Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 2 January 17, 2019

Policies

® Due 9 PM, January 23t via Moodle.

* You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

® You should submit all code used in the homework. We ask that you use Python 3 and sklearn version
0.19 for your code, and that you comment your code such that the TAs can follow along and run it
without any issues.

Submission Instructions

Please submit your assighment as a .zip archive with filename LastnameFirstname.zip (replacing
Lastname with your last name and Firstname with your first name), containing a PDF of your assign-
ment writeup in the main directory with filename LastnameFirstname_Set2.pdf and your code files
in a directory named LastnameFirstname. Failure to do so will result in a 2 point deduction. Submit
your code as Jupyter notebook .ipynb files or .py files, and include any images generated by your code
along with your answers in the solution .pdf file.
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1 Comparing Different Loss Functions [30 Points]
Relevant materials: lecture 3

We've discussed three loss functions for linear models so far:

* Squared loss: Lsquared = (1 — yw’x)?
* Hinge loss: Lhinge = max(0,1 — yw’x)

* Logloss: Lipg = In(1 + e—yWTX)

where w € R” is a vector of the model parameters, y € {—1, 1} is the class label for datapoint x € R", and
we're including a bias term in x and w. The model classifies points according to sign(w”x).

Performing gradient descent on any of these loss functions will train a model to classify more points cor-
rectly, but the choice of loss function has a significant impact on the model that is learned.

Problem A [3 points]: Squared loss is often a terrible choice of loss function to train on for classification
problems. Why?

Problem B [9 points]: A dataset is included with your problem set: problemldatal.txt. The first two
columns represent 1, x2, and the last column represents the label, y € {—1, +1}.

On this dataset, train both a logistic regression model and a ridge regression model to classify the points.
(In other words, on each dataset, train one linear classifier using Ly, as the loss, and another linear classi-
fier using Lgquared @s the loss.) For this problem, you should use the logistic regression and ridge regression
implementations provided within scikit-learn (logistic regression documentation) (Ridge regression docu-
mentation) instead of your own implementations. Use the default parameters for these classifiers except
for setting the regularization parameters so that very little regularization is applied.

For each loss function/model, plot the data points as a scatter plot and overlay them with the decision
boundary defined by the weights of the trained linear classifier. Include both plots in your submission. The
template notebook for this problem contains a helper function for producing plots given a trained classifier.

What differences do you see in the decision boundaries learned using the different loss functions? Provide
a qualitative explanation for this behavior.

Problem C [9 points]: Leaving squared loss behind, let’s focus on log loss and hinge loss. Consider the set
of points S = {(1,3),(2,-2), (—3,1)} in 2D space, shown below, with labels (1, 1, —1) respectively.

Given a linear model with weights wg = 0,w; = 1, w2 = 0 (Where wg corresponds to the bias term), compute
the gradients V, Lyinge and V,, L1og of the hinge loss and log loss, and calculate their values for each point
inS.


http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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X2

The example dataset and decision boundary described above. Positive instances are represented by red x’s, while

negative instances appear as blue dots.

Problem D [4 points]: Compare the gradients resulting from log loss to those resulting from hinge loss.
When (if ever) will these gradients converge to 0? For a linearly separable dataset, is there any way to
reduce or altogether eliminate training error without changing the decision boundary?

Problem E [5 points]: Based on your answer to the previous question, explain why for an SVM to be a
“maximum margin” classifier, its learning objective must not be to minimize just Lhinge, but to minimize
Lhinge + Al|w||? for some A > 0.

(You don’t need to prove that minimizing Liinge 4 Al|w||? results in a maximum margin classifier; just show
that the additional penalty term addresses the issues of minimizing just Lyinge-)
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2 Effects of Regularization
Relevant materials: Lecture 4

For this problem, you are required to implement everything yourself and submit code.

Problem A [4 points]: In order to prevent over-fitting in the least-squares linear regression problem, we
add a regularization penalty term. Can adding the penalty term decrease the training (in-sample) error?
Will adding a penalty term always decrease the out-of-sample errors? Please justify your answers. Think
about the case when there is over-fitting while training the model.

Problem B [4 points]: ¢, regularization is sometimes favored over /3 regularization due to its ability to
generate a sparse w (more zero weights). In fact, ¢y regularization (using ¢, norm instead of ¢; or ¢ norm)
can generate an even sparser w, which seems favorable in high-dimensional problems. However, it is rarely
used. Why?

Implementation of /; regularization:

We are going to experiment with regression for the Red Wine Quality Rating data set. The data set is
uploaded on the course website, and you can read more about it here: https://archive.ics.uci.
edu/ml/datasets/Wine. The data relates 13 different factors (last 13 columns) to wine type (the first
column). Each column of data represents a different factor, and they are all continuous features. Note that
the original data set has three classes, but one was removed to make this a binary classification problem.

Download the data for training and testing. There are two training sets, wine_training1.txt (100 data points)
and wine_training?2.txt (a proper subset of wine_trainingl.txt containing only 40 data points), and one test
set, wine_testing.txt (30 data points). You will use the wine_testing.txt dataset to evaluate your models.

We will train a ¢-reqularized logistic regression model on this data. Recall that the unregularized logistic
error (a.k.a. log loss) is

N
E=- log(p(yilx:))
=1

where p(y; = —1|x;) is
14w’
and p(y; = 1|x;) is

14+ e wixi’


https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Wine
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where as usual we assume that all x; contain a bias term. The /2-regularized logistic error is

N
E=- Z log(p(yi|xi)) + Aw’'w

i=1

N 1
- _ T
= E log <1 " eyinxi> +Aw'w

i=1

N
1 A
__iz—‘:(log <1+e—vax> A w).

Implement SGD to train a model that minimizes the ¢,-regularized logistic error, i.e. train an ¢y-regularized
logistic regression model. Train the model with 15 different values of X starting with Ao = 0.00001 and
increasing by a factor of 5, i.e.

Ao = 0.00001, A\; = 0.00005, Ao = 0.00025, ..., \1a = 61,035.15625.

Some important notes: Terminate the SGD process after 20,000 epochs, where each epoch performs one
SGD iteration for each point in the training dataset. You should shuffle the order of the points before each
epoch such that you go through the points in a random order (hint: use numpy . random.permutation).
Use a learning rate of 5e — 4, and initialize your weights to small random numbers.

You may run into numerical instability issues (overflow or underflow). One way to deal with these issues

is by normalizing the input data X. Given the column for the jth feature, X, ;, you can normalize it by

setting X;; = )i;é;(x)’ where (X ;) is the standard deviation of the jth column’s entries, and X ; is the
5

mean of the jth column’s entries. Normalization may change the optimal choice of A; the A range given

above corresponds to data that has been normalized in this manner. If you treat the input data differently,
simply plot enough choices of A to see any trends.

Problem C [16 points]: Do the following for both training data sets (wine_trainingl.txt and wine_train-
ing?2.txt) and attach your plots in the homework submission (use a log-scale on the horizontal axis):

i. Plot the average training error (Ei,) versus different As.

ii. Plot the average test error (Eyy:) versus different s using wine_testing.txt as the test set.

iii. Plot the /5 norm of w versus different As.

You should end up with three plots, with two series (one for wine_trainingl.txt and one for wine_train-

ing?2.txt) on each plot. Note that the Ei, and E,y values you plot should not include the regularization
penalty — the penalty is only included when performing gradient descent.

Problem D [4 points]: Given that the data in wine_training?.txt is a subset of the data in wine_training1.txt,
compare errors (training and test) resulting from training with wine_training1.txt (100 data points) versus
wine_training?.txt (40 data points). Briefly explain the differences.

Problem E [4 points]: Briefly explain the qualitative behavior (i.e. over-fitting and under-fitting) of the
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training and test errors with different As while training with data in wine_training1.txt.

Problem F [4 points]: Briefly explain the qualitative behavior of the ¢, norm of w with different As while
training with the data in wine_training1.txt.

Problem G [4 points]: If the model were trained with wine_training2.txt, which A would you choose to
train your final model? Why?
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3 Lasso (¢;) vs. Ridge (/s) Regularization
Relevant materials: Lecture 3

For this problem, you may use the scikit-learn (or other Python package) implementation of Lasso and
Ridge regression — you don’t have to code it yourself.

The two most commonly-used regularized regression models are Lasso (1) regression and Ridge (¢>) re-
gression. Although both enforce “simplicity” in the models they learn, only Lasso regression results in
sparse weight vectors. This problem compares the effect of the two methods on the learned model param-
eters.

Problem A [12 points]: The tab-delimited file problem3data.txt on the course website contains 1000 9-
dimensional datapoints. The first 9 columns contain z1,...,zy, and the last column contains the target
value y.

i. Train a linear regression model on the problem3data.txt data with Lasso regularization for regularization
strengths « in the vector given by numpy.linspace (0.01, 3, 30). On a single plot, plot each of the
model weights w1, ..., wy (ignore the bias/intercept) as a function of «.

ii. Repeat i. with Ridge regression, and this time using regularization strengths o € {1,2,3,..., led}.

iii. As the regularization parameter increases, what happens to the number of model weights that are
exactly zero with Lasso regression? What happens to the number of model weights that are exactly zero
with Ridge regression?

Problem B [18 points]:

i. In the case of 1-dimensional data, Lasso regression admits a closed-form solution. Given a dataset
containing /N datapoints each with d features, where d = 1, solve for

arg min|y — xwl|* + Afjwl|1,
w
where x € RY is the vector of datapoints and y € R¥ is the vector of all output values corresponding to
these datapoints. Just consider the case where d = 1, A > 0, and the weight w is a scalar.
This is linear regression with Lasso regularization.

ii. In this question, we continue to consider Lasso regularization in 1-dimension. Now, suppose that when
A =0, w # 0. Does there exist a value for X such that w = 0? If so, what is the smallest such value?

iii. Given a dataset containing N datapoints each with d features, solve for

arg min|ly — Xw|[* + A wl[3
w

where X € RV* ig the matrix of datapoints and y € RY is the vector of all output values for these
datapoints. Do so for arbitrary d and A > 0.
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This is linear regression with Ridge regularization.

iv. In this question, we consider Ridge regularization in 1-dimension. Suppose that when A = 0, w # 0.
Does there exist a value for A > 0 such that w = 0? If so, what is the smallest such value?
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