0 1
i Bob 10 1 1

Yes No _|Carol 13 O 1

S| Dave 8 1 0

| Erin 11 O 0

Yes No Yes No - | Frank 9 1 1

U U O Q “|Gena 10 O 0

17



Thought Experiment

* What if justone node?
> 55”

— (l.e., justroot node) | Alice 14 0O 1
— No queries e |an |7 .
— Single prediction for all data
Carol 13 O 1
S Dave 8 1 0
T
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0







Correspondsto Entire Training Set

Makes a Single Prediction:
Majority class in training set




Thought Experiment Continued

> 55”

— (l.e., root node + 2 children) | Alice 14 0O 1
— G i ?
Single query (which one?) ST P .
— 2 predictions
] ] Carol 13 O 1
— How many possible queries?
g - |Dave 8 1 0
Erin 11 O 0
Yes No Frank 9 1 1
Gena 10 O 0
E u ) \ " | —

21
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How to choose “best” query?




Impurity

* Define impurity function:

— E.g., 0/1 Loss: L(S") = min

LU_I
EB:’

ClassificationError
of best single prediction

/

E 1[?¢y]

L(S) =1

50,1
il }(x,y)ES'
S, S,
T Impurity _
[ Reduction
e No Benefit From
5 This Split!
L(Sl) =0 L(Sz) =1
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Impurity

* Define impurity function:

— E.g., 0/1 Loss: L(S") = min

yE{0,1}
(x

LU_I
EB:’

b

L(S) =1

L(Sl) =0

L(Sz) =1

ClassificationError
of best single prediction

/

E 1[?¢y]

y)ES'

Impurity  _
Reduction

No Benefit From
This Split!
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Impurity

* Define impurity function:

— E.g., 0/1 Loss: L(S") = min

\_U_J
EB:’

ClassificationError
of best single prediction

/

L(S) =1

$€{0.1} 1[9¢y]
T (xy)ES'
S, S,
a Impurity  _ 1
| = Reduction
il Choose Split with
i largest impurity
reduction!
L(Sl) = O L(Sz) = O
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Impurity = Loss Function

* Training Goal:

— Find decision tree with low impurity.

* Impurity Over Leaf Nodes = Training Loss

_ ' L(S" = min 2 1.
L($)= Y, L(S) (9= min 2, Ly
. (x,y)ES'
S
S’ iterates over leaf nodes ClassificationErroron S’
UnionofS =S

(Leaf Nodes = partitioning of S)
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Problems with 0/1 Loss

 What split best reduces impurity?
L(S") = min E L

yE{0.1} . :
(x,y)ES' All Partitionings Give Same
Impurity Reduction!
S S, S, S, S,
- B - N - T
SR I S I I B
T = - —= - =
T 5 T o
- o LS

L(S) =1 L(S1) =0 L(Sy) =1 L(S1) =0 L(Sy) =1

28



Problems with 0/1 Loss

e 0/1 Loss is discontinuous

* A good partitioning may not improve 0/1 Loss...

— E.g., leadsto an accurate model with subsequent split...

S

Fi

LU_J

F i

Euj
[

S S,

L(S) =1

SI%

$| +

L(S) =1
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Surrogate Impurity Measures

* Want more continuous impurity measure
* First try: Bernoulli Variance:

! | # OS*#ne = H )
L(S") = |S |ps'(1_Ps') _"p 8 po = fraction of S’ thatare

|.S'] positive examples
Worst Purity
— 0.1.5 \ P=1/2’ L(S’) — |S'|*1/4
g 0.1 P - 1’ L(S') — |SI | *O
0.05 P =O’ L(S') — |S;|*O
T T e Perfect Purity

Assuming [S’|=1
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Bernoulli Variance as Impurity

 What split best reduces impurity?

a2 ~ _ ,
L(S") = |S'|p5v(1 —py)= # pos*#neg peo = fraction of S’ thatare

1S positive examples
S 51 Sz S1 S2

i ) )
T W || H T +
[ - T = T —==

i \—U_l a \—U_l -

|0
L(S) = 5/6 L(S))=0 L(S,)=1/2  L(S;)=0 L(S,) =3/4

Best!
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Interpretation of Bernoulli Variance

* Each partition = distribution overy
— vy is Bernoulli distributed with expected value p¢
— Goal: partitioning where each y has low variance

S 51 Sz Sl SZ
[ T i
T W || H T +
T - ) = ) =
i \—U_l i \—U_l i
|0
L(S) = 5/6 L(S;)=0 L(S,)=1/2  L(S)=0 L(S,)=3/4

Best!
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Other Impurity Measures

Define: 0*log(0) =0

* Entropy: L(s")=-|S'|(ps logps +(1- ps)log(1- py.))
— aka: Information Gain:
IG(A,BIS")Y=L(S")-L(A)-L(B)

— (aka: Entropy Impurity Reduction) T
o
— Most popular.

e Gini Index:

L) =|8(1-p3 - (1-ps)’)

L(S")

0:4 0?6
Ps’

See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

(Terminology is slightly different.) 33



Other Impurity Measures

Define: 0*log(0) =0
* Entropy: L(s")=-|S'|(ps logps +(1- ps)log(1- py.))

— aka: Information Gain:
IG(A,BIS")Y=L(S")-L(A)-L(B)

v
— (aka: Entropy Impurity Reduction) K o
o
— Most popular.
V 9 L JLJUJ) U L)L v V ] | Z
Look Qualitatively The Same!

Of4 0?6
Ps’

See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
(Terminology is slightly different.)
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Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P pprme Carol 13 O 1
Step 1:
L(s) =12/7 1 s{|Pve &+ O
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
- 1 7\ ]
|| |
X Y

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpine Carol 13 O 1
Step 1:
L(S) = 12/7 g - |Dave 8 1 0
Step 2: Erin 11 O 0
L(S) = 5/3 Q Q
L(S)=2/3 L(S)=1 Frank 9 1 1
Gena 10 O 0
- 1 7\ ]
|| |
X Y

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P ik Carol 13 O 1
Step 1:
Step 2: Erin 11 O 0
L(S) = 5/3 g ;
L(5')=2/3 L(s)=1 Frank 9 1 1
Step 3: Loop over all leaves, find best split. SiElE ) U 0
- 0 . 7\ Y ]
X Yy

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 37



Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpine Carol 13 O 1
Step 1:
L(S) = 12/7 g - |Dave 8 1 0
- :
Step 2: ry Erin 11 O 0
L(S) =5/3 S— Frank 9 1 1
L(S')=1
Step 3: Gena 10 O 0
L(S) =1 i
L J \ J
L(S')=0 L(5")=0 )'( il

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 38



Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpine Carol 13 O 1
Step 1:
L(S) = 12/7 g - |Dave 8 1 0
Try i
Step 2: Erin 11 O 0
L(S) =5/3 — Frank 9 1 1
L(S")=2/3
Step 3: Gena 10 O 0
L(S) =2/3 i
L J \ J
L(S’)=0 L(S’)=0 T
(S') (S') N ;,

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 39



Top-Down Training

* Defineimpurity measure L(S’) Name | Age | Male? | Height
— E.g., L(S’) = Bernoulli Variance >335

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpine Carol 13 O 1
Step 1: Step 4:
L(S)=12/7  L(S)=0 s 4 IR L
Step 2: Erin 11 O 0
L(S) =5/3 Frank 9 1 1
Step 3: Gena 10 O 0
L(S) =2/3 i
L J \ J
L(S')=0 L(S)=0 L(S)=0 L(S)=0 )'( ;,

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 40









Properties of Top-Down Training

* Every intermediate stepis a decision tree

— You can stop any time and have a model

* Greedy algorithm
— Doesn’t backtrack

— Cannot reconsider different higher-level splits.

S S, S, S, S,

I I [l

w o s T s = o -

%—lj e E EB: s o %Ijj e o S;
nin min ain




When to Stop?

* If kept going, can learn tree with zero training error.

— But such treeis probably overfittingto training set.

* How to stop training tree earlier?

— l.e., howto regularize?

Which one has better test error?

l;g 7 gg O |7
— o | L m i o | L I_|—|
b m o LlUlﬁ_ T @ EIUI|j‘| o
LA LUJ ||LUJ Ju | T T EBj |‘|_mj =
P a - -
E'!i LUIJEUZI e " . LUJLL’F" LUJ“ =
=2 op T V| e




Stopping Conditions (Regularizers)

* Minimum Size: do not splitif resulting children are smaller
than a minimum size.

 Maximum Depth: do not split if the resulting children are
beyond some maximum depth of tree.

« Maximum #Nodes: do not split if tree already has maximum
number of allowable nodes.

* Minimum Reduction in Impurity: do not split if resulting
childrendo not reduce impurity by at least 6%.

See also, Section 5 in: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 45



Pseudocode for Training

Algorithm 1 TREE(): Initialize Decision (Sub-)Tree Data Structure

Algorithm 3 TRAIN(): Top-Down Decision Tree Training

I: input: S //data partition
2: input: L /loss function
3: Initialize data structure 7 :

4 T .data < S // pointer to training data partition
5 T.q < NULL // decision query
6: T.left <~ NULL  //subtree for positive query response
7: T .right < NULL // subtree for negative query response
8 TAL <+ L(S)  /impurity/loss on training data partition
9: return: 7

Stoppingconditionis minimum
leaf nodessize: N,

1: input: S, Q, Nyin, L

2: T < TREE(S) // root node
3: repeat

4: Q<+ 0

5: for every leaf node 7 in 7 do

6: for every ¢ € Q do

7: S1 + {(x,¥) € T.datal q(x) = 1}

8: S+ {(x,¥) € T.datal q(x) = 0}

9: if ’Sﬂ Z Nmin A ’SQ‘ Z Nmin then

10: 71 < TREE(S1, L)

11: To <— TREE(S2, L)

12: Q%QU{<TaQ>Tl7T2)}

13: end if

14: end for Select from Q

15: end for

16: if || > 0 then

17: (1,q,71,T2) argmin s s o1 o1y 7' h— (11 L+T75.0)
18: T.q <@

19: Tleft < n
20: T.right < T2
21: end if

22: until [Q] =0
23: return: 7

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
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Classification vs Regression

Classification Regression

Labels are {0,1} Labels are Real Valued
Predict Majority Class in Predict Mean of Labels in
Leaf Node Leaf Node

Piecewise Constant Piecewise Constant
Function Class Function Class

Goal: Minimize 0/1 Loss Goal: Minimize squared loss
Impurity Based on Fraction Impurity = Squared Loss

of Positives vs Negatives




Recap: Decision Tree Training

Train Top-Down

— lteratively split existing leaf node into 2 leaf nodes

Minimize Impurity (= Training Loss)
— E.g., Entropy

Until Stopping Condition (= Regularization)

— E.g., Minimum Node Size

Finding optimal tree is intractable

— E.g., tree satisfying minimal leaf sizes with lowest impurity.
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Recap: Decision Trees

* Piecewise Constant Model Class

— Non-linear!
— Axis-aligned partitions of feature space

* Train to minimize impurity of training data in
leaf partitions
— Top-Down Greedy Training

e Often more accurate than linear models

— If enough training data

49



Bagging
(Bootstrap Aggregation)

50



Outline

* Recap: Bias/Variance Tradeoff

* Bagging
— Method for minimizing variance

— Not specific to Decision Trees

* Random Forests
— Extension of Bagging

— Specific to Decision Trees



Outline

* Recap: Bias/Variance Tradeoff

* Bagging
— Method for minimizing variance

— Not specific to Decision Trees

* Random Forests
— Extension of Bagging

— Specific to Decision Trees
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Test Error

* “True” distribution: P(x,y)
— Unknown to us

* Train: ho(x) =y
— Using training data:  § = {(X,-,y,-)}il
— Sampled from P(x,y)

* Test Error:
L,(hs)= E(x,y)~P(x,y) [L(y’hS (x))]

e Overfitting: Test Error >> Training Error



True Distribution P(x,y)

Person
James
Jessica
Alice
Amy
Bob
Xavier
Cathy
Carol
Eugene
Rafael
Dave
Peter
Henry
Erin
Rose
lain
Paulo

Margare
t

Frank
Jill
Leon
Sarah
Gena

Patrick

Age
11
14
14
12
10
9
9
13
13
12
8
9
13
11
7
8
12

10

9
13
10
12
8

5

Male?

©O B kB O O B KRB B B B O O B KB O O O

o0 o o = o =

Height >55”

r O B O O O O O kB O R Rk O R Rr kP Rk p

SN

=, O O O o ¥,

Training Set S

Person | Age

Alice 14
Bob 10
Carol 13
Dave 8
Erin 11
Frank 9
Gena 8

Male?

Height > 55”

Test Error:

£(h) = E(x,y)"’P(x,y)[ L(h(X),Y) ]

{ A X XK KK

-
pm—
X

—



Bias-Variance Decomposition

Es|Ly(hs)|=Eq [E<x,y>~P(x,y> [ L(y,hg (x))]]

* For squared error:

E[L,(h)|=E ., pss) [ES [(hs(x) - H(x))z] +(H(x)- y)z]

| J | J
i I

H(x)=E; [hs (x)] Variance Term Bias Term
t

“Average prediction on x”
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1.5

0.5

-1.5

Example P(x,y)
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h(x) Linear

1.5,

0 20 40 60 80 100



h(x) Quadratic

1.5 1.5




hs(x) Cubic

1.5¢ 1.5

0 20 40 60 80 100 0 20 40 60 80 100
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Bias-Variance Trade-off

0 20 40 60 80 10C

1.5 Bias Variance 15 Bias Variance 1 Bias Variance
1 / 1
0.5 0.5
0 20 40 60 80 100 o0 20 40 60 80 100 oO 20 40 60 80 10C
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Overfitting vs Underfitting

1.5 1.5 1.5
1 1 1
0.5 0.5 l 0.5
. LI.... AM_AMA N b M it . s b b
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 10C

* High variance implies overfitting
— Model class unstable

— Variance increases with model complexity
— Variance reduces with more training data.

* High bias implies underfitting
— Even with no variance, model class has high error

— Bias decreases with model complexity
— Independent of training data size

61









...butthen often worse than Linear Models

Highly Non-Linear, Can Easily Overfit

Different Training Samples Can Lead to
Very Different Trees




Bagging el

Al

Goal: reduce variance sampled independently

/

* |ldeal setting: many training sets S’

. . ’
— Train model using each S Variance reduces linearly

— Average predictions Bias unchanged
Esl(hs(x) - y)°] = E[(Z-2)°] + 72 Z=hs(x) -y
\ ; t 9 z = Eg[Z]

Expected Error Variance Bias

On single (x,y)

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 65




. “Bootstrapping”
Bagglng P(x,y)

S S’

o e ln ; Ake 01 a e 14 0 1

o w e w0 1 1 b0 11

= EnEmE a o B0 1 ) oo 30 1

G G G @m0 o o o o
. a Pk s 1 1 a fank 91

e Goal: reduce variance P
rom

/

* In practice: resample S’ with replacement

. . )
— Train model using each S Variance reduces sub-linearly

—_ Average predictions (Because S’ are correlated)
Bias often increases slightly

Es[(hs(x) - y)°] = Es[(2-2)*] + 22 Z=hg(x) -y
\ ; i 0 2 = Eq[Z]
Expected Error Variance Bias

On single (x,y)

Bagging = Bootstrap Aggregation

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 66




Recap: Bagging for DTs

* Given: Training Set S

* Bagging: Generate Many Bootstrap Samples §’

— Sampled with replacement from S
* |S’] = [S]

— Train Minimally Regularized DT on §’
* High Variance, Low Bias

* Final Predictor: Average of all DTs

— Averaging reduces variance

67



DT Bagged DT

| 25.00
| Variance
=

.1 15.00 /

U

5 i /

110.00 —

5.00

Bias

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105-139 (1999)
http://ai.stanford.edu/~ronnyk/vote.pdf



Why Bagging Works

* Define Ideal Aggregation Predictor h,(x):

— Each S’ drawn from true distribution P

h(x)= Eg pi. [hS (x)]

\ Decision Tree Trainedon S

* We will first compare the error of h,(x) vs he(x)

* Then show how to adapt comparison to Bagging

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Analysis of Id(?al hy(x) = Eg_pe, [ (0]
Aggregate Predictor <

Decision Tree Trained on S
(Squared Loss)

ES L(y’hs (x)) = ES (y_ hS(X))2 Linearity of Expectation
‘ [ Y ]' [ , ] / :
Expected Lossofhy = Ej [y ]— 2E, [th(x)] +E, [hs(x) ]

on single (x,y) ] Y N\
= y* = 2yE [ hs(x)]+E; _hS(x)z]

E[22] 2E[Z]2

(Z=hg(x) ) — 2 y" = 2yEg| hy(x) |+ Eq :hS(X)]Z
=y =2yh, (x)+h,(x)°
Definition ofh, = (y—hA(x))2
=L(y,hA(x)) < Loss of h,

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf




Key Insight

* |deal Aggregate Predictor Improves if:

Eg|hy(x)*|> Eg[h(0)] = h, (x)?

Large improvement if h¢(x) is “unstable” (high variance)
h,(x) is guranteed to be at least as good as h¢(x).

* Bagging Predictor Improves if:

L [hs (x)z] >k [ES‘~S [hS'(x)]z] =Lk [hB (x)z]

Improves if hg(x) is much more stable than h¢(x)
hg(x) can sometimes be more unstable than hy(x)
Bias of hg(x) can be worse than hg(x).

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Random Forests

* Goal: reduce variance
— Bagging can only do so much
— Resampling training data asymptotes

 Random Forests: sample data & features!

V4
— Sample S Further de-correlates trees

— Train DT /

* At each node, sample features

— Average predictions

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. Alice 14 0 1
Repeat: until stopping condition.
Bob 10 1 1
Step 1: Carol 13 0 1
S’ Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
- \ T\ J
| | |
X Yy

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf 74




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: ’l I Carol 13 O 1
8 1 0

Step 2: | || A

_ Erin 11 O 0
Randomly decide only look at age,
Not gender. Frank 9 1 1
Gena 10 O 0
- . ]\ ]
|| |
X Y

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf 75




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: ’ ‘ Carol 13 O 1
Tr
Y 8 1 0

v | Dave
Step 2: ’ ‘ S

Erin 11 O 0
Step 3: Frank 9 1 1
Randomly decide only look at gender. Gena 10 O 0
- 1 J \ J
Y Y
X y

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf 76




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: ’ ‘ Carol 13 O 1
Tr
Y 8 1 0

v | Dave
Step 2: ’ ‘ S
Erin 11 O 0
Step 3: D D Frank 9 1 1

Gena 10 O 0

Randomly decide only look at age.

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf 77




Recap: Random Forests

* Extension of Bagging to sampling Features

* Generate Bootstrap S’ from S
— Train DT Top-Downon S’

— Each node, sample subset of features for splitting
* Can also sample a subset of splits as well

* Average Predictions of all DTs

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf
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Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008



Next Lecture

* Boosting
— Method for reducing bias

e Ensemble Selection

— Very general method for combiningclassifiers
— Multiple-timewinner of ML competitions

e Recitation Next Week:

— Deep Learning Tutorial (Keras)
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