
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: Feb. 21st, 2018

1 Introduction

Let x = (x1, . . . , xM) denote a sequence (e.g. a sequence of words), and let y = (y1, . . . , yM) denote a
corresponding “hidden” sequence that we believe explains or influences x somehow (e.g. a sequence of
part-of-speech tags). For simplicity, we assume that x is encoded using D tokens, so each xj ∈ 1, ..., D, and
y is encoded using L tokens, so each yj ∈ 1, ..., L. Thus there are DM possible length-M sequences x and
LM possible length-M sequences of y. Typically we refer to the elements of x as “observations” and the
elements of y as “states” or “hidden states”.

Our goal is to use a first-order hidden Markov model (HMM) to model the joint distribution P (x,y). An
HMM models the joint distribution as follows:

P (x,y) = P (End|yM)

M∏
j=1

P (xj |yj)P (yj |yj−1), (1)

where End is a special state denoting the end of the hidden sequence and y0 := Start is always the special
state denoting the start of the hidden sequence. Note that the End state is optional in HMMs, and can be
ignored if you don’t wish to model the probability of a sequence spontaneously ending — if we wanted to
ignore End we would just replace P (End|yM) with 1 everywhere it appears below.

A closer look at (1) reveals that we have made two big independence assumptions about the sequences
x and y. The first is that observations in x are conditionally independent of each other given the hidden
sequence y:

P (x|y) =
M∏
j=1

P (xj |yj).

In other words, observation xj in x only depends on state yj , not on any other state in y. The second is that
y is entirely independent of x, with each yj depending only on y<j .

Because in order to compute the entire joint distribution, our HMM model only needs to know the
values of P (xj |yj) and P (yj |yj−1) for all possible combinations of tokens, the total size of our HMM model
is (D × L) + (L× L) + 2L:

Component No. Parameters
P (xj |yj) D × L
P (yj |yj−1) L× L
P (y1|y0) L
P (End|yM) L

Note that the probabilities of entire sequences P (x,y) can often be very small (exponentially small in
M), so it is usually more convenient to work in log-probability space:

logP (x,y) = logP (End|yM) +

M∑
j=1

(
logP (xj |yj) + logP (yj |yj−1)

)
. (2)

2 How to Make Predictions: The Viterbi Algorithm

Let’s say we have a trained HMM model and a sequence x, and we want to predict what hidden sequence
y most likely produced x. E.g. we have a sentence of words and we want to tag each word with a part-of-

1

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: Feb. 21st, 2018

speech tag. We make this prediction by selecting the y that maximizes P (y|x):

argmaxy P (y|x) = argmaxy logP (y|x) = argmaxy logP (x,y)/P (x) = argmaxy logP (x,y)

= argmaxy

logP (End|yM) +

M∑
j=1

(
logP (xj |yj) + logP (yj |yj−1)

) . (3)

Naively iterating over all possible ys would take exponential time (w.r.t. the length |x| = M). Luckily, we
can use use a dynamic programming approach known as the Viterbi algorithm to efficiently compute (3).

First, we introduce some notation. Let P̃ denote the log probability, e.g., P̃ (x,y) = logP (x,y). Define
the “transition matrix” Ã whose entries are

Ãa,b = P̃ (yj = a|yj−1 = b)

and the “observation matrix” Õ whose entries are

Õw,z = P̃ (xj = w|yj = z).

Finally, for the key definition, let ŷja denote the length-j sequence of hidden states ending with yj = a that
is most likely to have produced x1:j :

ŷja =
(
argmaxy1:j−1 P̃ (y1:j−1 ⊕ a, x1:j)

)
⊕ a, (4)

where ⊕ denotes sequence concatenation or appending a token (it should be clear from context which one
it is).

Now, the Viterbi algorithm: If we already knew ŷMa for all different choices of hidden state a, then
we could find the y that maximizes P (y|x) (which, recall, is the prediction we’re looking for) by simply
selecting the ŷMa with highest value of P̃ (ŷMa , x). At the other end of things, computing each ŷ1

a is trivial
since by definition ŷ1

a = a. To find ŷja for j > 1 we use the Viterbi Algorithm, which tells us how to find ŷja
by just looping through all the ŷj−1a and choosing the best one:

ŷja =

 argmax
y1:j−1∈{ŷj−1

1 ,...,ŷj−1
L }

P̃ (y1:j−1 ⊕ a, x1:j)

⊕ a (5)

=

 argmax
y1:j−1∈{ŷj−1

1 ,...,ŷj−1
L }

P̃ (y1:j−1, x1:j−1) + P̃ (yj = a|yj−1) + P̃ (xj |yj = a)

⊕ a
=

 argmax
y1:j−1∈{ŷj−1

1 ,...,ŷj−1
L }

P̃ (y1:j−1, x1:j−1) + Ãa,yj−1 + Õxj ,a

⊕ a.
Computing each ŷja takes O(L) running time (enumerating over all ŷj−1a), and so the total running time of
this approach is O(L2M). Note that we need to save the P̃ (ŷja, x

1:j) that we compute along the way while
computing each (5), since we use them to compute each ŷj+1

a , and we need to save the ŷja in order to have
something to output at the end. Again, note that we’re operating with log-probabilities, because the actual
probabilities would underflow for any reasonably-sized M .

2

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: Feb. 21st, 2018

3 How to Compute Marginal Probabilities: The Forward-Backward Al-
gorithm

Let’s say we once again have a trained HMM, and suppose we want to compute some marginal probability
from our joint model, like P (y5 = 1, x = 1423) or P (y3 = 2, y4 = 2, x = 334113). Why might we want to
do this? Potentially because we are genuinely curious to know some marginal probability, but also because
knowing these marginals will to let us do unsupervised training of HMMs later.

To compute such quantities, we first define for each hidden state a the vector αa ∈ RM whose jth entry
corresponds to the unnormalized probability of observing the “prefix” x1:j while also having that yj = a.
That is:

αa(j) ∝ P (x1:j , yj = a) =
∑

y1:j−1

P (x1:j ,y1:j−1 ⊕ a)

We similarly define a sequence of vectors βb ∈ RM−1 whose jth entry corresponds to the unnormalized
probability of observing the “suffix” xj+1:M given that the jth state is yj = b. That is:

βb(j) ∝ P (xj+1:M |yj = b) =
∑

yj+1:M

P (yj+1|yj = b)P (yj+1:M , xj+1:M).

(Note that sometimes people define α and β with superscripts in j = 1, ...,M and entries indexed by the
hidden states a; all together it’s the same quantities, just with different indexing.)

If we had values for the α and β vectors, note that we could easily compute some useful marginal
probabilities:

P (yj = a, x) = αa(j)βa(j)∑
a′ αa′ (j)βa′ (j)

, (6)

P (yj = a, yj+1 = b, x) = αa(j)P (xj+1|yj+1=b)P (yj+1=b|yj=a)βb(j+1)∑
a′,b′ αa′ (j)P (xj+1|yj+1=b′)P (yj+1=b′|yj=a′)βb′ (j+1) . (7)

But how can we compute αa(j) and βb(j) efficiently, given that the equations for α and β above require
summing over potentially exponentially many hidden subsequences? A pair of dynamic programming
algorithms called the Forward and Backward algorithms, both similar to the Viterbi algorithm, will do the
job. We initalize αa(0) and βb(M) as:

αa(0) =

{
1 if a = Start
0 otherwise , βb(M) = P (End|yM = b).

Define Py(b|a) = P (yj+1 = b|yj = a), and Px(w|z) = P (xj = w|yj = z). Similar to the Viterbi algorithm,
we recursively define each αa(j) as:

αa(j) = Px(x
j |a)

∑
a′

αa′(j − 1)Py(a|a′). (8)

We can also recursively define each βb(j) as:

βb(j) =
∑
b′

βb′(j + 1)Py(b
′|b)Px(xj+1|b′). (9)

(8) is known as the Forward Algorithm, and (9) is known as the Backward Algorithm.
Dealing With Numerical Instability. In practice, directly implementing (8) and (9) leads to numerical

instability. But remembering that the entries of α and β need only be proportional to the probabilities they

3

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: Feb. 21st, 2018

represent, we can avoid overflow and underflow by renormalizing each αa(j) and βb(j) after each step in
(8) and (9), i.e.:

α̃a(j) =
1

Cjα

(
Px(x

j |a)
∑
a′

αa′(j − 1)Py(a|a′)

)
. (10)

and

β̃b(j) =
1

Cjβ

(∑
b′

βb′(j + 1)Py(b
′|b)Px(xj+1|b′)

)
, (11)

for some choice of Cjα and Cjβ such that overflow and underflow do not happen. (The sum of the vector
entries is a good choice.) Afterwards, we can compute (6) and (7) as:

P (yj = a, x) = α̃a(j)β̃a(j)∑
a′ α̃a′ (j)β̃a′ (j)

, (12)

P (yj = a, yj+1 = b, x) = α̃a(j)P (xj+1|yj+1=b)P (yj+1=b|yj=a)β̃b(j+1)∑
a′,b′ α̃a′ (j)P (xj+1|yj+1=b′)P (yj+1=b′|yj=a′)β̃b′ (j+1)

. (13)

Relationship to Viterbi. Viterbi keeps track of the best sequence of length j that ends in some yj = a,
and also keeps track of the probability of that sequence. The Forward algorithm keeps track of the marginal
probability of all sequences of length j that end in some yj = a. Thus, the Viterbi takes the max whereas the
Forward algorithm takes the sum. Because Viterbi doesn’t sum, the probabilities of the single best sequence
will shrink exponentially as the sequence grows, hence necessitating taking the log to ensure numerical
stability. With the Forward-Backward algorithm, we keep track of the unnormalized probabilities, which
can both overflow or underflow. But because the values are the product of a bunch of sums, you can
normalize at each iteration and still maintain correctness.

4 How to Train: Counting and Baum-Welch

Supervised Training. In the supervised setting, we are given a training set of N training examples:

S = {(xi,yi)}
N
i=1,

and our goal is to learn the parameters of the HMM to maximize the likelihood on S:

argmax

N∏
i=1

P (xi,yi).

In this case, training is very straightforward counting:

P (yj = b|yj−1 = a) =

∑N
i=1

∑Mi

j=1 1[yji=b∧y
j−1
i =a]∑N

i=1

∑Mi

j=1 1[yj−1
i =a]

.

P (xj = w|yj = a) =

∑N
i=1

∑Mi

j=1 1[xj
i=w∧y

j
i=a]∑N

i=1

∑Mi

j=1 1[yji=a]

.

4

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Hidden Markov Models Last Updated: Feb. 21st, 2018

Unsupervised Training. In the unsupervised setting, we are given a training set of N training examples
containing only the x’s:

S = {xi}Ni=1,

and the maximum likelihood problem is thus:

argmax

N∏
i=1

P (xi) = argmax

N∏
i=1

∑
y

P (xi,y).

If we knew the marginal distributions P (yji = a, xi) and P (yji = b, yj−1i = a, xi) that we learned how to
compute with Forward-Backward, then we could use our training data to estimate the parameters of our
HMM model as:

P (yj = b|yj−1 = a) =

∑N
i=1

∑Mi

j=1 P (y
j
i = b, yj−1i = a, xi)∑N

i=1

∑Mi

j=1 P (y
j−1
i = a, xi)

. (14)

P (xj = w|yj = a) =

∑N
i=1

∑Mi

j=1 1[xj
i=w]P (y

j
i = a, xi)∑N

i=1

∑Mi

j=1 P (y
j
i = a, xi)

. (15)

And of course if we knew the parameters of our HMM model, then we could run Forward-Backward to get
the marginal distributions.

The EM or Baum-Welch algorithm solves this chicken-and-egg problem by iterating between the two
computations until convergence. That is, the EM algorithm for unsupervised training of HMMs is

1. INIT: randomly initialize HMM model parameters

2. E-STEP: run Forward-Backward to compute marginal probabilities (6), (7) based on the current model
parameters

3. M-STEP: update the model parameters based on the maximium likelihood estimate given the data
(14), (15)

4. If not converged, repeat from Step 2

5

	Introduction
	How to Make Predictions: The Viterbi Algorithm
	How to Compute Marginal Probabilities: The Forward-Backward Algorithm
	How to Train: Counting and Baum-Welch

