Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

Policies

Due 9 PM, March 6.
Note: both the moodle submission AND Gradescope submissions must be submitted by the deadline.

You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

You should submit all code used in the homework. We ask that you use Python 3 and sklearn version
0.19 for your code, and that you comment your code such that the TAs can follow along and run it
without any issues.

Your report should follow the following format: The answer to each subproblem should be no longer
than one page; There should be a page break between each subproblem; The subproblems should be
in order (the same order as presented below). Code should not be included in the report pdf.

Submission Instructions

PLEASE NOTE that there are two steps to submitting your Problem Set. Both must be submitted by the
deadline. For the course’s late submission policy, please refer to the course website.

Please submit your report as a single .pdf file to Gradescope (entry code 9EJKYV), under “Set 6
Report”. In the report, include any images generated by your code along with your answers to
the questions. For instructions specifically pertaining to the Gradescope submission process, see

https://www.gradescope.com/get_started#student-submission.

Please submit your code as a .zip archive to Moodle, with filename LastnameFirstname. zip (re-
placing Lastname with your last name and Firstname with your first name). The .zip file should
contain your code files. Submit your code either as Jupyter notebook .ipynb files or .py files.

https://www.gradescope.com/get_started#student-submission

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

1 Class-Conditional Densities for Binary Data [25 Points]

This problem will test your understanding of probabilistic models, especially Naive Bayes. Consider a gen-
erative classifier for C classes, with class conditional density p(z|y) and a uniform class prior p(y). Suppose
all the D features are binary, x; € {0, 1}. If we assume all of the features are conditionally independent, as

in Naive Bayes, we can write:
D

plzly=c)= H (zjly=c)

Jj=1

This requires storing DC' parameters.

Now consider a different model, which we will call the ‘full’ model, in which all the features are fully
dependent.

Problem A [5 points]: Use the chain rule of probability to factorize p(x | y), and let 0, ;. = P(x;|z1,... j—1,y =
¢). Assuming we store each 6,;., how many parameters are needed to represent this factorization? Use big-
O notation.

Problem B [5 points]: Assume we did no such factorization, and just used the joint probability p(z | y = ¢).
How many parameters would we need to estimate in order be able to compute p(z|y = c) for arbitrary «
and ¢? How does this compare to your answer from the previous part? Again, use big-O notation.

Problem C [2 points]: Assume the number of features D is fixed. Let there be N training cases. If the
sample size N is very small, which model (Naive Bayes or full) is likely to give lower test set error, and
why?

Problem D [2 points]: If the sample size N is very large, which model (Naive Bayes or full) is likely to
give lower test set error, and why?

Problem E [11 points]: Assume all the parameter estimates have been computed. What is the computa-
tional complexity of making a prediction, i.e. computing p(y | =), using Naive Bayes for a single test case?
What is the computation complexity of making a prediction with the full model? For the full-model case,
assume that converting a D-bit vector to an array index is an O(D) operation. Also, recall that we have
assumed a uniform class prior.

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

2 Sequence Prediction [75 Points]

In this problem, we will explore some of the various algorithms associated with Hidden Markov Models
(HMMs), as discussed in lecture. For these problems, make sure you are using Python 3 to implement the
algorithms. Please see the HMM notes posted on the course website—they will be helpful for this problem!

Sequence Prediction

These next few problems will require extensive coding, so be sure to start early! We provide you with eight
different files:

* You will write all your code in HMM. py, within the appropriate functions where indicated. There
should be no need to write additional functions or use NumPy in your implementation, but feel free
to do so if you would like.

* You can (and should!) use the helper files 22 .py, 2Bi.py, 2Bii.py, 2C.py, 2D.py, and 2F.py.
These are scripts that can be used to run and check your implementations for each of the correspond-
ing problems. The scripts provide useful output in an easy-to-read format. There is no need to modify
these files.

e Lastly, Utility.py contains some functions used for loading data. There is no need to modify this
file.

The supplementary data folder contains 6 files titled sequence_data0.txt, sequence_datal.txt, ...
, sequence_data5.txt. Each file specifies a trained HMM. The first row contains two tab-delimited
numbers: the number of states Y and the number of types of observations X (i.e. the observations are
0,1,...,X —1). The next Y rows of Y tab-delimited floating-point numbers describe the state transition ma-
trix. Each row represents the current state, each column represents a state to transition to, and each entry
represents the probability of that transition occurring. The next Y rows of X tab-delimited floating-point
numbers describe the output emission matrix, encoded analogously to the state transition matrix. The file
ends with 5 possible emissions from that HMM.

The supplementary data folder also contains one additional file titled ron.txt. This is used in problems
2C and 2D and is explained in greater detail there.

Problem A [10 points]: For each of the six trained HMMs, find the max-probability state sequence for
each of the five input sequences at the end of the corresponding file. To complete this problem, you will
have to implement the Viterbi algorithm. Write your implementation well, as we will be reusing it in a later
problem. See the end of problem 2B for a big hint!

Show your results on the 6 files. (Copy-pasting the results of 2A. py suffices.)

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

Problem B [17 points]: For each of the six trained HMMs, find the probabilities of emitting the five in-
put sequences at the end of the corresponding file. To complete this problem, you will have to implement
the Forward algorithm and the Backward algorithm. You may assume that the initial state is randomly
selected along a uniform distribution. Again, write your implementation well, as we will be reusing it in a
later problem.

Note that the probability of emitting an input sequence can be found by using either the « vectors from the
Forward algorithm or the 3 vectors from the Backward algorithm. You don’t need to worry about this, as it
is done for you in probability_alphas () and probability_betas ().

Implement the Forward algorithm. Show your results on the 6 files.
Implement the Backward algorithm. Show your results on the 6 files.

After you complete problems 2A and 2B, you can compare your results for the file titled sequence_-
dataO0.txt with the values given in the table below:

Dataset | Emission Sequence Max-probability State Sequence | Probability of Sequence
0 25421 31033 4.537e-05
0 01232367534 22222100310 1.620e-11
0 5452674261527433 1031003103222222 4.348e-15
0 7226213164512267255 1310331000033100310 4.73%-18
0 0247120602352051010255241 | 2222222222222222222222103 9.365e-24

HMM Training

Ron is an avid music listener, and his genre preferences at any given time depend on his mood. Ron’s pos-
sible moods are happy, mellow, sad, and angry. Ron experiences one mood per day (as humans are known
to do) and chooses one of ten genres of music to listen to that day depending on his mood.

Ron’s roommate, who is known to take to odd hobbies, is interested in how Ron’s mood affects his music
selection, and thus collects data on Ron’s mood and music selection for six years (2190 data points). This
data is contained in the supplementary file ron.txt. Each row contains two tab-delimited strings: Ron’s
mood and Ron’s genre preference that day. The data is split into 12 sequences, each corresponding to half a
year’s worth of observations. The sequences are separated by a row containing only the character -.

Problem C [10 points]: Use a single M-step to train a supervised Hidden Markov Model on the data in
ron.txt. What are the learned state transition and output emission matrices?

Problem D [15 points]: Now suppose that Ron has a third roommate who is also interested in how Ron’s
mood affects his music selection. This roommate is lazier than the other one, so he simply steals the first
roommate’s data. Unfortunately, he only manages to grab half the data, namely, Ron’s choice of music for

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

each of the 2190 days.

In this problem, we will train an unsupervised Hidden Markov Model on this data. Recall that unsu-
pervised HMM training is done using the Baum-Welch algorithm and will require repeated EM steps.
For this problem, we will use 4 hidden states and run the algorithm for 1000 iterations. The transition
and observation matrices are initialized for you in the helper functions supervised_learning() and
unsupervised_learning () such that they are random and normalized.

What are the learned state transition and output emission matrices?

Problem E [5 points]: How do the transition and emission matrices from 2C and 2D compare? Which do
you think provides a more accurate representation of Ron’s moods and how they affect his music choices?
Justify your answer. Suggest one way that we may be able to improve the method (supervised or unsuper-
vised) that you believe produces the less accurate representation.

Sequence Generation

Hidden Markov Models fall under the umbrella of generative models and therefore can be used to not only
predict sequential data, but also to generate it.

Problem F [5 points]: Load the trained HMMSs from the files titled sequence_data0.txt,..., sequence_-
data5.txt. Use the six models to probabilistically generate five sequences of emissions from each model,
each of length 20. Show your results.

Visualization & Analysis

Once you have implemented the above, load and run 2_notebook.ipynb. In this notebook, you will
apply the HMM you have implemented to the Constitution. There is no coding required for this part, only
analysis. To run the notebook, however, you will likely need to install the wordcloud package. Please refer
to the provided installation instructions if you get an error when running pip install wordcloud.

Answer the following problems in the context of the visualizations in the notebook.

Problem G [3 points]: What can you say about the sparsity of the trained A and O matrices? How does
this sparsity affect the transition and observation behaviour at each state?

Problem H [5 points]: How do the sample emission sentences from the HMM change as the number
of hidden states is increased? What happens in the special case where there is only one hidden state? In
general, when the number of hidden states is unknown while training an HMM for a fixed observation set,
can we increase the training data likelihood by allowing more hidden states?

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Homework 6 February 2019

Problem I [5 points]: Pick a state that you find semantically meaningful, and analyze this state and its
wordcloud. What does this state represent? How does this state differ from the other states? Back up your
claim with a few key words from the wordcloud.

	Class-Conditional Densities for Binary Data [25 Points]
	Sequence Prediction [75 Points]
	Sequence Prediction
	HMM Training
	Sequence Generation
	Visualization & Analysis

