Caltech

Machine Learning & Data Mining
CMS/CS/CNS/EE 155

Lecture 2:

Perceptron & Stochastic Gradient
Descent

Recap: Basic Recipe (supervised)

. _ . N xER”
Training Data: ¢ _ {(xi’yi)},-=1 ve{te)

* Model Class: f(xlw,b)=wa—b Linear Models

* Loss Function: L(a,b)=(a-b) Squared Loss

N
* Learning Objective: argmin y L(y,. f(x, | w.b))
Wb i

Optimization Problem

Recap: Bias-Variance Trade-off

0 20 40 60 80 100 0 20 40 60 80 10C

1.5 Bias Variance ' Bias Variance '° Bias Variance
1 / 1
0.5 0.5
0 0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 10C

Recap: Complete Pipeline

Training Data

4 N\
5 = {(xi’yi)}i=1

(

Model Class(es)

\

f(xlw,by=w"x-b

-

~

=

—

—

N
argminEL(yi,f(xi |w,b))
Wb i

Cross Validation & Model Selection

-

L(a,b)=(a-b)’

Loss Function

~

J

-

_

~N

A
»)

Profit!

Today

* Two Basic Learning Algorithms
* Perceptron Algorithm

* (Stochastic) Gradient Descent

— Aka, actually solving the optimization problem

The Perceptron

* One of the earliest learning algorithms
— 1957 by Frank Rosenblatt

 Still a great algorithm
— Fast
— Clean analysis
— Precursor to Neural Networks

Frank Rosenblatt
with the Mark 1

Perceptron Machine

Perceptron Learning Algorithm
(Linear Classification Model)

e wl=0,bl=0 f(xIw)=sign(w' x-b)
* Fort=1....
— Receive example (x,y) Training Set: v
— If f(x|wtbt) =y $ =103k,
e [wtl bt*1] = [wt bt] bAS {+1’_1}
— Else

Go through training set
in arbitrary order

o httl = pt - y (e.g., randomly)

Aside: Hyperplane Distance

Line is a 1D, Plane is 2D

Hyperplane is many D
— Includes Line and Plane

Defined by (w,b)

) ‘wa— b‘
Distance:
[wl
Signed Distance: x=b
[wl

A

e
//
W /
\ A
//
y; O
//
o/ Iwl
W
\\ // >
'y

Linear Model =

un-normalized
signed distance!

Perceptron Learning

4 Perceptron Learning

Misclassified!

%+ .
‘ +| 4 +
T >
— L
- |7 F

10

Perceptron Learning

11

4 Perceptron Learning

Correct!

12

4 Perceptron Learning

13

.

Perceptron Learning

14

Perceptron Learning

~ []
\\ _— \:u:j
Update! \ﬁ =
< = = =y
- ke
- T

15

[+

@\%Iﬁ\

== Correct!

Perceptron Learning

16

4 Perceptron Learning
.
v =1 Correct!
il
— L T
_—~
1= ’
T~
N - T
= ~
=
jo—

17

4 Perceptron Learning
+
_U,
|y
- - T%
I Misclassified!

18

4 Perceptron Learning

19

4 Perceptron Learning

20

All Training Examples
Correctly Classified!

Perceptron Learning

N N - LU_/ M
N .y
== N \:Bj m
) I
N
~_ 0
— N N e
= °\ i
- N
= N
N
N

21

Start Again 0 Perceptron Learning

* &
| 4 *
<€ — T >
_— .
- T

22

4 Perceptron Learning

Misclassified! -

L
LU_I
§
+| & T
T >
i L
- |7 F

23

4 Perceptron Learning

24

4 Perceptron Learning

Correct!

/ |

25

4 Perceptron Learning

26

4 Perceptron Learning

/ [Misclassified!

27

Perceptron Learning

28

Perceptron Learning

29

Perceptron Learning

Correct!

30

Perceptron Learning

| +
— == >
l e
E] - - U 4

31

Misclassified!

Perceptron Learning

= =N/
)
= B I B
O II 4 O
— == >
| e
N _ II - T =

32

Perceptron Learning

| |

Update!
|
[I
. J_]I
|
- -l T e
— |
= >
— L
— II N o

33

Perceptron Learning

Update!
\
\:IUI:I |
\ -
N |
i \
A T >
_ N e
- |+
\-
\
| - \

34

Perceptron Learning

\:IUI:I i |
\ ||
\ .y
- .
T 5 =k
i \
- T >
N "
- T g
- \ o

\\ Misclassified!

35

4 Perceptron Learning

36

Perceptron Learning

37

4 Perceptron Learning

Misclassified!

38

Perceptron Learning

39

4 Perceptron Learning

40

4 Perceptron Learning

[
.
lis ’
™ - O
—= N N
~
N
= =~

Misclassified!

41

Perceptron Learning

42

4 Perceptron Learning

43

All Training Examples
Correctly Classified!

Perceptron Learning

44

Recap: Perceptron Learning Algorithm
(Linear Classification Model)

e wi=0,b!=0 f(xIw)=sign(w'x-Db)
* Fort=1...
— Receive example (x,y) Training Set: .
— If f(x|wt) =y S =10y,
e [witl bt*1] = [wt bt] y E{+1,-1}
— Else

Go through training set
in arbitrary order

o httl = pt - y (e.g., randomly)

45

Comparing the Two Models

+ T/
= 4
+ /
\\
+ | 4!
_ ¥ _
== ./
5 \\\ \
_|
* /)
/0
V/4 —
//
//
/77)

46

Convergence to Mistake Free

= Linearly Separable!

A

N\ L
AN - T EEE
N
= AN o
~ |
N N
< <
\\ ..
N P
AN
N
\ \

47

Margin

¥ = max min
wo (x,y)

y(w' x)

|

N

48

Linear Separability

* A classification problem is Linearly Separable:

— Exists w with perfect classification accuracy

e Separable with Margin v:

T
Y = max min yw x)

]

* Linearly Separable: y>0

49

Perceptron Mistake Bound

i “Radius” of Feature Space
Holds for any ordering

of training examples! R = max HXH
X

RZ
#Mistakes Bounded By: —

Y
\
Margin

**If Linearly Separable

More Details: http://www.cs.nyu.edu/~mohri/pub/pmb.pdf

50

In the Real World...

Most problems are NOT linearly separable!

May never converge...

So what to do?

Use validation set!

51

Early Stopping via Validation

* Run Perceptron Learning on Training Set
* Evaluate current model on Validation Set

 Terminate when validation accuracy stops
Improving

https://en.wikipedia.org/wiki/Early stopping

52

Online Learning vs Batch Learning

* Online Learning:

— Receive a stream of data (x,y)
— Make incremental updates (typically)
— Perceptron Learning is an instance of Online Learning

e Batch Learning
— Given all the data up front

— Can use onlinelearning algorithms for batch learning
— E.g., stream the data to the learning algorithm

https://en.wikipedia.org/wiki/Online machine learning

53

Recap: Perceptron

* One of the first machine learning algorithms

 Benefits:

— Simple and fast
— Clean analysis

* Drawbacks:
— Might not converge to a very good model
— What is the objective function?

54

(Stochastic) Gradient Descent

Back to Optimizing Objective Functions

. _ . N xER”
Training Data: ¢ _ {(xi,yi)}H ve{te)

* Model Class: f(xlw,b)=wa—b Linear Models

* Loss Function: L(a,b)=(a-b) Squared Loss

N
* Learning Objective: argmin y L(y,. f(x, | w.b))
Wb i

Optimization Problem
56

Back to Optimizing Objective Functions

argmin L(w,b) = EL(yi,f(xi I w,b))
Wb i=1
* Typically, requires optimization algorithm.

e Simplest: Gradient Descent

* This Lecture: stick with squared loss

— Talk about various loss functions next lecture

Gradient Review for Squared Loss

0,L(w,b)=0, Y L(y;,f(x, 1w,b))

= iawL(yi,f(xi | W,b)) Linearity of Differentiation
i=1
\ b b’
= 20y, - f(x 1w,b))3, f(x, 1 w,b) L(a,b)=(a-b)
i=1 Chain Rule

= 20y, - f(x, I w,b))x, fxlw,by=w'x-b

i=1

Gradient Descent

* |nitialize:w'=0,bl=0
e Fort=1..

Wt+1 _ Wt _ T]HlawL(Wt,bt)

bt+1 _ bt _ TIHlabL(Wt,bt)

Y

“Step Size”

59

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

60

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

61

How to Choose Step Size?
n=1 0. L(w)=-2(1-w)

62

How to Choose Step Size?

n=1 0. L(w)=-2(1-w)

Oscillate Infinitely!

63

How to Choose Step Size?
n=0.0001 3, L(w)=-2(1-w)

64

How to Choose Step Size?
n=0.0001 3, L(w)=-2(1-w)

65

How to Choose Step Size?
n=0.0001 3, L(w)=-2(1-w)

66

How to Choose Step Size?

n =0.0001 J L(w)==-2(1-w)

Takes Really Long Time!

67

How to Choose Step Size?

5000 : :
4500 \

4000

3500

3000

Loss

2500 i

2000 H

1500

1000

500

(Without Diverging)

= 0.001
0.01

_

60 80 100 120 140 160

lterations

Note that the absolute scale is not meaningful
Focus on the relative magnitude differences

180

Being Scale Invariant

* Consider the following two gradient updates:
wt+1 _ Wt _ TIHIaWL(Wt,bt)

Wt+1 — ' ﬁt+lawl’:(wt’bt)

Va\

* Suppose: L =1000L

— How are the two step sizes related?

A =1 /1000

69

Practical Rules of Thumb

* Divide Loss Function by Number of Examples:

t+1
Wt+1 _ wt _ (T’_)aWL(Wt,bt)
N

e Start with large step size
— If loss plateaus, divide step size by 2
— (Can also use advanced optimization methods)

— (Step size must decrease over time to guarantee
convergence to global optimum)

70

Aside: Convexity

Easy to find
global optimal
tf (1) + (1= 1)f (22) B

/\NW\/

[ty + (1 —t)x2) — */

/()

Strict convexif
diff always >0

T tJ}l -+ (1 — t)ZUQ

Image Source: http://en.wikipedia.org/wiki/Convex_function

)

71

Aside: Convexity

L(x,)=L(x,)+ VL(x,) (x, —x,)

Functionis always
abovethe locally
linear extrapolation

72

Aside: Convexity

* All local optima are global optima: Gradient Descent

will find optimum
\ / Assuming step
size chosen safely

e Strictly convex: unique global optimum:

* Almost all standard objectives are (strictly) convex:

— Squared Loss, SVMs, LR, Ridge, Lasso
— We will see non-convexobjectives later (e.g., deep learning)

73

Convergence

e Assume L is convex

* How many iterations to achieve: L(w)-L(w)=<e¢

It: ‘L(a) B L(b)‘ = ,OHCI B bH = Lis “p-Lipschitz”
— Then O(1/€?) iterations

If: [VL(a)-VL(®)| < plla-b] «_ R
— Then O(1/g) iterations

If: L(a) = L(b)+ VL(b) (a-b) + E|a-b|f
— Then O(log(1/¢)) iterations 2 '\

L is “p-strongly convex”

More Details: Bubeck Textbook Chapter 3

74

Convergence

* In general, takes infinite time to reach global optimum.
 Butin general, we don’t care!

— Aslongas we’reclose enough to the global optimum

5000

0.001
= 0.01
4000 - =01

05

4500

3500

3000

Loss

2500

2000

How do we know if we’re here?

1500 H

100 120 140 160 180 200

And not here? Iterations

80

When to Stop?

Convergence analyses = worst-case upper bounds
— What to do in practice?

Stop when progressis sufficiently small

— E.g., relative reduction less than 0.001

Stop after pre-specified #iterations
— E.g., 100000

Stop when validation error stops going down

76

Limitation of Gradient Descent

* Requires full pass over training set per
iteration

0,L(w,b18)=0, > L(y,.f(x;1w,b))

* Very expensive if training set is huge

Do we need to do a full pass over the data?

77

Stochastic Gradient Descent

* Suppose Loss Function Decomposes Additively

L(w,b) = %E L.(w,b)

{

Each L; corresponds to a single data point

e Gradient = expected gradient of sub-functions
d,L(w,b)=0, E,[L(w,b)|=E,[0,L(w,b)]

L(w,b)=(y, - f(x,Iw,b)’

78

Stochastic Gradient Descent

e Sufficesto take random gradient update

— So longas it matches the true gradient in expectation

e Each iteration t:
— Choose i at random Expected Valueis: 9, L(w, D)

/
Wt+1 _ Wt _ T]H-lawLi (W, b)

bt+1 _ bt _ 7”]t+1(9bLi(W, b)
* SGD is an online learning algorithm!

79

Mini-Batch SGD

* Each L, is a small batch of training examples
— E.g,. 500-1000 examples
— Can leverage vector operations
— Decrease volatility of gradient updates

* Industry state-of-the-art

— Everyone uses mini-batch SGD
— Often parallelized

* (e.g., different cores work on different mini-batches)

Checking for Convergence

How to check for convergence?

— Evaluatingloss on entire training set seems expensive...

5000

4500

4000

3500

3000

Loss

2500

2000

1500

1000

500

0 i ! ! ! ! I —
0 20 40 60 80 100 120 140 160 180 200

lterations

Checking for Convergence

* How to check for convergence?

— Evaluatingloss on entire training set seems expensive...

* Don’t check after every iteration
— E.g., check every 1000 iterations

e Evaluate loss on a subset of training data
— E.g., the previous 5000 examples.

82

Recap: Stochastic Gradient Descent

e Conceptually:

— Decompose Loss Function Additively
— Choose a ComponentRandomly
— Gradient Update

e Benefits:

— Avoiditerating entire dataset for every update
— Gradient update is consistent (in expectation)

* Industry Standard

83

Perceptron Revisited
(What is the Objective Function?)

e wi=0,bl=0
* Fort=1....
— Receive example (x,y)
— If f(x|wt,bt) =y
o [wtl bt*1] = [wt bt]
— Else
e Witl= Wt + yx
° bt+1 — bt - y

f(xIw)=sign(w'x-Db)

Training Set:
S = {(xi’yi)}i]\:l
yE {+1,—1}

Go through training set
in arbitrary order
(e.g., randomly)

84

Perceptron (Implicit) Objective

L.(w,b) =max {O,—yif(xi | w,b)}

Loss

yf(x)

85

Recap: Complete Pipeline

Training Data

4 N\
5 = {(xi’yi)}i=1

(

Model Class(es)

\

f(xlw,by=w"x-b

-

fl !

—

lI\

N
argminEL(yi,f(xi |w,b)) Use SGD!
Wb i

Cross Validation & Model Selection

Loss Function

~

L(a,b)=(a-b)’

J

~N

86

Next Week

Different Loss Functions
— Hinge Loss (SVM)
— Log Loss (Logistic Regression)

Non-linear model classes
— Neural Nets

Regularization

Next Thursday Recitation:
— Linear Algebra & Calculus

