

Machine Learning & Data Mining CMS/CS/CNS/EE 155

Lecture 1: Administrivia & Basics

Course Info

• Lecture (Tu/Th)

– 2:30pm – 3:55pm in Beckman Institute Auditorum

- Recitation (Th)
 - 7:00pm in 105 Annenberg
 - As needed
 - Usually 45-60 minutes

- First one on Thursday! (Introduction to Python)

Staff



Natalie Nis Bernat Bha

Nishanth Bhaskara

Julia Marcus Deacon Dominguez-Kuhne

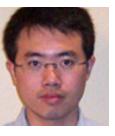
Rupesh Jeyaram

Jia

Karthik Karnik

Meera Krishnamoorthy

Karthik Nair



Jian Shi

Kapil Sinha

Vaishnavi Shrivastava

Tseng

Michelle Zhao

Course Breakdown

- 6 Homeworks, ~60% of final grade
 - Due on Friday nights via Moodle & Gradescope
 - Homework 1 will be released tonight.
 - Due next Wednesday

Plan accordingly w/ CS144 & CS139!

• 3 Mini-projects, ~30% of final grade

• Final, ~10% of final grade

Regarding Homework 1

- If you have prior experience with CS 156
 Should be pretty straightforward (4-5 hours)
- If you do not...
 - Might take a while (8-12 hours?)
 - But will mostly catch you up if you make it through
 - Should consider dropping class if too hard

Late Submission Policy

- Up to 48 free late hours
- Specify # late hours used when submitting

Course Etiquette

Please ask questions during lecture!
 – I might defer some in interest of time

• If you arrive late, or need to leave early, please do so quietly.

• Updated collaboration policy

Course Website

• http://www.yisongyue.com/courses/cs155

- Linked to from my website:
 - <u>http://www.yisongyue.com</u>
- Up-to-date office hours
- Lecture notes, additional reading, homework, etc.

Moodle/Gradscope & Piazza

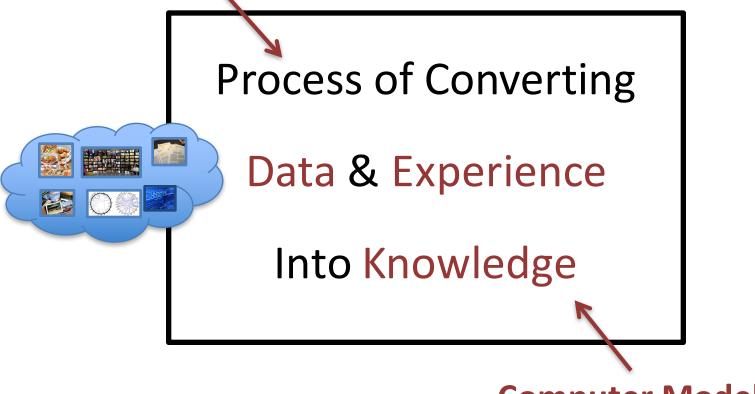
- Moodle & Gradescope:
 - <u>https://courses.caltech.edu/course/view.php?id=3248</u>
 - <u>https://www.gradescope.com/courses/35620</u>
 - Submission, Solutions, Grades
- Piazza
 - <u>https://piazza.com/class/jqfs0b3935c7ho</u>
 - Course announcements
 - Q&A Forum (use it!)
- Lecture Videos

Not today sorry!

- On YouTube (linked from course website)

Machine Learning & Data Mining

Computer Algorithm



Computer Model

Machine Learning vs Data Mining

- ML focuses more on algorithms
 - Typically more rigorous
 - Also on analysis (learning theory)
- DM focuses more on knowledge extraction
 - Typically uses ML algorithms
 - Knowledge should be human-understandable
- Huge overlap

Course Outline

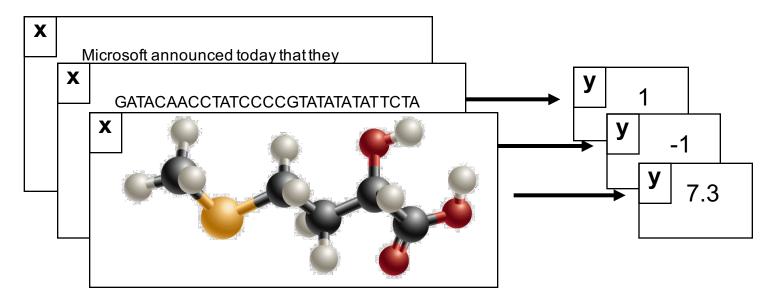
- Supervised Learning
 - 5 weeks
- Unsupervised Learning
 - 2 weeks
- Probabilistic Models
 - 2 weeks

Supervised Learning

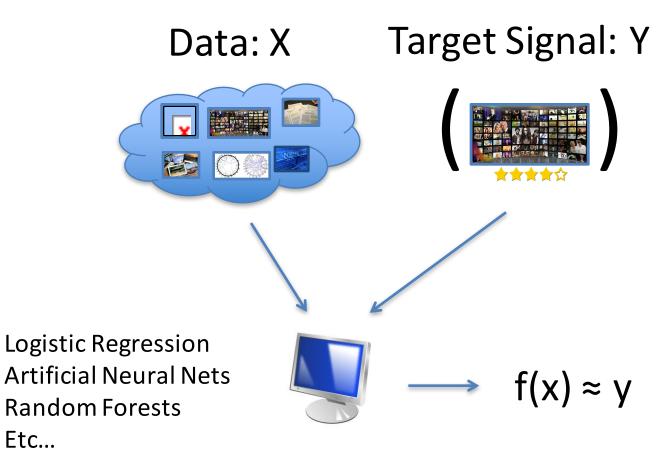
• Find function from input space X to output space Y

$$f: X Y$$
 (sometimes use h)

such that the prediction error is low.



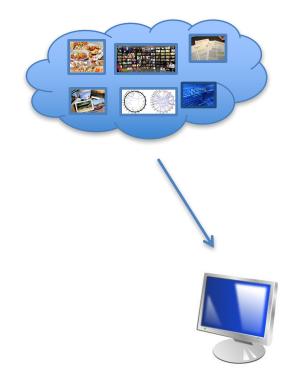
Supervised Learning



(function class or hypothesis class)

Aside: Unsupervised Learning

Data: X



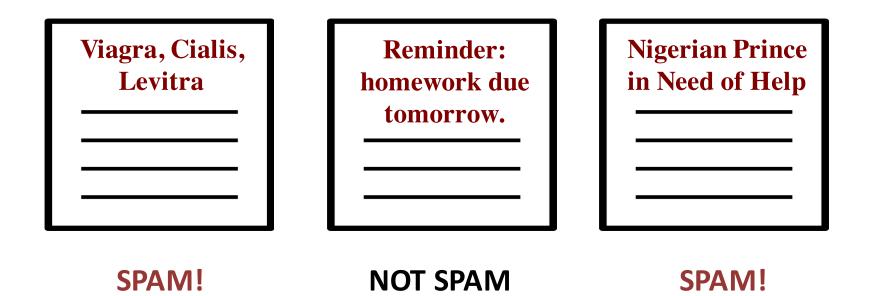
No supervised target!

Learning goal is usually to find low-dimensional "summary" or reconstruction.

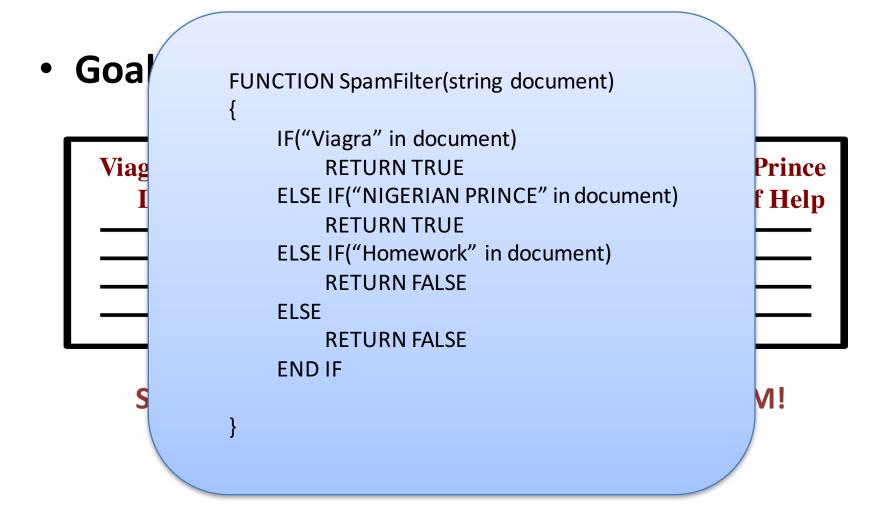
More on this later in course.

Example: Spam Filtering

• **Goal:** write a program to filter spam.



Example: Spam Filtering



Why is Spam Filtering Hard?

• Easy for humans to recognize

• Hard for humans to write down algorithm

• Lots of IF statements!

Machine Learning to the Rescue!

Training Set

SPAM!	Build a Generic Representation	
SPAM!		
NOT SPAM	Run a Generic Learning Algorithm	
NOT SPAM	Classification Model	
SPAM!		
SPAM!		
La	beled by Humans ("Supervision")	

Bag of Words Representation

Training Set		Bag of Words		
	SPAM!	(0,0,0,1,1,1)		
	SPAM!	(1,0,0,1,0,0)	"Feature Vector"	
	NOT SPAM	(1,0,1,0,1,0)	One feature for each word in the	
	NOT SPAM	(0,1,1,0,1,0)	vocabulary	
	SPAM!	(1,0,1,1,0,1)	In practice 10k-1M	
	SPAM!	(1,0,0,0,0,1)		
	•	•		

•

-)
- •

Linear Models

Let x denote the bag-of-words for an email E.g., x = (1,1,0,0,1,1)

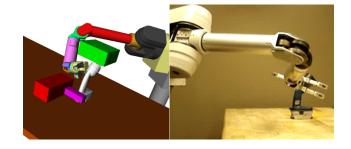
Linear Classifier: $f(x | w,b) = sign(w^Tx - b)$ $= sign(w_1^*x_1 + ... w_6^*x_6 - b)$

$f(x w,b) = sign(w^Tx - b)$	w = (1,0,0,1,0,1)	
= sign(w ₁ *x ₁ + w ₆ *x ₆ - b)	b = 1.5	

Training Set		Bag of Words	
	SPAM!	(0,0,0,1,1,1)	f(x w,b) = +1
	SPAM!	(1,0,0,1,0,0)	f(x w,b) = +1
	NOT SPAM	(1,0,1,0,1,0)	f(x w,b) = -1
	NOT SPAM	(0,1,1,0,1,0)	f(x w,b) = -1
	SPAM!	(1,0,1,1,0,1)	f(x w,b) = +1
	SPAM!	(1,0,0,0,0,1)	f(x w,b) = +1
	•	•	•

Linear Models

• Workhorse of Machine Learning



• By end of this lecture, you'll learn 75% how to build basic linear model.

Why Does Machine Learning Work?

- Repeated patterns in the data
 - Typically in the features
 - E.g., "Nigerian Prince" is indicative of spam

- Machine learning will find those patterns
 - Linear model over features
 - E.g., high weight on the words "Nigerian Prince"

Two Basic Supervised ML Problems

- **Classification** $f(x | w, b) = \operatorname{sign}(w^T x b)$
 - Predict which class an example belongs to
 - E.g., spam filtering example
- Regression

$$f(x \mid w, b) = w^T x - b$$

- Predict a real value or a probability
- E.g., probability of being spam
- Highly inter-related

– Train on Regression => Use for Classification

$f(x w, b) = w^{T}x - b$	
$= w_1^* x_1 + \dots w_6^* x_6 - b$	

Training Set		Bag of Words	
	SPAM!	(0,0,0,1,1,1)	f(x w,b) = +0.5
	SPAM!	(1,0,0,1,0,0)	f(x w, b) = +0.5
	NOT SPAM	(1,0,1,0,1,0)	f(x w,b) = -0.5
	NOT SPAM	(0,1,1,0,1,0)	f(x w,b) = -1.5
	SPAM!	(1,0,1,1,0,1)	f(x w,b) = +1.5
	SPAM!	(1,0,0,0,0,1)	f(x w,b) = +0.5
	•	•	•

Formal Definitions

- Training set: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$
- Model class: $f(x | w, b) = w^T x b$ Linear Models aka hypothesis class

Goal: find (w,b) that predicts well on S.
 – How to quantify "well"?

Basic Supervised Learning Recipe

- Training Data: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$
- Model Class: $f(x | w, b) = w^T x b$ Linear Models

• Loss Function: $L(a,b) = (a-b)^2$ Squared Loss

• Learning Objective:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Loss Function

• Measures penalty of mis-prediction:

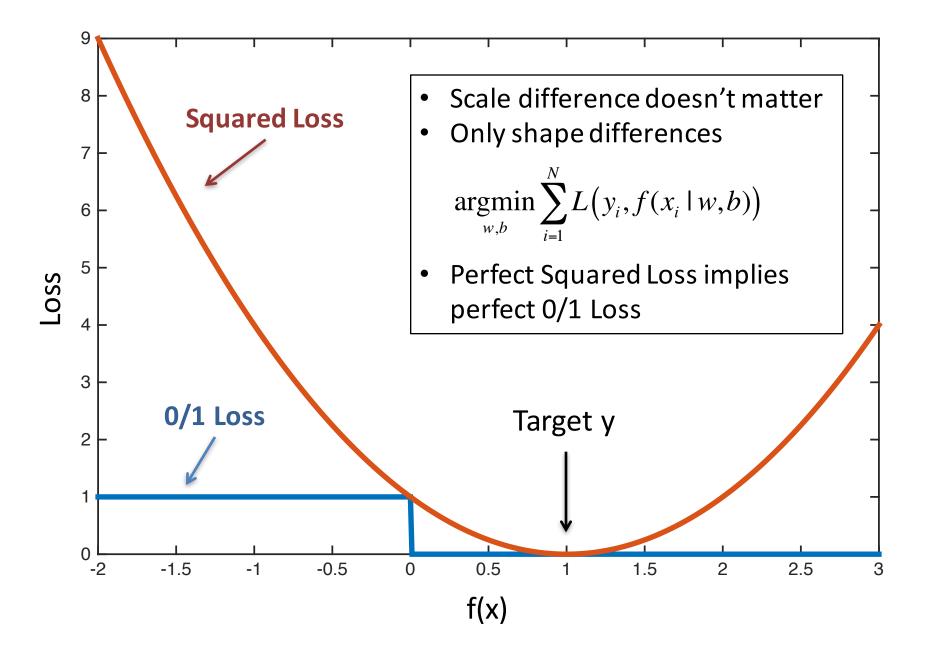
• 0/1 Loss:

$$L(a,b) = 1_{[a \neq b]}$$

$$L(a,b) = 1_{[sign(a) \neq sign(b)]}$$
Classification

• Squared loss: $L(a,b) = (a-b)^2$ Regression

Substitute: *a=y*, *b=f(x)*



 $f(x | w,b) = w^{T}x - b$ = $w_{1}^{*}x_{1} + ... w_{6}^{*}x_{6} - b$

w = (0.05, 0.05, -0.68, 0.68, -0.63, 0.68) b = 0.27

Training Set		Bag of Words	
	SPAM!	(0,0,0,1,1,1)	f(x w,b) = +1
	SPAM!	(1,0,0,1,0,0)	f(x w,b) = +1
	NOT SPAM	(1,0,1,0,1,0)	f(x w,b) = -1
	NOT SPAM	(0,1,1,0,1,0)	f(x w,b) = -1
	SPAM!	(1,0,1,1,0,1)	f(x w,b) = +1
	SPAM!	(1,0,0,0,0,1)	f(x w,b) = +1

Train using Squared Loss

Learning Algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

- Typically, requires optimization algorithm.
- Simplest: Gradient Descent

$$w_{t+1} \leftarrow w_t - \partial_w \sum_{i=1}^N L(y_i, f(x_i \mid w_t, b_t))$$
$$b_{t+1} \leftarrow b_t - \partial_b \sum_{i=1}^N L(y_i, f(x_i \mid w_t, b_t))$$

Loop for T iterations

Gradient Review

$$\partial_{w} \sum_{i=1}^{N} L(y_{i}, f(x_{i} \mid w, b))$$

)²

le

$$= \sum_{i=1}^{N} \partial_{w} L(y_{i}, f(x_{i} \mid w, b))$$

Linearity of Differentiation

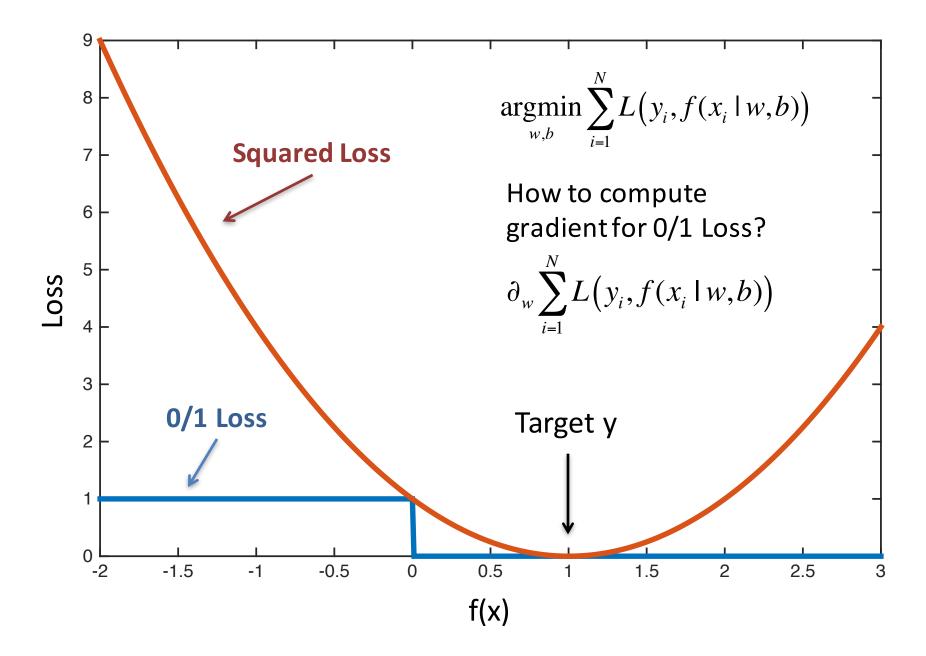
$$=\sum_{i=1}^{N} -2(y_i - f(x_i | w, b))\partial_w f(x_i | w, b) \qquad L(a, b) = (a - b)$$

Chain Ru

$$= \sum_{i=1}^{N} -2(y_i - w^T x + b)x$$

i=1

$$f(x \mid w, b) = w^T x - b$$



0/1 Loss is Intractable

• 0/1 Loss is flat or discontinuous everywhere

• VERY difficult to optimize

Solution: Optimize smooth surrogate Loss
 – E.g., Squared Loss

Recap: Two Basic ML Problems

- **Classification** $f(x | w, b) = \operatorname{sign}(w^T x b)$
 - Predict which class an example belongs to
 - E.g., spam filtering example
- Regression

$$f(x \mid w, b) = w^T x - b$$

- Predict a real value or a probability
- E.g., probability of being spam
- Highly inter-related
 - Train on Regression => Use for Classification

Recap: Supervised Learning Recipe

- Training Data: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$
- Model Class: $f(x | w, b) = w^T x b$ Linear Models

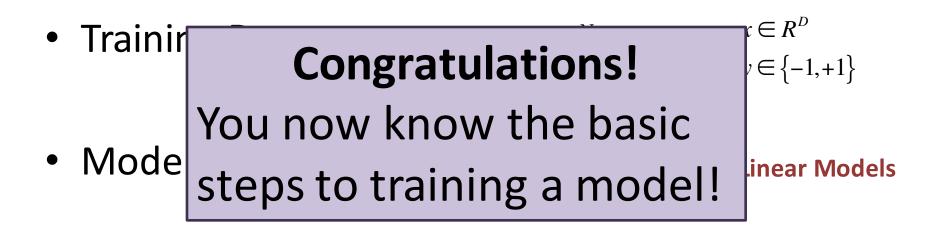
• Loss Function: $L(a,b) = (a-b)^2$ Squared Loss

• Learning Objective:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Recap: Supervised Learning Recipe



• Loss F But is your model any good?

Learning Objective:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Example: Self-Driving Cars

Basic Setup

- Mounted cameras
- Use image features

- Human demonstrations
- f(x|w) = steering angle
- Learn on training set

Overfitting

• Very accurate model

• But crashed on live test!

 Model w only cared about staying between two green patches

Test Error

• **"True" distribution:** P(x,y)

"All possible emails"

- Unknown to us
- **Train:** f(x) = y
 - Using training data: $S = \{(x_i, y_i)\}_{i=1}^N$
 - Sampled identically and independently from P(x,y)
- Test Error:
 - $L_P(f) = E_{(x,y) \sim P(x,y)} \left[L(y, f(x)) \right]$

Prediction Loss on all possible emails

• **Overfitting:** Test Error >> Training Error

Test Error

• Test Error:

$$L_P(f) = E_{(x,y) \sim P(x,y)} \left[L(y, f(x)) \right]$$

• Treat f_s as random variable: (randomness over S)

$$f_{S} = \underset{w,b}{\operatorname{argmin}} \sum_{(x_{i},y_{i})\in S} L(y_{i}, f(x_{i} \mid w, b))$$

• Expected Test Error:

$$E_{S}\left[L_{P}(f_{S})\right] = E_{S}\left[E_{(x,y)\sim P(x,y)}\left[L(y,f_{S}(x))\right]\right]$$

Bias-Variance Decomposition

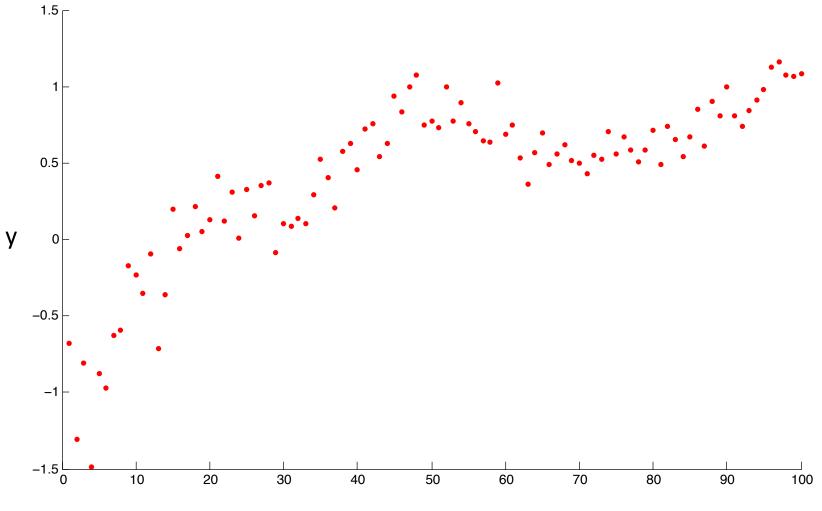
$$E_{S}\left[L_{P}(f_{S})\right] = E_{S}\left[E_{(x,y)\sim P(x,y)}\left[L(y,f_{S}(x))\right]\right]$$

• For squared error:

$$E_{S}[L_{P}(f_{S})] = E_{(x,y)\sim P(x,y)}\left[E_{S}[(f_{S}(x) - F(x))^{2}] + (F(x) - y)^{2}\right]$$

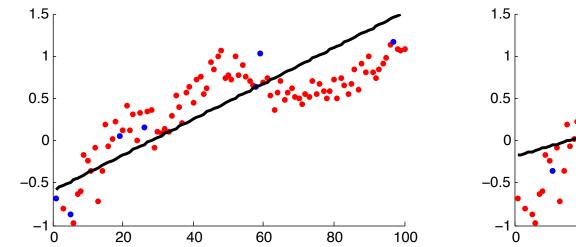
$$F(x) = E_{S}[f_{S}(x)]$$
Variance Term
Bias Term
''Average prediction''

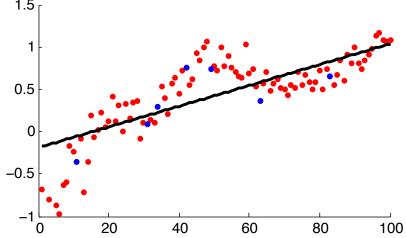
Example P(x,y)

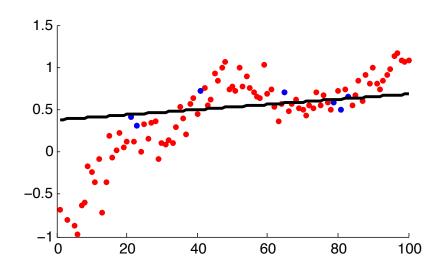


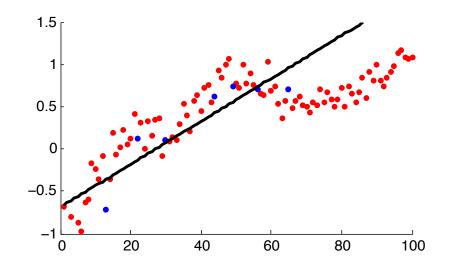
Х

f_s(x) Linear

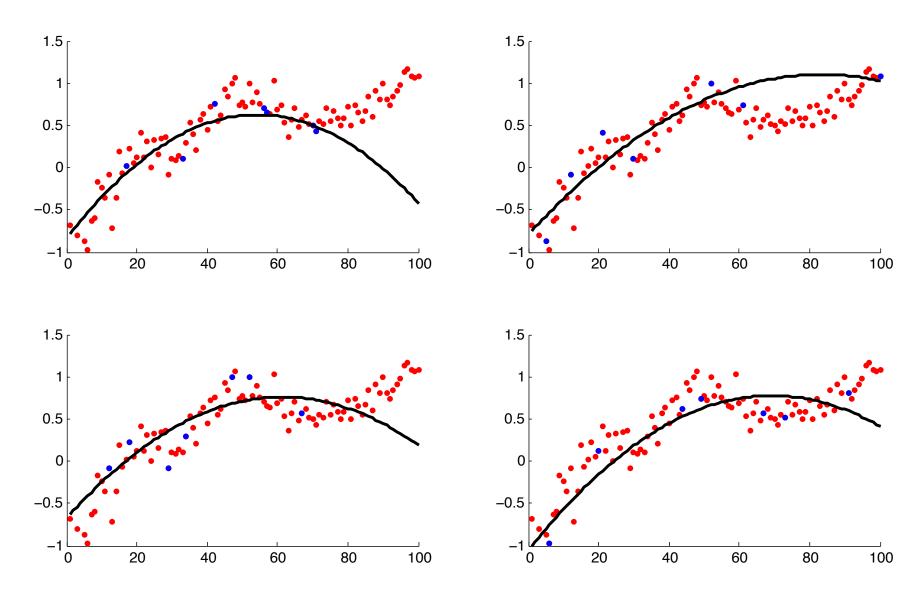




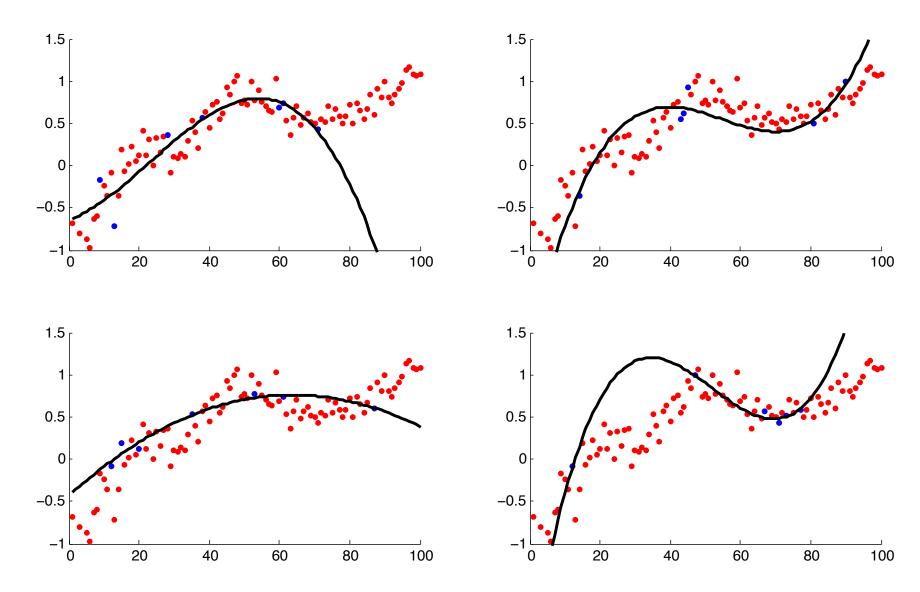




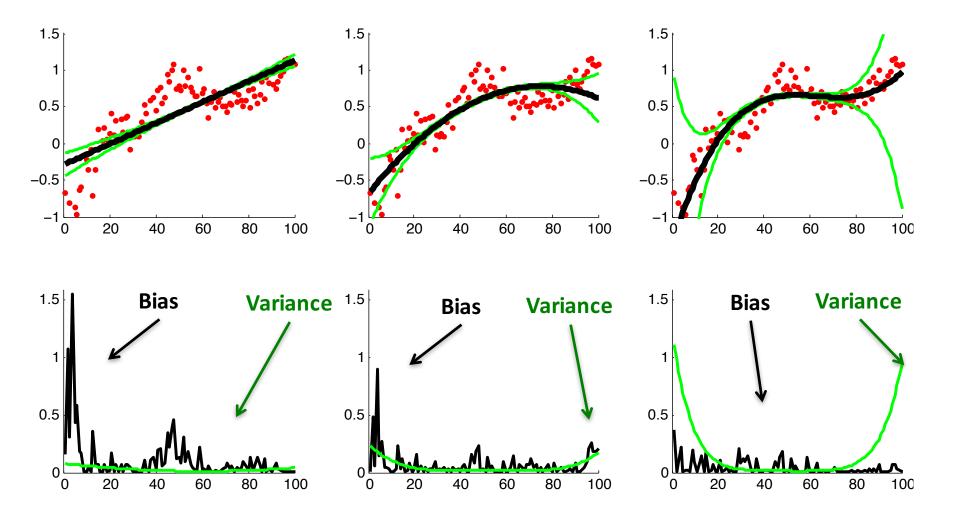
f_s(x) Quadratic



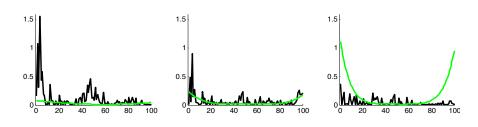
f_s(x) Cubic



Bias-Variance Trade-off



Overfitting vs Underfitting



- High variance implies overfitting
 - Model class unstable
 - Variance increases with model complexity
 - Variance reduces with more training data.
- High bias implies underfitting
 - Even with no variance, model class has high error
 - Bias decreases with model complexity
 - Independent of training data size

Model Selection

- Finite training data
- Complex model classes overfit
- Simple model classes underfit
- Goal: choose model class with the best test error

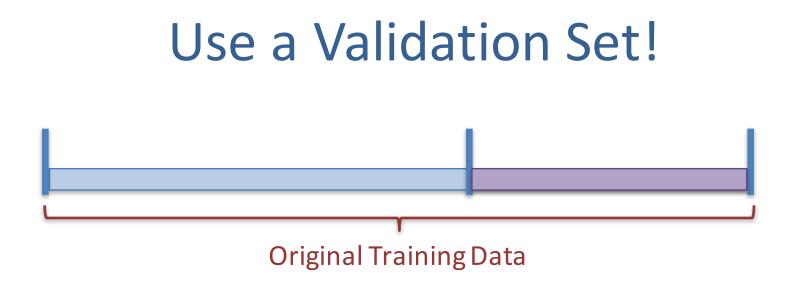
Model Selection

• Finite training data

But we can't measure test error directly!

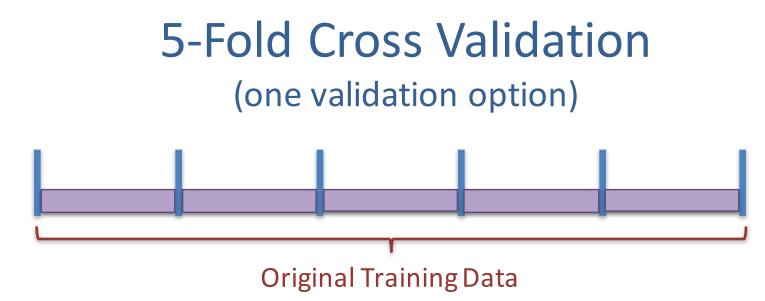
(Don't have the whole distribution.)

error

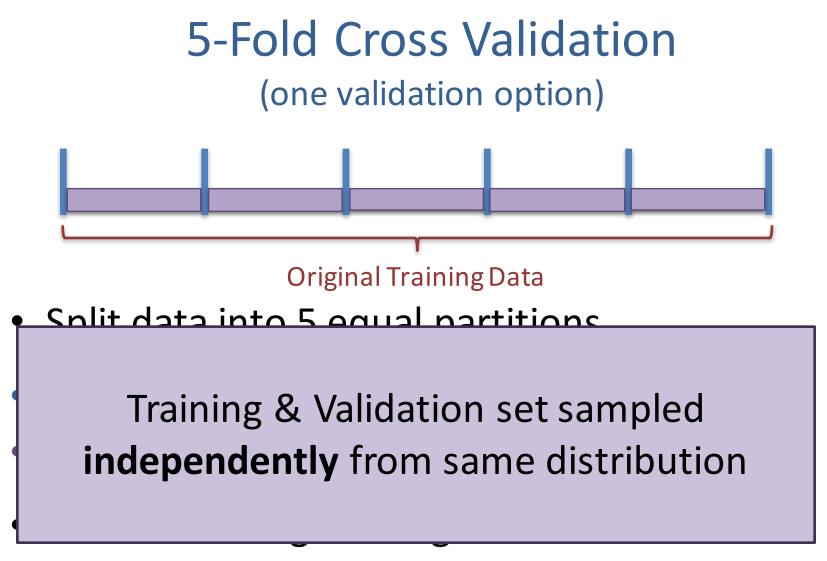


- Split data to Training Set and Validation Set
- Train model on Training Set
- Evaluate on Validation Set
- What's wrong with this?

– If dataset small, validation set small!



- Split data into 5 equal partitions
- Train on 4 partitions
- Evaluate on 1 partition
- Allows re-using training data as test data
- Allows using all data as validation



• Allows using all data as validation

Complete Pipeline (Supervised Learning)

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

Training Data

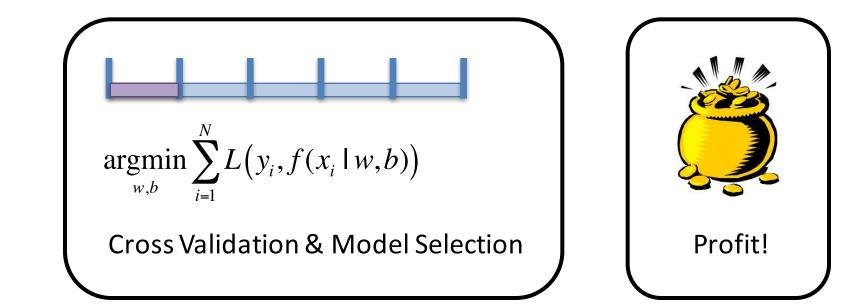
$$f(x \mid w, b) = w^{T} x - b$$

 \boldsymbol{T}

Model Class(es)

$$L(a,b) = (a-b)^2$$

Loss Function



Next Lecture

- Perceptron
- Stochastic Gradient Descent

- Recitation on Thursday
 - Introduction to Python
 - 7pm in Annenberg 105