Lecture 4:
Regularization, Sparsity & Lasso
Recap: Complete Pipeline

- **Training Data**: \(S = \{(x_i, y_i)\}_{i=1}^{N} \)
- **Model Class(es)**: \(f(x | w, b) = w^T x - b \)
- **Loss Function**: \(L(a, b) = (a - b)^2 \)

\[
\arg\min_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i | w, b)) \quad \text{SGD!}
\]

Cross Validation & Model Selection

Profit!
Different Model Classes?

• Option 1: SVMs vs ANNs vs LR vs LS
• Option 2: Regularization

Cross Validation & Model Selection

\[
\text{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i | w, b)) \quad \text{SGD!}
\]
Notation Part 1

• **L0 Norm** (not actually a norm)
 – # of non-zero entries
 \[\| w \|_0 = \sum_d 1_{[w_d \neq 0]} \]

• **L1 Norm**
 – Sum of absolute values
 \[|w| = \| w \|_1 = \sum_d |w_d| \]

• **L2 Norm & Squared L2 Norm**
 – Sum of squares
 – Sqrt(sum of squares)
 \[\| w \| = \sqrt{\sum_d w_d^2} \equiv \sqrt{w^T w} \]
 \[\| w \|^2 = \sum_d w_d^2 \equiv w^T w \]

• **L-infinity Norm**
 – Max absolute value
 \[\| w \|_\infty = \lim_{p \to \infty} \sqrt[p]{\sum_d |w_d|^p} = \max_d |w_d| \]
Notation Part 2

• Minimizing Squared Loss
 – Regression
 – Least-Squares

 – (Unless Otherwise Stated)
 • E.g., Logistic Regression = Log Loss

\[
\text{argmin}_w \sum_i (y_i - w^T x_i + b)^2
\]
Ridge Regression

\[
\text{argmin}_{w,b} \lambda w^T w + \sum_{i} (y_i - w^T x_i + b)^2
\]

- aka L2-Regularized Regression
- Trades off model complexity vs training loss
- Each choice of \(\lambda \) a “model class”
 - Will discuss the further later
\[
\text{argmin}_{w,b} \lambda w^T w + \sum_i (y_i - w^T x_i + b)^2
\]

<table>
<thead>
<tr>
<th>Person</th>
<th>Age>10</th>
<th>Male?</th>
<th>Height > 55”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Carol</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dave</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erin</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Frank</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gena</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harold</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Irene</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>John</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kelly</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Larry</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Updated Pipeline

\[S = \left\{ (x_i, y_i) \right\}_{i=1}^{N} \]

Training Data

\[f(x \mid w, b) = w^T x - b \]

Model Class

\[L(a, b) = (a - b)^2 \]

Loss Function

\[\arg\min_{w,b} \lambda w^T w + \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b)) \]

Choosing \(\lambda \)!

Cross Validation & Model Selection

Profit!
<table>
<thead>
<tr>
<th>Person</th>
<th>Age>10</th>
<th>Male</th>
<th>Height > 55”</th>
<th>Model Score w/ Increasing Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.91 0.89 0.83 0.75 0.67</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.42 0.45 0.50 0.58 0.67</td>
</tr>
<tr>
<td>Carol</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.17 0.26 0.42 0.50 0.67</td>
</tr>
<tr>
<td>Dave</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.16 1.06 0.91 0.83 0.67</td>
</tr>
<tr>
<td>Erin</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.91 0.89 0.83 0.79 0.67</td>
</tr>
<tr>
<td>Frank</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.42 0.45 0.50 0.54 0.67</td>
</tr>
<tr>
<td>Gena</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.17 0.27 0.42 0.50 0.67</td>
</tr>
<tr>
<td>Harold</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.16 1.06 0.91 0.83 0.67</td>
</tr>
<tr>
<td>Irene</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.91 0.89 0.83 0.79 0.67</td>
</tr>
<tr>
<td>John</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.42 0.45 0.50 0.54 0.67</td>
</tr>
<tr>
<td>Kelly</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.91 0.89 0.83 0.79 0.67</td>
</tr>
<tr>
<td>Larry</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.16 1.06 0.91 0.83 0.67</td>
</tr>
</tbody>
</table>
Choice of Lambda Depends on Training Size

25 Training Points

50 Training Points

75 Training Points

100 Training Points

25 dimensional space
Randomly generated linear response function + noise
Recap: Ridge Regularization

• Ridge Regression:
 – L2 Regularized Least-Squares
 \[
 \arg\min_{w,b} \lambda w^T w + \sum_i \left(y_i - w^T x_i + b \right)^2
 \]

• Large $\lambda \Rightarrow$ more stable predictions
 – Less likely to overfit to training data
 – Too large $\lambda \Rightarrow$ underfit

• Works with other loss
 – Hinge Loss, Log Loss, etc.
Aside: Stochastic Gradient Descent

\[
\text{argmin}_{w,b} \lambda \|w\|^2 + \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))
\]

\[
\tilde{L}(w, b) = \sum_{i=1}^{N} \left[\frac{1}{N} \lambda \|w\|^2 + L_i(w, b) \right]
\]

\[
\frac{1}{N} \tilde{L}(w, b) = \mathbb{E}_i \left[\tilde{L}_i(w, b) \right]
\]

Do SGD on this
Model Class Interpretation

\[\arg\min_{w,b} \lambda w^T w + \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b)) \]

• This is not a model class!
 – At least not what we’ve discussed...

• An optimization procedure
 – Is there a connection?
Norm Constrained Model Class

\[f(x \mid w, b) = w^T x - b \quad \text{s.t.} \quad w^T w \leq c \equiv \|w\|^2 \leq c \]

Seems to correspond to lambda...

\[\arg\min_{w, b} \lambda w^T w + \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b)) \]
Lagrange Multipliers

\[\arg\min_w L(y, w) \equiv (y - w^T x)^2 \]

- Optimality Condition:
 - Gradients aligned!
 - Constraint Boundary
 - Loss

\[\exists \lambda \geq 0 : \left(\partial_w L(y, w) = -\lambda \partial_w w^T w \right) \land \left(w^T w \leq c \right) \]

Omitting b & 1 training data for simplicity

http://en.wikipedia.org/wiki/Lagrange_multiplier
Norm Constrained Model Class Training:

\[
\arg\min_w L(y, w) \equiv \left(y - w^T x\right)^2 \quad \text{s.t. } w^T w \leq c
\]

Observation about Optimality:

\[
\exists \lambda \geq 0 : \left(\partial_w L(y, w) = -\lambda \partial_w w^T w\right) \land \left(w^T w \leq c\right)
\]

Lagrangian:

\[
\arg\min_{w, \lambda} \Lambda(w, \lambda) = \left(y - w^T x\right)^2 + \lambda \left(w^T w - c\right)
\]

Claim: Solving Lagrangian Solves Norm-Constrained Training Problem

Optimality Implication of Lagrangian:

\[
\partial_w \Lambda(w, \lambda) = -2x \left(y - w^T x\right)^T + 2\lambda w \equiv 0
\]

\[
\Rightarrow 2x (y - w^T x)^T = -2\lambda w
\]

http://en.wikipedia.org/wiki/Lagrange_multiplier
Norm Constrained Model Class Training:
\[\arg\min_w L(y, w) \equiv (y - w^T x)^2 \quad \text{s.t.} \quad w^T w \leq c \]

Observation about Optimality:
\[\exists \lambda \geq 0 : \left(\partial_w L(y, w) = -\lambda \partial_w w^T w \right) \land \left(w^T w \leq c \right) \]

Lagrangian:
\[\arg\min_{w, \lambda} \Lambda(w, \lambda) = (y - w^T x)^2 + \lambda \left(w^T w - c \right) \]

Claim: Solving Lagrangian Solves Norm-Constrained Training Problem

Optimality Implication of Lagrangian:
\[\partial_\lambda \Lambda(w, \lambda) = \begin{cases}
0 & \text{if } w^T w < c \\
 w^T w - c & \text{if } w^T w \geq c
\end{cases} \equiv 0 \quad \Rightarrow \quad w^T w \leq c \]

http://en.wikipedia.org/wiki/Lagrange_multiplier
Norm Constrained Model Class Training:
\[
\arg\min_w L(y, w) \equiv \left(y - w^T x \right)^2 \quad \text{s.t. } w^T w \leq c
\]

L2 Regularized Training:
\[
\arg\min_w \lambda w^T w + \left(y - w^T x \right)^2
\]

Lagrangian:
\[
\arg\min_{w, \lambda} \Lambda(w, \lambda) = \left(y - w^T x \right)^2 + \lambda \left(w^T w - c \right)
\]

- Lagrangian = Norm Constrained Training:
 \[
 \exists \lambda \geq 0 : \left(\partial_w L(y, w) = -\lambda \partial_w w^T w \right) \land \left(w^T w \leq c \right)
 \]

- Lagrangian = L2 Regularized Training:
 - Hold \(\lambda \) fixed
 - Equivalent to solving Norm Constrained!
 - For some \(c \)

http://en.wikipedia.org/wiki/Lagrange_multiplier
Recap #2: Ridge Regularization

• Ridge Regression:
 – L2 Regularized Least-Squares = Norm Constrained Model

\[\arg\min_{w,b} \lambda w^T w + L(w) \equiv \arg\min_{w,b} L(w) \text{ s.t. } w^T w \leq c \]

• Large \(\lambda \) \(\Rightarrow \) more stable predictions
 – Less likely to overfit to training data
 – Too large \(\lambda \) \(\Rightarrow \) underfit

• Works with other loss
 – Hinge Loss, Log Loss, etc.
Hallucinating Data Points

\[
\arg\min_w \lambda w^T w + \sum_{i=1}^{N} \left(y_i - w^T x_i \right)^2
\]

\[
\partial_w = 2\lambda w - 2\sum_{i=1}^{N} x \left(y_i - w^T x_i \right)^T
\]

• Instead hallucinate D data points?

\[
\arg\min_w \sum_{d=1}^{D} \left(0 - w^T \sqrt{\lambda} e_d \right)^2 + \sum_{i=1}^{N} \left(y_i - w^T x_i \right)^2
\]

\[
\partial_w = 2\sum_{d=1}^{D} \sqrt{\lambda} e_d \left(w^T \sqrt{\lambda} e_d \right)^T - 2\sum_{i=1}^{N} x \left(y_i - w^T x_i \right)^T
\]

\[
= 2\sum_{d=1}^{D} \lambda e_d^T w = 2\sum_{d=1}^{D} \lambda w_d = 2\lambda w
\]

Identical to Regularization!

Unit vector along d-th Dimension

\[
e_d = \begin{bmatrix}
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
0
\end{bmatrix}
\]

\[
\{ (\sqrt{\lambda} e_d, 0) \}_{d=1}^{D}
\]

Omitting b & for simplicity
Extension: Multi-task Learning

- 2 prediction tasks:
 - Spam filter for Alice
 - Spam filter for Bob

- Limited training data for both...
 - ... but Alice is similar to Bob
Extension: Multi-task Learning

- Two Training Sets
 - N relatively small

- **Option 1: Train Separately**
 \[
 S^{(1)} = \left\{ (x_i^{(1)}, y_i^{(1)}) \right\}_{i=1}^{N}
 \]
 \[
 S^{(2)} = \left\{ (x_i^{(2)}, y_i^{(2)}) \right\}_{i=1}^{N}
 \]

\[
\begin{align*}
\arg\min_w & \lambda w^T w + \sum_{i=1}^{N} \left(y_i^{(1)} - w^T x_i^{(1)} \right)^2 \\
\arg\min_v & \lambda v^T v + \sum_{i=1}^{N} \left(y_i^{(2)} - v^T x_i^{(2)} \right)^2
\end{align*}
\]

Both models have high error.

Omitting b &
for simplicity
Extension: Multi-task Learning

• Two Training Sets
 – N relatively small

• Option 2: Train Jointly

\[
S^{(1)} = \left\{ (x_i^{(1)}, y_i^{(1)}) \right\}_{i=1}^{N}
\]

\[
S^{(2)} = \left\{ (x_i^{(2)}, y_i^{(2)}) \right\}_{i=1}^{N}
\]

\[
\arg \min_{w,v} \lambda w^T w + \sum_{i=1}^{N} \left(y_i^{(1)} - w^T x_i^{(1)} \right)^2
\]

\[
+ \lambda v^T v + \sum_{i=1}^{N} \left(y_i^{(2)} - v^T x_i^{(2)} \right)^2
\]

Doesn’t accomplish anything!
(w & v don’t depend on each other)

Omitting b & for simplicity
Multi-task Regularization

\[\arg\min_{w,v} \lambda w^T w + \lambda v^T v + \gamma (w - v)^T (w - v) + \sum_{i=1}^{N} \left(y^{(1)}_i - w^T x^{(1)}_i \right)^2 + \sum_{i=1}^{N} \left(y^{(2)}_i - v^T x^{(2)}_i \right)^2 \]

- Prefer \(w \) & \(v \) to be “close”
 - Controlled by \(\gamma \)
 - Tasks similar
 - Larger \(\gamma \) helps!
 - Tasks not identical
 - \(\gamma \) not too large

![Test Loss (Task 2)](chart.png)
Lasso

L1-Regularized Least-Squares
L1 Regularized Least Squares

\[
\begin{align*}
\text{argmin } \lambda |w| + \sum_{i=1}^{N} (y_i - w^T x_i)^2 \\
\text{argmin } \lambda \|w\|^2 + \sum_{i=1}^{N} (y_i - w^T x_i)^2
\end{align*}
\]

- **L2:**
 \[
 w = \sqrt{2} \quad \text{vs} \quad w = 1
 \]
 \[
 w = 1 \quad \text{vs} \quad w = 0
 \]

- **L1:**
 \[
 w = 2 \quad \text{vs} \quad w = 1
 \]
 \[
 w = 1 \quad \text{vs} \quad w = 0
 \]

Omitting b & for simplicity
Aside: Subgradient (sub-differential)

\[\nabla_a R(a) = \left\{ c \mid \forall a': R(a') - R(a) \geq c(a' - a) \right\} \]

- Differentiable: \(\nabla_a R(a) = \partial_a R(a) \)

- L1:

\[\nabla_{w_d} |w| = \begin{cases}
-1 & \text{if } w_d < 0 \\
+1 & \text{if } w_d > 0 \\
[-1, +1] & \text{if } w_d = 0
\end{cases} \]

Continuous range for \(w=0 \)!

Omitting \(b \) & for simplicity
L1 Regularized Least Squares

$$\arg\min_w \lambda |w| + \sum_{i=1}^{N} \left(y_i - w^T x_i\right)^2$$

$$\arg\min_w \lambda \|w\|^2 + \sum_{i=1}^{N} \left(y_i - w^T x_i\right)^2$$

• L2:

$$\nabla_{w_d} \|w\|^2 = 2w_d$$

• L1:

$$\nabla_{w_d} |w| = \begin{cases}
-1 & \text{if } w_d < 0 \\
+1 & \text{if } w_d > 0 \\
[-1, +1] & \text{if } w_d = 0
\end{cases}$$

Omitting b & for simplicity
Lagrange Multipliers

\[\text{argmin}_{w} L(y, w) \equiv \left(y - w^T x \right)^2 \]

s.t. \[|w| \leq c \]

\[\nabla_{w_d} |w| \begin{cases}
-1 & \text{if } w_d < 0 \\
+1 & \text{if } w_d > 0 \\
[-1, +1] & \text{if } w_d = 0
\end{cases} \]

\[\exists \lambda \geq 0 : \left(\partial_w L(y, w) \in -\lambda \nabla_{w} |w| \right) \land \left(|w| \leq c \right) \]

Omitting b & 1 training data for simplicity

http://en.wikipedia.org/wiki/Lagrange_multiplier
Sparsity

• w is sparse if mostly 0’s:
 – Small L0 Norm

\[\|w\|_0 = \sum_d 1_{[w_d \neq 0]} \]

• Why not L0 Regularization?
 – **Not continuous!**

• L1 induces sparsity
 – And is continuous!

\[
\begin{align*}
\arg\min_w \lambda \|w\|_0 + \sum_{i=1}^{N} \left(y_i - w^T x_i\right)^2 \\
\arg\min_w \lambda |w| + \sum_{i=1}^{N} \left(y_i - w^T x_i\right)^2
\end{align*}
\]

Omitting b & for simplicity
Why is Sparsity Important?

• Computational / Memory Efficiency
 – Store 1M numbers in array
 – Store 2 numbers per non-zero
 • (Index, Value) pairs
 • E.g., [(50,1), (51,1)]
 – Dot product more efficient: $w^T x$

• Sometimes true w is sparse
 – Want to recover non-zero dimensions
Lasso Guarantee

\[
\arg\min_w \lambda |w| + \sum_{i=1}^{N} \left(y_i - w^T x_i + b \right)^2
\]

• Suppose data generated as: \(y_i \sim \text{Normal}(w_*^T x_i, \sigma^2) \)

• Then if: \(\lambda > \frac{2}{\kappa} \sqrt{\frac{2\sigma^2 \log D}{N}} \)

• With high probability (increasing with N):

\[
\text{Supp}(w) \subseteq \text{Supp}(w_*)
\]

\(\forall d : |w_d| \geq \lambda c \Rightarrow \text{Supp}(w) = \text{Supp}(w_*) \)

\[
\text{Supp}(w_*) = \{ d | w_{*,d} \neq 0 \}
\]

High Precision
Parameter Recovery

Sometimes High Recall

See also: https://www.cs.utexas.edu/~pradeepr/courses/395T-LT/filez/highdimII.pdf
http://www.eecs.berkeley.edu/~wainwrig/Papers/Wai_SparseInfo09.pdf
<table>
<thead>
<tr>
<th>Person</th>
<th>Age >10</th>
<th>Male?</th>
<th>Height > 55”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Carol</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dave</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erin</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Frank</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gena</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harold</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Irene</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>John</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kelly</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Larry</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Magnitude of the two weights. (As regularization shrinks)
Aside: Optimizing Lasso

• Solving Lasso gives sparse model
 – Will stochastic gradient descent find it?

• No!
 – Hard to hit exactly 0 with gradient descent

• Solution: Iterative Soft Thresholding
 – Intuition: if gradient update passes 0, clamp at 0

Recap: Lasso vs Ridge

• Model Assumptions
 – Lasso learns sparse weight vector

• Predictive Accuracy
 – Lasso often not as accurate
 – Re-run Least Squares on dimensions selected by Lasso

• Ease of Inspection
 – Sparse w’s easier to inspect

• Ease of Optimization
 – Lasso somewhat trickier to optimize
Recap: Regularization

- **L2**
 \[\text{argmin}_w \lambda \|w\|^2 + \sum_{i=1}^{N} (y_i - w^T x_i)^2 \]

- **L1 (Lasso)**
 \[\text{argmin}_w \lambda |w| + \sum_{i=1}^{N} (y_i - w^T x_i)^2 \]

- **Multi-task**
 \[\text{argmin}_{w, v} \lambda w^T w + \lambda v^T v + \gamma (w - v)^T (w - v) \]
 \[+ \sum_{i=1}^{N} (y_i^{(1)} - w^T x_i^{(1)})^2 + \sum_{i=1}^{N} (y_i^{(2)} - v^T x_i^{(2)})^2 \]

- **[Insert Yours Here!]**

Omitting b & for simplicity
Recap: Updated Pipeline

\[S = \{(x_i, y_i)\}_{i=1}^{N} \]
Training Data

\[f(x | w, b) = w^T x - b \]
Model Class

\[L(a, b) = (a - b)^2 \]
Loss Function

\[\arg\min_{w,b} \lambda w^T w + \sum_{i=1}^{N} L(y_i, f(x_i | w, b)) \]
Cross Validation & Model Selection

Choosing λ!

Profit!
Next Lectures

• Decision Trees
• Bagging
• Random Forests
• Boosting
• Ensemble Selection

• Recitation tonight: Linear Algebra