Caltech

Machine Learning & Data Mining CMS/CS/CNS/EE 155

Lecture 2:

Perceptron & Stochastic Gradient
Descent

Recap: Basic Recipe (supervised)

Training Data:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

Model Class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

Loss Function:

$$L(a,b) = (a-b)^2$$

Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Recap: Bias-Variance Trade-off

Recap: Complete Pipeline

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^{N}$$
Training Data
$$\int f(x \mid w, b) = w^T x - b$$
Model Class(es)

$$f(x \mid w, b) = w^T x - b$$

$$L(a,b) = (a-b)^2$$

Loss Function

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Cross Validation & Model Selection

Profit!

Today

Two Basic Learning Algorithms

Perceptron Algorithm

- (Stochastic) Gradient Descent
 - Aka, actually solving the optimization problem

The Perceptron

- One of the earliest learning algorithms
 - 1957 by Frank Rosenblatt
- Still a great algorithm
 - Fast
 - Clean analysis
 - Precursor to Neural Networks

Frank Rosenblatt with the Mark 1 Perceptron Machine

Perceptron Learning Algorithm

(Linear Classification Model)

•
$$w^1 = 0$$
, $b^1 = 0$

$$f(x \mid w) = sign(w^T x - b)$$

- For t = 1
 - Receive example (x,y)
 - $If f(x | w^t, b^t) = y$
 - $[w^{t+1}, b^{t+1}] = [w^{t}, b^{t}]$
 - Else
 - $w^{t+1} = w^t + yx$
 - $b^{t+1} = b^t y$

Training Set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$
$$y \in \{+1, -1\}$$

Go through training set in arbitrary order (e.g., randomly)

Aside: Hyperplane Distance

- Line is a 1D, Plane is 2D
- Hyperplane is many D
 - Includes Line and Plane
- Defined by (w,b)

• Distance:

$$\frac{\left|w^{T}x - b\right|}{\|w\|}$$

• Signed Distance: $\frac{w^T x - b}{\|w\|}$

Recap: Perceptron Learning Algorithm (Linear Classification Model)

•
$$w^1 = 0$$
, $b^1 = 0$

- Receive example (x,y)
- $If f(x | w^t) = y$
 - $[w^{t+1}, b^{t+1}] = [w^{t}, b^{t}]$
- Else
 - $w^{t+1} = w^t + yx$
 - $b^{t+1} = b^t y$

$$f(x \mid w) = sign(w^T x - b)$$

Training Set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$
$$y \in \{+1, -1\}$$

Go through training set in arbitrary order (e.g., randomly)

Margin

Linear Separability

- A classification problem is Linearly Separable:
 - Exists w with perfect classification accuracy

Separable with Margin γ:

$$\gamma = \max_{w} \min_{(x,y)} \frac{y(w^{T}x)}{\|w\|}$$

Linearly Separable: γ > 0

Perceptron Mistake Bound

Holds for any ordering of training examples!

"Radius" of Feature Space

 $R = \max_{x} ||x||$ $\frac{R^2}{\gamma^2}$ Margin

#Mistakes Bounded By:

**If Linearly Separable

More Details: http://www.cs.nyu.edu/~mohri/pub/pmb.pdf

In the Real World...

Most problems are NOT linearly separable!

May never converge...

So what to do?

Use validation set!

Early Stopping via Validation

Run Perceptron Learning on Training Set

Evaluate current model on Validation Set

 Terminate when validation accuracy stops improving

Online Learning vs Batch Learning

Online Learning:

- Receive a stream of data (x,y)
- Make incremental updates (typically)
- Perceptron Learning is an instance of Online Learning

Batch Learning

- Given all the data up front
- Can use online learning algorithms for batch learning
- E.g., stream the data to the learning algorithm

Recap: Perceptron

One of the first machine learning algorithms

Benefits:

- Simple and fast
- Clean analysis

Drawbacks:

- Might not converge to a very good model
- What is the objective function?

(Stochastic) Gradient Descent

Back to Optimizing Objective Functions

Training Data:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

Model Class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

Loss Function:

$$L(a,b) = (a-b)^2$$

Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Back to Optimizing Objective Functions

$$\underset{w,b}{\operatorname{argmin}} L(w,b) = \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Typically, requires optimization algorithm.

Simplest: Gradient Descent

- This Lecture: stick with squared loss
 - Talk about various loss functions next lecture

Gradient Review for Squared Loss

$$\partial_{w}L(w,b) = \partial_{w}\sum_{i=1}^{N}L(y_{i},f(x_{i}\mid w,b))$$

$$= \sum_{i=1}^{N} \partial_{w} L(y_{i}, f(x_{i} \mid w, b))$$

Linearity of Differentiation

$$= \sum_{i=1}^{N} -2(y_i - f(x_i | w, b)) \partial_w f(x_i | w, b)$$

$$L(a,b) = (a-b)^{2}$$
Chain Rule

$$= \sum_{i=1}^{N} -2(y_i - f(x_i \mid w, b))x_i$$

$$f(x \mid w, b) = w^T x - b$$

Gradient Descent

- Initialize: $w^1 = 0$, $b^1 = 0$
- For t = 1...

$$w^{t+1} = w^t - \eta^{t+1} \partial_w L(w^t, b^t)$$

$$b^{t+1} = b^t - \eta^{t+1} \partial_b L(w^t, b^t)$$

"Step Size"

$$\eta = 1$$

$$\partial_w L(w) = -2(1 - w)$$

$$\eta = 1$$

$$\partial_w L(w) = -2(1 - w)$$

$$\eta = 1$$

$$\partial_w L(w) = -2(1 - w)$$

$$\eta = 1$$

$$\partial_w L(w) = -2(1-w)$$

$$\eta = 0.0001$$

$$\partial_w L(w) = -2(1-w)$$

$$\eta = 0.0001$$

$$\partial_w L(w) = -2(1-w)$$

$$\eta = 0.0001$$

$$\partial_{w}L(w) = -2(1-w)$$

$$\eta = 0.0001$$

$$\partial_w L(w) = -2(1-w)$$

Note that the absolute scale is not meaningful Focus on the relative magnitude differences

Being Scale Invariant

Consider the following two gradient updates:

$$w^{t+1} = w^t - \eta^{t+1} \partial_w L(w^t, b^t)$$

$$w^{t+1} = w^t - \hat{\eta}^{t+1} \partial_w \hat{L}(w^t, b^t)$$

- Suppose: $\hat{L} = 1000L$
 - How are the two step sizes related?

$$\hat{\eta}^{t+1} = \eta / 1000$$

Practical Rules of Thumb

Divide Loss Function by Number of Examples:

$$w^{t+1} = w^t - \left(\frac{\eta^{t+1}}{N}\right) \partial_w L(w^t, b^t)$$

- Start with large step size
 - If loss plateaus, divide step size by 2
 - (Can also use advanced optimization methods)
 - (Step size must decrease over time to guarantee convergence to global optimum)

Aside: Convexity

Aside: Convexity

$$L(x_2) \ge L(x_1) + \nabla L(x_1)^T (x_2 - x_1)$$

Function is always above the locally linear extrapolation

Aside: Convexity

All local optima are global optima:

Gradient Descent will find optimum

Assuming step size chosen safely

Strictly convex: unique global optimum:

- Almost all standard objectives are (strictly) convex:
 - Squared Loss, SVMs, LR, Ridge, Lasso
 - We will see non-convex objectives later (e.g., deep learning)

Convergence

- Assume L is convex
- How many iterations to achieve: $L(w) L(w^*) \le \varepsilon$
- If: $|L(a) L(b)| \le \rho ||a b|| \longrightarrow_{\text{L is "}\rho\text{-Lipschitz"}}$
 - Then $O(1/\epsilon^2)$ iterations
- If: $|\nabla L(a) \nabla L(b)| \le \rho ||a b||$ Lis "p-smooth"
 - Then $O(1/\epsilon)$ iterations
- If: $L(a) \ge L(b) + \nabla L(b)^T (a-b) + \frac{\rho}{2} ||a-b||^2$
 - Then $O(log(1/\epsilon))$ iterations

L is "p-strongly convex"

Convergence

- In general, takes infinite time to reach global optimum.
- But in general, we don't care!
 - As long as we're close enough to the global optimum

When to Stop?

- Convergence analyses = worst-case upper bounds
 - What to do in practice?
- Stop when progress is sufficiently small
 - E.g., relative reduction less than 0.001
- Stop after pre-specified #iterations
 - E.g., 100000
- Stop when validation error stops going down

Limitation of Gradient Descent

Requires full pass over training set per iteration

$$\partial_{w}L(w,b\mid S) = \partial_{w}\sum_{i=1}^{N}L(y_{i},f(x_{i}\mid w,b))$$

Very expensive if training set is huge

Do we need to do a full pass over the data?

Stochastic Gradient Descent

Suppose Loss Function Decomposes Additively

$$L(w,b) = \frac{1}{N} \sum_{i=1}^{N} L_i(w,b)$$

Each L_i corresponds to a single data point

Gradient = expected gradient of sub-functions

$$\partial_{w}L(w,b) = \partial_{w} E_{i}[L_{i}(w,b)] = E_{i}[\partial_{w}L_{i}(w,b)]$$

$$L_i(w,b) = (y_i - f(x_i \mid w,b)^2)$$

Stochastic Gradient Descent

- Suffices to take random gradient update
 - So long as it matches the true gradient in expectation
- Each iteration t:
 - Choose i at random $w^{t+1} = w^t \eta^{t+1} \partial_w L_i(w,b)$ $b^{t+1} = b^t \eta^{t+1} \partial_b L_i(w,b)$

SGD is an online learning algorithm!

Mini-Batch SGD

- Each L_i is a small batch of training examples
 - E.g., 500-1000 examples
 - Can leverage vector operations
 - Decrease volatility of gradient updates
- Industry state-of-the-art
 - Everyone uses mini-batch SGD
 - Often parallelized
 - (e.g., different cores work on different mini-batches)

Checking for Convergence

- How to check for convergence?
 - Evaluating loss on entire training set seems expensive...

Checking for Convergence

- How to check for convergence?
 - Evaluating loss on entire training set seems expensive...
- Don't check after every iteration
 - E.g., check every 1000 iterations
- Evaluate loss on a subset of training data
 - E.g., the previous 5000 examples.

Recap: Stochastic Gradient Descent

Conceptually:

- Decompose Loss Function Additively
- Choose a Component Randomly
- Gradient Update

Benefits:

- Avoid iterating entire dataset for every update
- Gradient update is consistent (in expectation)

Industry Standard

Perceptron Revisited (What is the Objective Function?)

•
$$w^1 = 0$$
, $b^1 = 0$

$$f(x \mid w) = sign(w^T x - b)$$

- For t = 1
 - Receive example (x,y)
 - $If f(x | w^t, b^t) = y$
 - $[w^{t+1}, b^{t+1}] = [w^{t}, b^{t}]$
 - Else
 - $w^{t+1} = w^t + yx$
 - $b^{t+1} = b^t y$

Training Set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$
$$y \in \{+1, -1\}$$

Go through training set in arbitrary order (e.g., randomly)

Perceptron (Implicit) Objective

$$L_i(w,b) = \max\{0, -y_i f(x_i \mid w,b)\}$$

Recap: Complete Pipeline

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^{N}$$
Training Data
$$\int f(x \mid w, b) = w^T x - b$$
Model Class(es)

$$f(x \mid w, b) = w^T x - b$$

$$L(a,b) = (a-b)^2$$

Loss Function

 $\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b)) \quad \text{Use SGD!}$

Cross Validation & Model Selection

Profit!

Next Week

- Different Loss Functions
 - Hinge Loss (SVM)
 - Log Loss (Logistic Regression)
- Non-linear model classes
 - Neural Nets
- Regularization
- Next Thursday Recitation:
 - Linear Algebra & Calculus