
Machine	Learning	&	Data	Mining
CS/CNS/EE	155

Lecture	3:
SVM,	Logistic	Regression,	Neural	Nets,	

Evaluation	Metrics



Announcements

• HW1	Due	Tomorrow
–Will	be	graded	in	about	a	week

• HW2	Released	Tonight/Tomorrow
– Due	Jan	23rd at	9pm

• Recitation	Thursday
– Linear	Algebra	(&	Vector	Calculus)
– Annenberg	105



Recap: Basic	Recipe

• Training	Data:

• Model	Class:

• Loss	Function:

• Learning	Objective:	

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models

Squared	Loss

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Optimization	Problem



Recap:	Bias-Variance	Trade-off
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Recap:	Complete	Pipeline

S = (xi, yi ){ }i=1
N

Training	Data

f (x |w,b) = wT x − b

Model	Class(es)

L(a,b) = (a− b)2

Loss	Function

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Cross	Validation	&	Model	Selection Profit!

SGD!



Today

• Beyond	Basic	Linear	Models
– Support	Vector	Machines
– Logistic	Regression
– Feed-forward	Neural	Networks
– Different	ways	to	interpret	models

• Different	Evaluation	Metrics
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0/1	Loss

Squared	Loss

f(x)

Lo
ss

Target	y

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

∂w L yi, f (xi |w,b)( )
i=1

N

∑

How	to	compute	
gradient	for	0/1	Loss?



Recap:	0/1	Loss	is	Intractable

• 0/1	Loss	is	flat	or	discontinuous	everywhere

• VERY	difficult	to	optimize	using	gradient	
descent

• Solution:	Optimize	surrogate	Loss
– Today:	Hinge	Loss	(…eventually)



Support	Vector	Machines
aka	Max-Margin	Classifiers



Source:	http://en.wikipedia.org/wiki/Support_vector_machine

Which	Line	is	the	Best	Classifier?



Source:	http://en.wikipedia.org/wiki/Support_vector_machine

Which	Line	is	the	Best	Classifier?

“Margin”



• Line	is	a	1D,	Plane	is	2D
• Hyperplane is	many	D
– Includes	Line	and	Plane

• Defined	by	(w,b)

• Distance:

• Signed	Distance:

Recall:	Hyperplane Distance	

wT x − b
w

wT x − b
w

w

un-normalized	
signed	distance!

Linear	Model	=	

b/|w|
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Recall: Margin

γ =max
w
min
(x,y)

y(wT x)
w



How	to	Maximize	Margin?
(Assume	Linearly	Separable)

Choose	w	that	maximizes:

argmax
w,b

min
(x,y)

y wT x − b( )
w

"

#
$
$

%

&
'
'

Margin



How	to	Maximize	Margin?
(Assume	Linearly	Separable)

argmax
w,b

min
(x,y)

y wT x − b( )
w

"

#
$
$

%

&
'
'

≡ argmax
w,b: w =1

min
(x,y)

y wT x − b( )#
$%

&
'(

Suppose	we	instead	enforce:	

min
(x,y)

y wT x − b( ) =1

= argmin
w,b

w ≡ argmin
w,b

w 2

Then:

Hold	Denominator	Fixed

Hold	Numerator	Fixed



Image	Source:	http://en.wikipedia.org/wiki/Support_vector_machine

Max	Margin	Classifier	(Support	Vector	Machine)

“Linearly	Separable”

Better	generalization	
to	unseen	 test	examples
(beyond	scope	of	course*)
(only	 training	data	on	
margin	matter)

“Margin”

argmin
w,b

1
2
wTw ≡ 1

2
w 2

∀i : yi w
T xi − b( ) ≥1

*http://olivier.chapelle.cc/pub/span_lmc.pdf



argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b( ) ≥1−ξi

∀i :ξi ≥ 0

Soft-Margin	Support	Vector	Machine

ξi

“Margin”

Size	of	Margin	
vs

Size	of	Margin	Violations
(C	controls	trade-off)

Image	Source:	http://en.wikipedia.org/wiki/Support_vector_machine

“Slack”
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0/1	Loss

Hinge	Loss
argmin

w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b( ) ≥1−ξi

∀i :ξi ≥ 0

Hinge	Loss

L(yi, f (xi )) =max(0,1− yi f (xi )) = ξi

Regularization

Target	y
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Recall:	Perceptron	Learning	Algorithm
(Linear	Classification	Model)

• w1 =	0,	b1 =	0
• For	t	=	1	….
– Receive	example	(x,y)
– If	f(x|wt,bt)	=	y
• [wt+1, bt+1]	=	[wt, bt]

– Else
• wt+1=	wt +	yx
• bt+1 =	bt - y

21

S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:

Go	through	training	set	
in	arbitrary	order
(e.g.,	randomly)

f (x |w) = sign(wT x − b)
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Comparison	with	Perceptron	“Loss”

22

max 0,−yi f (xi |w,b){ }

yf(x)

Lo
ss

max 0,1− yi f (xi |w,b){ }

Perceptron SVM/Hinge



Support	Vector	Machine	

• 2	Interpretations

• Geometric
– Margin	vs Margin	Violations

• Loss	Minimization
– Model	complexity	vs Hinge	Loss
– (Will	discuss	in	depth	next	lecture)

• Equivalent!

argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b( ) ≥1−ξi

∀i :ξi ≥ 0
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Comment	on	Optimization

• Hinge	Loss	is	not	smooth
– Not	differentiable

• How	to	optimize?

• Stochastic	(Sub-)Gradient	Descent	still	works!
– Sub-gradients	discussed	next	lecture

argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b( ) ≥1−ξi

∀i :ξi ≥ 0

https://en.wikipedia.org/wiki/Subgradient_method
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Logistic	Regression
aka	“Log-Linear”	Models



Logistic	Regression

P(y | x,w,b) = e
1
2
y wT x−b( )

e
1
2
y wT x−b( )

+ e
−
1
2
y wT x−b( )

P(y | x,w,b) = 1
1+ e−y(w

T x−b)

“Log-Linear”	Model
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P(
y|
x)

Also	known	as	sigmoid	function: σ (a) = ea

1+ ea

y ∈ −1,+1{ }



• Training	set:

• Maximum	Likelihood:
– (Why?)

• Each	(x,y)	in	S	sampled	independently!
– Discussed	further	in	Probably	Recitation

Maximum	Likelihood	Training

S = (xi, yi ){ }i=1
N

argmax
w,b

P(yi | xi,w,b)
i
∏

x ∈ RD

y ∈ −1,+1{ }



• SVMs	often	better	at	classification
– Assuming	margin	exists…

• Calibrated	Probabilities?

• Increase	in	SVM	score….
– ...similar	increase	in	P(y=+1|x)?
– Not	well	calibrated!

• Logistic	Regression!

Why	Use	Logistic	Regression?
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Figure 1. Histograms of predicted values and reliability diagrams for boosted decision trees.

Table 4. Squared error and cross-entropy performance of learning algorithms
SQUARED ERROR CROSS-ENTROPY

ALGORITHM RAW PLATT ISOTONIC RAW PLATT ISOTONIC
BST-DT 0.3050 0.2650 0.2652 0.4810 0.3727 0.3745
SVM 0.3303 0.2727 0.2719 0.5767 0.3988 0.3984
BAG-DT 0.2818 0.2815 0.2799 0.4050 0.4082 0.3996
ANN 0.2805 0.2821 0.2806 0.4143 0.4229 0.4120
KNN 0.2861 0.2871 0.2839 0.4367 0.4300 0.4186
BST-STMP 0.3659 0.3098 0.3096 0.6241 0.4713 0.4734
DT 0.3211 0.3212 0.3145 0.5019 0.5091 0.4865

to have probability near 0.

The reliability plots in Figure 1 display roughly sigmoid-
shaped reliability diagrams, motivating the use of a sig-
moid to transform predictions into calibrated probabili-
ties. The reliability plots in the middle row of the £gure
also show sigmoids £tted using Platt’s method. The reli-
ability plots in the bottom of the £gure show the function
£tted with Isotonic Regression.

To show how calibration transforms the predictions, we
plot histograms and reliability diagrams for the seven
problem for boosted trees after 1024 steps of boosting,
after Platt Calibration (Figure 2) and after Isotonic Re-
gression (Figure 3). The reliability diagrams for Isotonic
Regression are very similar to the ones for Platt Scal-
ing, so we omit them in the interest of space. The £gures
show that calibration undoes the shift in probability mass
caused by boosting: after calibration many more cases
have predicted probabilities near 0 and 1. The reliabil-
ity diagrams are closer to the diagonal, and the S shape
characteristic of boosting’s predictions is gone. On each

problem, transforming the predictions using either Platt
Scaling or Isotonic Regression yields a signi£cant im-
provement in the quality of the predicted probabilities,
leading to much lower squared error and cross-entropy.
The main difference between Isotonic Regression and
Platt Scaling for boosting can be seen when comparing
the histograms in the two £gures. Because Isotonic Re-
gression generates a piecewise constant function, the his-
tograms are quite coarse, while the histograms generated
by Platt Scaling are smooth and easier to interpret.

Table 4 compares the RMS and MXE performance of the
learning methods before and after calibration. Figure 4
shows the squared error results from Table 4 graphically.

After calibration with Platt Scaling or Isotonic Regres-
sion, boosted decision trees have better squared error and
cross-entropy than the other learning methods. The next
best methods are SVMs, bagged decision trees and neu-
ral nets. While Platt Scaling and Isotonic Regression sig-
ni£cantly improve the performance of the SVM models,
they have little or no effect on the performance of bagged

Image	Source:	http://machinelearning.org/proceedings/icml2005/papers/079_GoodProbabilities_NiculescuMizilCaruana.pdf

*Figure	above	is	for	
Boosted	Decision	Trees	
(SVMs	have	similar	effect)

f(x)

P(
y=
+1
)



Log	Loss

P(y | x,w,b) = e
1
2
y wT x−b( )

e
1
2
y wT x−b( )

+ e
−
1
2
y wT x−b( )

=
e
1
2
yf (x|w,b)

e
1
2
yf (x|w,b)

+ e
−
1
2
yf (x|w,b)

argmax
w,b

P(yi | xi,w,b)
i
∏ = argmin

w,b
− lnP(yi | xi,w,b)

i
∑

Log	Loss

Solve	using	
(Stoch.)	Gradient	Descent

L(y, f (x)) = − ln e
1
2
yf (x )

e
1
2
yf (x )

+ e
−
1
2
yf (x )

"

#

$
$$

%

&

'
''
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Log	Loss	vs Hinge	Loss

L(y, f (x)) = − ln e
1
2
yf (x )

e
1
2
yf (x )

+ e
−
1
2
yf (x )
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L(y, f (x)) =max(0,1− yf (x))

f(x)

Lo
ss

0/1	Loss

Hinge	Loss

Log	Loss



Log-Loss	Gradient
(For	One	Example)

∂w − lnP(yi | xi ) = −∂w
1
2
yi f (xi |w,b)− ln e

1
2
yi f (xi |w,b)

+ e
−

1
2
yi f (xi |w,b)#

$
%

&

'
(

#

$
%%

&

'
((

                                = − 1
2
yixi +∂w ln e

1
2
yi f (xi |w,b)

+ e
−

1
2
yi f (xi |w,b)#

$
%

&

'
(

                                = − 1
2
yixi +

1

e
1
2
yi f (xi |w,b)

+ e
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2
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∂w e
1
2
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                                = −1+ 1

e
1
2
yi f (xi |w,b)

+ e
−
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2
yi f (xi |w,b)

e
1
2
yi f (xi |w,b)

− e
−
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2
yi f (xi |w,b)#

$
%

&

'
(

#

$

%
%

&

'

(
(

1
2
yixi

                                = −1+P(yi | xi )−P(−yi | xi )( ) 1
2
yixi

                                = −P(−yi | xi )yixi = − 1−P(yi | xi )( ) yixi
P(y | x,w,b) = e

1
2
yf (x|w,b)

e
1
2
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−
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2
yf (x|w,b)



Logistic	Regression

• Two	Interpretations

• Maximizing	Likelihood

• Minimizing	Log	Loss

• Equivalent!

Logis?c(Regression(

P(y | x,w,b) = e
y wT x−b( )

e
y wT x−b( ) + e

−y wT x−b( )

P(y | x,w,b)∝ ey w
T x−b( ) ≡ ey* f (x|w,b)

“LogNLinear”&Model&
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Feed-Forward	Neural	Networks
aka	Not	Quite	Deep	Learning



1	Layer	Neural	Network

• 1	Neuron
– Takes	input	x
– Outputs	y

• ~Logistic	Regression!
– Solve	via	Gradient	Descent

Σx y

“Neuron”

f(x|w,b)	=	wTx – b
=	w1*x1 +	w2*x2 +	w3*x3	– b

y	=	σ(	f(x)	)
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2	Layer	Neural	Network

• 2	Layers	of	Neurons
– 1st Layer	takes	input	x
– 2nd Layer	takes	output	of	1st layer

• Can	approximate	arbitrary	functions
– Provided	hidden	layer	is	large	enough
– “fat”	2-Layer	Network

Σ
x y

Σ
Σ

Hidden	Layer

Non-Linear!



Aside:	Deep	Neural	Networks

• Why	prefer	Deep	over	a	“Fat”	2-Layer?
– Compact	model	

• (exponentially	large	“fat”	model)
– Easier	to	train?
– Discussed	further	in	deep	learning	lectures

Image	Source:	http://blog.peltarion.com/2014/06/22/deep-learning-and-deep-neural-networks-in-synapse/



Training	Neural	Networks

• Gradient	Descent!
– Even	for	Deep	Networks*

• Parameters:
– (w11,b11,w12,b12,w2,b2)

Σ
x y

Σ
Σ

*more	complicated

∂w2 L yi,σ 2( )
i=1

N

∑ = ∂w2L yi,σ 2( )
i=1

N

∑ = ∂σ 2L yi,σ 2( )
i=1

N

∑ ∂w2σ 2 = ∂σ 2L yi,σ 2( )
i=1

N

∑ ∂ f2
σ 2∂w2 f2

f(x|w,b)	=	wTx – b y	=	σ(	f(x)	)

∂w1m L yi,σ 2( )
i=1

N

∑ = ∂σ 2L yi,σ 2( )
i=1

N

∑ ∂ f2
σ 2∂w1 f2 = ∂σ 2L yi,σ 2( )

i=1

N

∑ ∂ f2
σ 2∂σ1m f2∂ f1m

σ1m∂w1m f1m

Backpropagation =	Gradient	Descent
(lots	of	chain	rules)



Story	So	Far

• Different	Loss	Functions
– Hinge	Loss
– Log	Loss
– Can	be	derived	from	different	interpretations

• Non-Linear	Model	Classes
– Neural	Nets
– Composablewith	different	loss	functions

• No	closed-form	solution	for	training
– Must	use	some	form	of	gradient	descent



Today

• Beyond	Basic	Linear	Models
– Support	Vector	Machines
– Logistic	Regression
– Feed-forward	Neural	Networks
– Different	ways	to	interpret	models

• Different	Evaluation	Metrics



Evaluation

• 0/1	Loss		(Classification)

• Squared	Loss	(Regression)

• Anything	Else?



Example:	Cancer	Prediction

Loss	Function Has	Cancer Doesn’t Have	
Cancer

Predicts Cancer Low Medium
Predicts	No Cancer OMG	Panic! LowM

od
el

Patient

• Value	Positives	&	Negatives	Differently
– Care	much	more	about	positives

• “Cost	Matrix”
– 0/1	Loss	is	Special	Case



Optimizing	for	Cost-Sensitive	Loss

• There	is	no	universally	accepted	way.

Simplest	Approach	(Cost	Balancing):

Loss	Function Has	Cancer Doesn’t Have	
Cancer

Predicts Cancer 0 1
Predicts	No Cancer 1000 0

argmin
w,b

1000 L yi, f (xi |w,b)( )
i:yi=1
∑ + L yi, f (xi |w,b)( )

i:yi=−1
∑

#

$
%%

&

'
((



Precision	&	Recall

• Precision =	TP/(TP	+	FP)
• Recall =	TP/(TP	+	FN)

• TP	=	True	Positive,	TN	=	True	Negative
• FP	=	False	Positive,	FN	=	False	Negative

Counts Has	Cancer Doesn’t Have	Cancer
Predicts Cancer 20	(TP) 30	(FP)
Predicts	No Cancer 5	(FN) 70	(TN)M

od
el

Patient

Care	More	About	Positives!

F1 =	2/(1/P+	1/R)		

Image	Source:	http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html



Example:	Search	Query

• Rank	webpages	by	relevance



• Predict	a	Ranking	(of	webpages)
– Users	only	look	at	top	4
– Sort	by	f(x|w,b)

• Precision	@4							=1/2
– Fraction	of	top	4	relevant

• Recall	@4													=2/3
– Fraction	of	relevant	in	top	4

• Top	of	Ranking	Only!

Ranking	Measures

Image	Source:	http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html

To
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Pairwise	Preferences

2	Pairwise	Disagreements
4	Pairwise	Agreements



ROC-Area

• ROC-Area
– Area	under	ROC	Curve
– Fraction	pairwise	agreements

• Example:

Image	Source:	http://www.medcalc.org/manual/roc-curves.php

ROC-Area:	0.5
#Pairwise	Preferences	=	6
#Agreements	=	3



Average	Precision

• Average	Precision
– Area	under	P-R	Curve
– P@K	for	each	positive

• Example:

Image	Source:	http://pmtk3.googlecode.com/svn-history/r785/trunk/docs/demos/Decision_theory/PRhand.html
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ROC-Area	versus	Average	Precision

• ROC-Area	Cares	about	every	pairwise	preference	equally

• Average	Precision	cares	more	about	top	of	ranking

ROC-Area:	0.5				Average	Precision:	0.76

ROC-Area:	0.5				Average	Precision:	0.64



Other	Challenges

http://slazebni.cs.illinois.edu/publications/iccv15_active.pdf

Figure 6. Example sequences observed by the agent and the ac-
tions selected to focus objects. Regions are warped in the same
way as they are fed to the CNN. Actions keep the object in the
center of the box. More examples in the supplementary material.
Last row: example Inhibition of Return marks placed during test.

ery single object without missing any instance. Notice that
more candidates do not improve recall as much as other
methods do, so we hypothesize that fixing overall recall will
improve early recall even more.

To illustrate this result further, we plot the distribution of
correctly detected objects according to the number of steps
necessary to localize them in Figure 5. The distribution has
a long tail, with 83% of detections requiring less than 50
steps to be obtained, and an average of 25.6. A more robust
statistic for long-tailed distributions is the median, which
in our experiments is just 11 steps, indicating that most of
the correct detections happen around that number of steps.
Also, the agent is able to localize 11% of the objects imme-
diately without processing more regions, because they are
big instances that occupy most of the image.

5.3. Qualitative Evaluation

We present a number of example sequences of regions
that the agent attended to localize objects. Figure 7 shows
two example scenes with multiple objects, and presents
green boxes where a correct detection was explicitly marked
by the agent. The plot to the left presents the evolution
of IoU as the agent transforms the bounding box. These
plots show that correct detections are usually obtained with
a small number of steps increasing IoU with the ground
truth rapidly. Points of the plots that oscillate below the
minimum accepted threshold (0.5) indicate periods of the
search process that were difficult or confusing to the agent.

Figure 6 shows sequences of attended regions as seen by
the agent, as well as the actions selected in each step. No-
tice that the actions chosen attempt to keep the object in the
center of the box, and also that the final object appears to
have normalized scale and aspect ratio. The top two exam-

Figure 7. Examples of multiple objects localized by the agent in a
single scene. Numbers in yellow indicate the order in which each
instance was localized. Notice that IoU between the attended re-
gion and ground truth increases quickly before the trigger is used.

4 

1 

Time (actions) 

In
te

rs
ec

tio
n 

O
ve

r U
ni

on
 

0.5 

1.0 

0.0 
15 33 100 200 

6 
2 

3 
5 

1 2 3 4 5 6 

123 147 

correct error missed 

Figure 8. Examples of images with common mistakes that include:
duplicated detections due to objects not fully covered by the IoR
mark, and missed objects due to size or other difficult patterns.

ples also show the IoR mark that is placed in the environ-
ment after the agent triggers a detection. The reader can find
more examples and videos in the supplementary material.

5.4. Error Modes

We also evaluate performance using the diagnostic tool
proposed by Hoiem et al. [14]. In summary, object local-
ization is the most frequent error of our system, and it is
sensitive to object size. Here we include the report of sensi-
tivity to characteristics of objects in Figure 9, and compare
to the R-CNN system. Our system is more sensitive to the
size of objects than any other characteristic, which is mainly
explained by the difficulty of the agent to attend cluttered re-

• “Correct”	if	overlap	is	large	enough

• How	to	define	large	enough?

• Duplicate	detections?

• What	is	learning	objective?

• Similar	challenges	in	videos:
• E.g.,	temporal	bounding	box	around	“running”	activity
• Duplicate	predictions:	break	into	two	separate	running	activities

• Other	examples:	heart-rate	monitoring



Summary:	Evaluation	Measures

• Different	Evaluations	Measures
– Different	Scenarios

• Large	focus	on	getting	positives
– Large	cost	of	mis-predicting	cancer
– Relevant	webpages	are	rare
• Aka	“Class	Imbalance”

• Other	challenges:	
– localization	in	continuous	domain



Next	Lecture

• Regularization

• Lasso

• Thursday:	
– Recitation	on	Matrix	Linear	Algebra	(&	Calculus)


