Machine Learning & Data Mining Caltech CS/CNS/EE 155

Set 5

February 2019

Policies

Due 9 PM, February 20,
Note: both the moodle submission AND Gradescope submissions must be submitted by the deadline.

You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

You should submit all code used in the homework. We ask that you use Python 3 and sklearn version
0.19 for your code, and that you comment your code such that the TAs can follow along and run it
without any issues.

Your report should follow the following format: The answer to each subproblem should be no longer
than one page; There should be a page break between each subproblem; The subproblems should be
in order (the same order as presented below). Code should not be included in the report pdf.

Submission Instructions

PLEASE NOTE that there are two steps to submitting your Problem Set. Both must be submitted by the
deadline. For the course’s late submission policy, please refer to the course website.

Please submit your report as a single .pdf file to Gradescope (entry code 9EJKYV), under “Set 1
Report”. In the report, include any images generated by your code along with your answers to
the questions. For instructions specifically pertaining to the Gradescope submission process, see

https://www.gradescope.com/get_started#student-submission.

Please submit your code as a .zip archive to Moodle, with filename LastnameFirstname. zip (re-
placing Lastname with your last name and Firstname with your first name). The .zip file should
contain your code files. Submit your code either as Jupyter notebook .ipynb files or .py files.

https://www.gradescope.com/get_started#student-submission

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

1 SVD and PCA [35 Points]

Relevant materials: Lectures 10, 11

Problem A [3 points]: Let X bea N x N matrix. For the singular value decomposition (SVD) X = U VT,
show that the columns of U are the principal components of X. What relationship exists between the
singular values of X and the eigenvalues of X X7?

Problem B [4 points]: Provide both an intuitive explanation and a mathematical justification for why the
eigenvalues of the PCA of X (or rather X X7) are non-negative. Such matrices are called positive semi-
definite and possess many other useful properties.

Problem C [5 points]: In calculating the Frobenius and trace matrix norms, we claimed that the trace is
invariant under cyclic permutations (i.e., Tr(ABC) = Tr(BC A) = Tr(CAB)). Prove that this holds for any
number of square matrices.

Hint: First prove that the identity holds for two matrices and then generalize. Recall that Tr(AB) =
SN (AB);;. Can you find a way to expand (AB);; in terms of another sum?

Problem D [3 points]: Outside of learning, the SVD is commonly used for data compression. Instead of
storing a full N x N matrix X with SVD X = UXV7”, we store a truncated SVD consisting of the k largest
singular values of ¥ and the corresponding columns of U and V. One can prove that the SVD is the best
rank-k approximation of X, though we will not do so here. Thus, this approximation can often re-create the
matrix well even for low k. Compared to the N? values needed to store X, how many values do we need
to store a truncated SVD with k singular values? For what values of k is storing the truncated SVD more
efficient than storing the whole matrix?

Hint: For the diagonal matrix X, do we have to store every entry?

Dimensions & Orthogonality

In class, we claimed that a matrix X of size D x [N can be decomposed into U VT, where U and V are
orthogonal and ¥ is a diagonal matrix. This is a slight simplification of the truth. In fact, the singular
value decomposition gives an orthogonal matrix U of size D x D, an orthogonal matrix Y of size N x N,
and a rectangular diagonal matrix ¥ of size D x N, where ¥ only has non-zero values on entries (X);;,
i €{1,...,K}, where K is the rank of the matrix X.

Problem E [3 points]: Assume that D > N and that X has rank N. Show that UYX = U'Y’/, where ¥’ is
the N x N matrix consisting of the first NV rows of ¥, and U’ is the D x N matrix consisting of the first N

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

columns of U. The representation U’'Y'V7 is called the “thin” SVD of X.

Problem F [3 points]: Show that since U’ is not square, it cannot be orthogonal according to the definition
given in class. Recall that a matrix A is orthogonal if AAT = ATA =I.

Problem G [4 points]: Even though U’ is not orthogonal, it still has similar properties. Show that
UTU' = Inyn. Is it also true that U'U'T = Ipyp? Why or why not? Note that the columns of U’ are
still orthonormal. Also note that orthonormality implies linear independence.

Pseudoinverses

Let X be a matrix of size D x N, where D > N, with “thin” SVD X = USXVT. Assume that X has rank N.

Problem H [4 points]: Assuming that X is invertible, show that the pseudoinverse X+ = VETU7 as given
in class is equivalent to VX ~1UT. Refer to lecture 10 (slide 53) for the definition of pseudoinverse.

Problem I [4 points]l: Another expression for the pseudoinverse is the least squares solution X+ =
(XTX)~'XT. Show that (again assuming ¥ invertible) this is equivalent to VX U7

Problem J [2 points]: One of the two expressions in parts i and ii for calculating the pseudoinverse is
highly prone to numerical errors. Which one is it, and why? Justify your answer using condition numbers.

Hint: Note that the transpose of a matrix is easy to compute. Compare the condition numbers of ¥ and
Imaz(A)

XTX. The condition number of a matrix A is given by x(A) = VY

where 0,4, (A) and 0,5, (A) are
the maximum and minimum singular values of A, respectively.

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

2 Matrix Factorization [30 Points]
Relevant materials: Lecture 11

In the setting of collaborative filtering, we derive the coefficients of the matrices U € RM*% and V € RV*K
by minimizing the regularized square error:

. A 1 2
arg minyy y o (HUH% + ||VH%) + B Z (yij — Uz'TUj)
1,5
where u] and v} are the i™ and j™ rows of U and V, respectively. Then Y € RM*N ~ UV7, and the ij-th
element of Y is y;; ~ u! v;.

Problem A [5 points]: Derive the gradients of the above regularized squared error with respect to u; and
vj, denoted 0, and 9,; respectively. We can use these to compute U and V' by stochastic gradient descent
using the usual update rule:

U = U; — N0y,

v = vj = 10y,
where 7 is the learning rate.

Problem B [5 points]: Another method to minimize the regularized squared error is alternating least
squares (ALS). ALS solves the problem by first fixing U and solving for the optimal V, then fixing this new
V and solving for the optimal U. This process is repeated until convergence.

Derive closed form expressions for the optimal u; and v;. That is, give an expression for the u; that mini-
mizes the above regularized square error given fixed V, and an expression for the v; that minimizes it given
fixed U.

Problem C [10 points]: Download the provided MovieLens dataset (train.txt and test.txt). The format of
the data is (user, movie, rating), where each triple encodes the rating that a particular user gave to a particular
movie.

Implement matrix factorization with stochastic gradient descent for the MovieLens dataset, using your
answer from part A. Assume your input data is in the form of three vectors: a vector of is, js, and y;;s.
Set A = 0 (in other words, do not regularize), and structure your code so that you can vary the number of
latent factors (k). You may use the Python code template in the files 2D.py and prob2utils_skeleton.py; to
complete this problem, your task is to fill in the four functions in prob2utils_skeleton.py.

In your implementation, you should:

¢ Initialize the entries of U and V' to be small random numbers; set them to uniform random variables
in the interval [—0.5,0.5].

* Use a learning rate of 0.03.

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

e Randomly shuffle the training data indices before each SGD epoch.

¢ Set the maximum number of epochs to 300, and terminate the SGD process early via the following
early stopping condition:

— Keep track of the loss reduction on the training set from epoch to epoch, and stop when the rela-
tive loss reduction compared to the first epoch is less than ¢ = 0.0001. That is, if A ; denotes the
loss reduction from the initial model to end of the first epoch, and A; ;_; is defined analogously,
then stop after epoch ¢ if A;_1¢/Ap1 < e.

Problem D [5 points]: Use your code from the previous problem to train your model using & = 10, 20, 30, 50, 100,
and plot your E;,, E,.: against k. Note that F;, and E,, are calculated via the squared loss, i.e. via
525 (Wi — uZv;)?. What trends do you notice in the plot? Can you explain them?

Problem E [5 points]: Now, repeat problem D, but this time with the regularization term. Use the following
regularization values: A € {le — 4,1e — 3,0.01,0.1, 1}. For each regularization value, use the same range of
values for k as you did in the previous part. What trends do you notice in the graph? Can you explain them
in the context of your plots for the previous part? You may use your code you wrote for part C, as well as
the file 2E.py.

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

3 Word2Vec Principles [35 Points]

Relevant materials: Lecture 12

The Skip—gram model is part of a family of techniques that try to understand language by looking at what
words tend to appear near what other words. The idea is that semantically similar words occur in similar
contexts. This is called “distributional semantics”, or “you shall know a word by the company it keeps”.

The Skip-gram model does this by defining a conditional probability distribution p(wo|wr) that gives the
probability that, given that we are looking at some word wy in a line of text, we will see the word wo
nearby. To encode p, the Skip-gram model represents each word in our vocabulary as two vectors in R”:
one vector for when the word is playing the role of w; (“input”), and one for when it is playing the role of
wo (“output”). (The reason for the 2 vectors is to help training — in the end, mostly we’ll only care about
the wr vectors.) Given these vector representations, p is then computed via the familiar softmax function:

exp (U’UT,ovw,)
POl = S e ()

where v,, and v}, are the “input” and “output” vector representations of word aw € {1, ..., W}. (We assume

@

all words are encoded as positive integers.)

Given a sequence of training words wy, ws, ..., wr, the training objective of the Skip-gram model is to
maximize the average log probability

T
% Z Z log p(we|we) ey

t=1 —s<j<s,j70
where s is the size of the “training context” or “window” around each word. Larger s results in more
training examples and higher accuracy, at the expense of training time.

Problem A [5 points]: If we wanted to train this model with naive gradient descent, we’d need to compute
all the gradients V log p(we|wy) for each wo, wr pair. How does computing these gradients scale with W,
the number of words in the vocabulary, and D, the dimension of the embedding space?

Problem B [10 points]: When the number of words in the vocabulary W is large, computing the regular
softmax can be computationally expensive (note the normalization constant on the bottom of Eq. 2). For
reference, the standard fastText pre-trained word vectors encode approximately W = 218000 words in
D = 100 latent dimensions. One trick to get around this is to instead represent the words in a binary tree
format and compute the hierarchical softmax.

When the words have all the same frequency, then any balanced binary tree will minimize the average
representation length and maximize computational efficiency of the hierarchical softmax. But in practice,

words occur with very different frequencies — words like “a”, “the”, and ”in” will occur many more times
than words like “representation” or “normalization”.

The original paper (Mikolov et al. 2013) uses a Huffman tree instead of a balanced binary tree to leverage
this fact. For the 8 words and their frequencies listed in the table below, build a Huffman tree using the

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

Table 1: Words and frequencies for Problem B

Word | Occurrences
do 18

you 4

know | 7

the 20

way 9

of 4

devil | 5

queen | 6

algorithm found here. Then, build a balanced binary tree of depth 3 to store these words. Make sure that
each word is stored as a leaf node in the trees.

The representation length of a word is then the length of the path from the root to the leaf node correspond-
ing to the word. For each tree you constructed, compute the expected representation length (averaged over
the actual frequencies of the words).

Problem C [3 points]: In principle, one could use any D for the dimension of the embedding space. What
do you expect to happen to the value of the training objective as D increases? Why do you think one might
not want to use very large D?

Implementing Word2Vec

Word2Vec is an efficient implementation of the Skip—gram model using neural network—inspired training
techniques. We'll now implement Word2Vec on text datasets using Keras. This blog post provides an
overview of the particular Word2Vec implementation we’ll use.

At a high level, we’ll do the following:

(i) Load in a list L of the words in a text file

(if) Given a window size s, generate up to 2s training points for word L;. The diagram below shows an
example of training point generation for s = 2:

https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019
Source Text Training
Samples
fox jumps over the lazy dog. (the, quick)
(the, brown)
The fox|jumps over the lazy dog. (quick, the)
(quick, brown)
(quick, fox)
The| quick fox|jumps|over the lazy dog. (brown, the)
[rhe] ous ok EGRRRY €0 | 3umos| (roun,thel
(brown, fox)

The| quick| brown - Jjumps | over | the

lazy dog.

(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Figure 1: Generating Word2Vec Training Points

(iii) Fit a neural network consisting of a single hidden layer of 10 units on our training data. The hidden

layer should have no activation function, the output layer should have a softmax activation, and the

loss function should be the cross entropy function.

Notice that this is exactly equivalent to the Skip—gram formulation given above where the embedding

dimension is 10: the columns (or rows, depending on your convention) of the input-to-hidden weight

matrix in our network are the w; vectors, and those of the hidden—to—output weight matrix are the wo

vectors.

(iv) Discard our output layer and use the matrix of weights between our input layer and hidden layer as

the matrix of feature representations of our words.

(v) Compute the cosine similarity between each pair of distinct words and determine the top 30 pairs of

most-similar words.

Implementation

Download the helper functions (P3CHelpers.py) and skeleton code (P3CSkeleton.py) from the course web-

site, which implement most of the above.

Problem D [10 points]: Fill out the TODOs in the skeleton code; specifically, add code where indicated
to train a neural network as described in (iii) above and extract the weight matrix of its input—to-hidden

weight matrix. Also, fill out the generate_traindata() function, which generates our data and label matrices.

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 5 February 2019

Running the code

Run your model on dr_seuss.txt and answer the following questions:

Problem E [2 points]: What is the dimension of the weight matrix of your hidden layer?
Problem F [2 points]: What is the dimension of the weight matrix of your output layer?
Problem G [1 points]: List the top 30 pairs of most similar words that your model generates.

Problem H [2 points]: What patterns do you notice across the resulting pairs of words?

	SVD and PCA [35 Points]
	Dimensions & Orthogonality
	Pseudoinverses

	Matrix Factorization [30 Points]
	Word2Vec Principles [35 Points]
	Implementing Word2Vec
	Implementation

	Running the code

