

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 3:

SVM, Logistic Regression, Neural Nets, Evaluation Metrics

Announcements

• HW1 Due Tomorrow

– Will be graded in about a week

- HW2 Released Tonight/Tomorrow
 Due Jan 23rd at 9pm
- Recitation Thursday
 - Linear Algebra (& Vector Calculus)
 - Annenberg 105

Recap: Basic Recipe

- Training Data: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$
- Model Class: $f(x | w, b) = w^T x b$ Linear Models

• Loss Function: $L(a,b) = (a-b)^2$ Squared Loss

• Learning Objective:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Recap: Bias-Variance Trade-off

Recap: Complete Pipeline

Today

- Beyond Basic Linear Models
 - Support Vector Machines
 - Logistic Regression
 - Feed-forward Neural Networks
 - Different ways to interpret models
- Different Evaluation Metrics

Today

- Beyond Basic Linear Models
 - Support Vector Machines
 - Logistic Regression
 - Feed-forward Neural Networks
 - Different ways to interpret models
- Different Evaluation Metrics

Recap: 0/1 Loss is Intractable

• 0/1 Loss is flat or discontinuous everywhere

VERY difficult to optimize using gradient descent

Solution: Optimize surrogate Loss
 – Today: Hinge Loss (...eventually)

Support Vector Machines aka Max-Margin Classifiers

Which Line is the Best Classifier?

Source: http://en.wikipedia.org/wiki/Support_vector_machine

Which Line is the Best Classifier?

Source: http://en.wikipedia.org/wiki/Support_vector_machine

Recall: Hyperplane Distance

- Line is a 1D, Plane is 2D
- Hyperplane is many D
 Includes Line and Plane
- Defined by (w,b)

Signed Distance:

• Distance:

$$\frac{\left|w^{T}x-b\right|}{\left\|w\right\|}$$
$$\frac{w^{T}x-b}{\left\|w\right\|}$$

W b/|w un-normalized Linear Model = signed distance!

Recall: Margin

How to Maximize Margin? (Assume Linearly Separable)

Choose w that maximizes:

How to Maximize Margin? (Assume Linearly Separable)

$$\underset{w,b}{\operatorname{argmax}} \left[\underset{(x,y)}{\min} \frac{y(w^{T}x - b)}{\|w\|} \right]$$

$$= \underset{w,b: \|w\|=1}{\operatorname{argmax}} \left[\min_{(x,y)} y(w^{T}x - b) \right]$$

Hold Denominator Fixed

Suppose we instead enforce:

$$\min_{(x,y)} y(w^T x - b) = 1$$

Hold Numerator Fixed

Then:

$$= \underset{w,b}{\operatorname{argmin}} \|w\| = \underset{w,b}{\operatorname{argmin}} \|w\|^2$$

Max Margin Classifier (Support Vector Machine)

Soft-Margin Support Vector Machine

Hinge Loss vs Squared Loss

Recall: Perceptron Learning Algorithm (Linear Classification Model)

- $w^1 = 0, b^1 = 0$
- For t = 1

- Receive example (x,y)

- $If f(x | w^t, b^t) = y$
 - $[w^{t+1}, b^{t+1}] = [w^{t}, b^{t}]$

– Else

- w^{t+1}= w^t + yx
- b^{t+1} = b^t y

$$f(x \mid w) = sign(w^T x - b)$$

Training Set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

y \le \{+1, -1\}

Go through training set in arbitrary order (e.g., randomly)

Comparison with Perceptron "Loss"

Perceptron

SVM/Hinge

Support Vector Machine

- 2 Interpretations
- Geometric
 - Margin vs Margin Violations
- Loss Minimization
 - Model complexity vs Hinge Loss
 - (Will discuss in depth next lecture)
- Equivalent!

 $\operatorname{argmin}_{w,b,\xi} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$ $\forall i : y_{i} (w^{T} x_{i} - b) \ge 1 - \xi_{i}$ $\forall i : \xi_{i} \ge 0$

Comment on Optimization

Hinge Loss is not smooth
 – Not differentiable

• How to optimize?

 $\operatorname{argmin}_{w,b,\xi} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$ $\forall i : y_{i} \left(w^{T} x_{i} - b \right) \ge 1 - \xi_{i}$ $\forall i : \xi_{i} \ge 0$

- Stochastic (Sub-)Gradient Descent still works!
 - Sub-gradients discussed next lecture

https://en.wikipedia.org/wiki/Subgradient_method

Logistic Regression aka "Log-Linear" Models

Logistic Regression

Also known as sigmoid function:
$$\sigma(a) = \frac{e^a}{1 + e^a}$$

 $y \in \{-1,+1\}$

Maximum Likelihood Training

• Training set: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$

- Maximum Likelihood: $\operatorname{argmax}_{w,b} \prod_{i} P(y_i | x_i, w, b)$ - (Why?)
- Each (x,y) in S sampled independently!
 - Discussed further in Probably Recitation

Why Use Logistic Regression?

- SVMs often better at classification
 - Assuming margin exists...
- Calibrated Probabilities?
- Increase in SVM score....
 - ...similar increase in P(y=+1|x)?
 - Not well calibrated!
- Logistic Regression!

*Figure above is for Boosted Decision Trees (SVMs have similar effect)

Log Loss

$$P(y \mid x, w, b) = \frac{e^{\frac{1}{2}y(w^{T}x-b)}}{e^{\frac{1}{2}y(w^{T}x-b)} + e^{-\frac{1}{2}y(w^{T}x-b)}} = \frac{e^{\frac{1}{2}yf(x\mid w, b)}}{e^{\frac{1}{2}yf(x\mid w, b)} + e^{-\frac{1}{2}yf(x\mid w, b)}}$$

$$\operatorname{argmax}_{w,b} \prod_{i} P(y_i | x_i, w, b) = \operatorname{argmin}_{w,b} \sum_{i} -\ln P(y_i | x_i, w, b)$$

$$\operatorname{Log Loss}$$

$$\left(-\frac{1}{2} v f(x) - \frac{1}{2} v f(x) -$$

$$L(y, f(x)) = -\ln\left(\frac{e^{2^{y_f(x)}}}{e^{\frac{1}{2}y_f(x)} + e^{-\frac{1}{2}y_f(x)}}\right)$$

Solve using (Stoch.) Gradient Descent

Log Loss vs Hinge Loss

Log-Loss Gradient (For One Example)

$$\begin{split} \partial_{w} - \ln P(y_{i} \mid x_{i}) &= -\partial_{w} \left(\frac{1}{2} y_{i} f(x_{i} \mid w, b) - \ln \left(e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)} \right) \right) \\ &= -\frac{1}{2} y_{i} x_{i} + \partial_{w} \ln \left(e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)} \right) \\ &= -\frac{1}{2} y_{i} x_{i} + \frac{1}{e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)}} \partial_{w} \left(e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)} \right) \\ &= \left(-1 + \frac{1}{e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)}} \partial_{w} \left(e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} - e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)} \right) \right) \\ &= \left(-1 + \frac{1}{e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} + e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)}} \left(e^{\frac{1}{2} y_{i} f(x_{i} \mid w, b)} - e^{-\frac{1}{2} y_{i} f(x_{i} \mid w, b)}} \right) \right) \frac{1}{2} y_{i} x_{i} \\ &= \left(-1 + P(y_{i} \mid x_{i}) - P(-y_{i} \mid x_{i}) \right) \frac{1}{2} y_{i} x_{i} \\ &= -P(-y_{i} \mid x_{i}) y_{i} x_{i} = -\left(1 - P(y_{i} \mid x_{i}) \right) y_{i} x_{i} \\ &= P(y \mid x, w, b) = \frac{e^{\frac{1}{2} y'(x \mid w, b)}}{e^{\frac{1}{2} y'(x \mid w, b)} + e^{-\frac{1}{2} y'(x \mid w, b)}} \end{split}$$

Logistic Regression

• Two Interpretations

• Maximizing Likelihood

• Minimizing Log Loss

• Equivalent!

Feed-Forward Neural Networks aka Not Quite Deep Learning

1 Layer Neural Network

- 1 Neuron
 - Takes input x
 - Outputs y

$$f(x | w,b) = w^{T}x - b \longrightarrow y = \sigma(f(x))$$

= $w_{1}^{*}x_{1} + w_{2}^{*}x_{2} + w_{3}^{*}x_{3} - b$

• ~Logistic Regression!

- Solve via Gradient Descent

2 Layer Neural Network

- 2 Layers of Neurons
 - 1st Layer takes input x

Non-Linear!

- 2nd Layer takes output of 1st layer
- Can approximate arbitrary functions
 - Provided hidden layer is large enough
 - "fat" 2-Layer Network

Aside: Deep Neural Networks

- Why prefer Deep over a "Fat" 2-Layer?
 - Compact model
 - (exponentially large "fat" model)
 - Easier to train?
 - Discussed further in deep learning lectures

Image Source: http://blog.peltarion.com/2014/06/22/deep-learning-and-deep-neural-networks-in-synapse/

Training Neural Networks

- Gradient Descent!
 - Even for Deep Networks*

- Parameters:
 - $-(w_{11}, b_{11}, w_{12}, b_{12}, w_2, b_2)$

 $f(x | w,b) = w^{T}x - b \quad y = \sigma(f(x))$

$$\partial_{w_2} \sum_{i=1}^N L(y_i, \sigma_2) = \sum_{i=1}^N \partial_{w_2} L(y_i, \sigma_2) = \sum_{i=1}^N \partial_{\sigma_2} L(y_i, \sigma_2) \partial_{w_2} \sigma_2 = \sum_{i=1}^N \partial_{\sigma_2} L(y_i, \sigma_2) \partial_{f_2} \sigma_2 \partial_{w_2} f_2$$

$$\partial_{w_{1m}} \sum_{i=1}^{N} L(y_i, \sigma_2) = \sum_{i=1}^{N} \partial_{\sigma_2} L(y_i, \sigma_2) \partial_{f_2} \sigma_2 \partial_{w_1} f_2 = \sum_{i=1}^{N} \partial_{\sigma_2} L(y_i, \sigma_2) \partial_{f_2} \sigma_2 \partial_{\sigma_{1m}} f_2 \partial_{f_{1m}} \sigma_{1m} \partial_{w_{1m}} f_{1m} \partial_{w_{1m}} f_1 d_{w_{1m}} f_1 d_{w_{1m}$$

Backpropagation = Gradient Descent (lots of chain rules)

*more complicated

Story So Far

- Different Loss Functions
 - Hinge Loss
 - Log Loss
 - Can be derived from different interpretations
- Non-Linear Model Classes
 - Neural Nets
 - Composable with different loss functions
- No closed-form solution for training
 - Must use some form of gradient descent

Today

- Beyond Basic Linear Models
 - Support Vector Machines
 - Logistic Regression
 - Feed-forward Neural Networks
 - Different ways to interpret models
- Different Evaluation Metrics

Evaluation

• 0/1 Loss (Classification)

• Squared Loss (Regression)

• Anything Else?

Example: Cancer Prediction

Patient

	Loss Function	Has Cancer	Doesn't Have Cancer
del	Predicts Cancer	Low	Medium
Mo	Predicts No Cancer	OMG Panic!	Low

- Value Positives & Negatives Differently
 - Care much more about positives
- "Cost Matrix"
 - 0/1 Loss is Special Case

Optimizing for Cost-Sensitive Loss

• There is no universally accepted way.

Simplest Approach (Cost Balancing):

$$\operatorname{argmin}_{w,b} \left(1000 \sum_{i:y_i=1} L(y_i, f(x_i \mid w, b)) + \sum_{i:y_i=-1} L(y_i, f(x_i \mid w, b)) \right)$$

Loss Function	Has Cancer	Doesn't Have Cancer
Predicts Cancer	0	1
Predicts No Cancer	1000	0

Precision & Recall

- **Precision** = TP/(TP + FP)
- **Recall** = TP/(TP + FN)

$$F1 = 2/(1/P+ 1/R)$$

Care More About Positives!

Patient

del	Counts	Has Cancer	Doesn't Have Cancer
	Predicts Cancer	20 (TP)	30 (FP)
Мо Мо	Predicts No Cancer	5 (FN)	70 (TN)

- TP = True Positive, TN = True Negative
- FP = False Positive, FN = False Negative

Image Source: http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html

Example: Search Query

• Rank webpages by relevance

Ranking Measures

4

do

- Predict a Ranking (of webpages)
 - Users only look at top 4
 - Sort by f(x|w,b)
- Precision @4 =1/2
 Fraction of top 4 relevant
- Recall @4 =2/3
 - Fraction of relevant in top 4
- Top of Ranking Only!

Image Source: http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html

Pairwise Preferences

4 Pairwise Agreements

ROC-Area

- ROC-Area
 - Area under ROC Curve
 - Fraction pairwise agreements
- Example:

ROC-Area: 0.5 #Pairwise Preferences = 6 #Agreements = 3

Average Precision

Precision at Rank Location of Each Positive Example

Image Source: http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html

ROC-Area versus Average Precision

- ROC-Area Cares about every pairwise preference equally
- Average Precision cares more about top of ranking

ROC-Area: 0.5 Average Precision: 0.76

ROC-Area: 0.5 Average Precision: 0.64

Other Challenges

- "Correct" if overlap is large enough
- How to define large enough?
- Duplicate detections?
- What is learning objective?

- Similar challenges in videos:
 - E.g., temporal bounding box around "running" activity
 - Duplicate predictions: break into two separate running activities
- Other examples: heart-rate monitoring

http://slazebni.cs.illinois.edu/publications/iccv15_active.pdf

Summary: Evaluation Measures

- Different Evaluations Measures

 Different Scenarios
- Large focus on getting positives
 - Large cost of mis-predicting cancer
 - Relevant webpages are rare
 - Aka "Class Imbalance"
- Other challenges:
 - localization in continuous domain

Next Lecture

- Regularization
- Lasso

• Thursday:

- Recitation on Matrix Linear Algebra (& Calculus)