Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 3: Shakespearebot 5000 Released: March 6, 2019

1 Overview

e In this project, you will attempt to generate Shakespearean sonnets by training a HMM on the entire
corpus of Shakespeare’s sonnets.

e Poem submissions for this miniproject are due 9pm on Monday, March 13t via Piazza. The code is
due 9pm on Monday, March 13, via Moodle. The reports are due 9pm on Monday, March 13", via
Gradescope.

e You can work in groups of size either 2 or 3. You may keep the same group as in miniproject 1 or 2.

¢ You may use any language you want, but you must submit a report including documented code that
lays out everything you did. We recommend Python for this assignment.

e You are required to share one poem with the class on Piazza.

2 Introduction

William Shakespeare is perhaps the most famous poet and playwright of all time. Shakespeare is known
for works such as Hamlet and his 154 sonnets, of which the most famous begins:

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:

Shakespeare’s poems are nice for generative modeling because they follow a specific format, known as
the Shakespearean (or English) sonnet.! Each sonnet is 14 lines, spread into 3 quatrains (section with 4 lines)
followed by a couplet (section with 2 lines). The third quatrain is known as the volta® and has a change in
tone or content. Shakespearean sonnets have a particular rhyme scheme, which is abab cdcd efef gg.

Shakespearean sonnets also follow a specific meter called iambic pentameter®. All lines are exactly 10
syllables long, and have a pattern of unstressed stress. For example, the famous Sonnet 22 begins:

Stress X \ X \ X \ | x \ X \
Syllable | Shall | I | com - | pare | thee | to | a | sum- | mer’s | day?

Here, each x represents an unstressed syllable and every \represents a stressed syllable. Try saying it
out loud!

The goal for this project is to generate poems that Shakespeare may have written by training a HMM on
his 154 sonnets. His sonnets are available in the data file shakespeare.txt.

https://en.wikipedia.org/wiki/Sonnet#English_.28Shakespearean.29_sonnet
Zhttps://en.wikipedia.org/wiki/Volta_%28literature%29
3https://en.wikipedia.org/wiki/Iambic_pentameter

https://en.wikipedia.org/wiki/Sonnet#English_.28Shakespearean.29_sonnet
https://en.wikipedia.org/wiki/Volta_%28literature%29
https://en.wikipedia.org/wiki/Iambic_pentameter

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 3: Shakespearebot 5000 Released: March 6, 2019

3 Pre-processing (15 points)

The first step is to pre-process the dataset before you train on it. How you pre-process is completely
up to you. Here are a couple of questions to help you decide how to do pre-processing: How will you
tokenize the data set? What will consist of a singular sequence, a poem, a stanza, or a line? Do you keep
some words tokenized as bigrams? Do you split hyphenated words? How will you handle punctuation? It
may be helpful to get syllable counts and syllable stress information from CMU’s Pronouncing Dictionary
available on NLTK. You might also find the file Syllable_dictionary.txt, provided in the data folder,
to be helpful; please see the associated file called “syllable_dict_explanation” for an explanation.

Report Deliverable:

Your report should contain a section dedicated to pre-processsing. Explain your choices, as well as why
you chose these choices initially. What was your final pre-processing? How did you tokenize your words,
and split up the data into separate sequences? What changed as you continued on your project? What did
you try that didn’t work? Also write about any analysis you did on the dataset to help you make these
decisions.

4 Unsupervised Learning (10 points)

Now your task is to create a HMM for poem generation. NOTE: You do not have to implement this
yourself.

Your best option is to use the Baum-Welch algorithm that you implemented in HW6 or from the HW6
solutions. You can also try to use the package hmmlearn (Example Here). You can install it with pip install
hmmlearn. You can also use any other package you like, but be warned that HMM packages for python
tend to be poorly documented, so your safest bet is to use the HW6 solutions.

When training, you should try training models with varying number of hidden states to see what works
best.

Report Deliverable:

Your report should also contain a section highlighting your HMM. What packages did you use, if any?
How did you choose the number of hidden states?

5 Poetry Generation, Part 1: Hidden Markov Models (20 points)

Some theory

Remember that the core of a HMM is the transition matrix and the observation matrix. Given a current
state yo, we can generate the next state by randomly choosing a state from the appropriate row in the
transition matrix based on the the probability of transitioning to that state. Now, with the next state, we
can generate a word by choosing randomly based on each word’s probability of being generated from that
state.

http://www.nltk.org/_modules/nltk/corpus/reader/cmudict.html
http://hmmlearn.readthedocs.io/en/latest/auto_examples/plot_hmm_stock_analysis.html#sphx-glr-auto-examples-plot-hmm-stock-analysis-py

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 3: Shakespearebot 5000 Released: March 6, 2019

Naive Poem Generation from HMMs

Write a program that generates a 14-line sonnet from your HMM model. You will need to choose one
sonnet that you generate and share it with the rest of the class on Piazza under the tag project2. The TAs
will read over your submissions and choose the best computer-generated sonnet. Note that the poem that
you submit on Piazza does not need to be from naive poem generation, and can be from a later improved
HMM model or a recurrent model (see the next section). However, the poem that you submit must be
computer-generated. You may update your poems until the deadline for the project.

Report Deliverable:

In your report, describe your algorithm for generating the 14-line sonnet. As an example, include at
least one sonnet generated from your unsupervised trained HMM. You should comment on the quality of
geneating poems in this naive manner. How accurate is the rhyme, rythym, and syllable count, compared
to what a sonnet should be? Do your poems make any sense? Do they retain Shakespeare’s original voice?
How does training with different numbers of hidden states affect the poems generated (in a qualitative
manner)? For the good qualities that you describe, also discuss how you think the HMM was able to
capture these qualities.

6 Poetry Generation, Part 2: Recurrent Neural Networks (20 points)

Try doing poem generation with the same data using a recurrent neural network (RNN). You can use
Keras (like on HW4) or any package you like. Although you are welcome to experiment with any recur-
rent model and language representation (see the following section), please follow these guidelines in this
section:

e Train a character-based LSTM model. A single layer of 100-200 LSTM units should be sufficient. You
should also have a standard fully-connected output layer with a softmax nonlinearity.

e Train your model to minimize categorical cross-entropy. Make sure that you train for a sufficient num-
ber of epochs so that your loss converges. You don’t necessarily need to keep track of overfitting /keep
a validation set.

e Your training data should consist of sequences of fixed length (40 characters is a good number for this
task) drawn from the sonnet corpus. The densest way to do this is to take all possible subsequences
of 40 consecutive characters from the dataset. To speed up training, using semi-redundant sequences
(i.e. picking only sequences starting every n-th character) works just as well.

e To generate poems, draw softmax samples from your trained model. It may be interesting to play
around with the temperature parameter, which controls the variance of your sampled text.

Report Deliverable:

Explain in detail what model you implemented and using what packages. What parameters did you
tune? Comment on the poems that your model produced. Does the LSTM successfully learn sentence
structure and /or sonnet structure? How does an LSTM compare in poem quality to the HMM? How does it

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 3: Shakespearebot 5000 Released: March 6, 2019

compare in runtime/amount of training data needed to the HMM? Include generated poems using temper-
atures of 1.5, 0.75, and 0.25 with the following initial 40-character seed: “shall i compare thee to a summer’s
day?\n”, and comment on their differences.

7 Additional Goals (20 points)

"Though this be madness, yet there is method in't” - Hamlet Act 2, scene 2

The poems generated using the naive HMM are probably not very good as sonnets. In this section, you
will explore methods of improving your poems or extending them.* You do not need to attempt all of
the tasks below for full marks on this section. If you have ideas for other improvements to the poetry
generation not listed here, feel free to talk to a TA and work on it. The sky is the limit.

Report Deliverable:

Talk about the extra improvements you made to your poem generation algorithm. What problems were
you trying to fix? How did you go about attempting to fix them? Why did you think that what you tried
would work? Did your method succeed in making the sonnet more like a sonnet? If not, why do you think
what you tried didn’t work? What tradeoffs do you see in quality and creativity when you make these
changes?

Rhyme

Introducing rhyme into your poems is not actually that difficult. Since the sonnet follows strict rhyming
patterns, we can figure out what rhymes Shakespeare uses by looking at the last words of rhyming line
pairs, and add this to some sort of rhyming dictionary. Then, we can generate two lines that rhyme by
seeding the end of the line with words that rhyme, and then do HMM generation in the reverse direction.

Meter

One way to incorporate meter is by creating states that represent word stresses and limiting transitions
between stressed and unstressed words. For example, if a word ends in a stressed syllable, its state should
not transition to a state with words that start with a stressed syllable. You can also guarantee a syllable
count by using supervised learning and labeling words by syllable and stress, and counting syllables when
generating your poem. However, you may find that a more constrained HMM yields lower-quality sen-
tence structure. If you use too many states, the HMM may lose variety in its generation. To find a happy
medium, try semi-supervised learning.

Incorporating additional texts

A powerful feature of HMMs is the ability to combine texts from different sources, with potentially-silly
results.”. We have also provided the Amoretti® by Spenser, a contemporary poet of Shakespeare. All 139 of
Spenser’s sonnets in the Amoretti follow the same rhyme scheme and meter as Shakespeare’s sonnets.

4One approach is to hand-label some sonnets with specific states, thus making the resulting learning problem semi-supervised.
Another approach is to try higher-order HMMs, such as 2nd order.

5King James bible mixed with SICP

bhttps://en.wikipedia.org/wiki/Amoretti

http://kingjamesprogramming.tumblr.com/
https://en.wikipedia.org/wiki/Amoretti

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Miniproject 3: Shakespearebot 5000 Released: March 6, 2019

Generating other poetic forms
It may be an endeavor to try to generate other poetic forms using your HMMs. Can you generate
Haikus? How about Petrarchan sonnets, limmericks?

Improving recurrent models

There are many ways you can improve the basic LSTM model in section 6. For example, you can try
using word-embeddings or other morphological representations instead of characters, as well as more com-
plicated recurrent models. Evaluate your improvements over the baseline model both qualitatively and
quantitatively (e.g. using the perplexity metric). You may use any publicly-available code and papers as
long as you reference them appropriately.

Choose your own!
This project is meant for you to have fun and explore new ideas. Talk to the TAs about your own ideas
of how to make the poems better, and try it out. We may award bonus points for creativity.

8 Visualization & Interpretation (15 points)

The next section of this project deals with interpreting and visualizing the learned model. Our goal is to
interpret what the hidden states and transitions capture about the data. Use the learned observation matrix
and transition matrix to determine what words associate most with each hidden state, and how the hidden
states interact with each other. Do the hidden states represent parts of speech, stressed or unstressed words,
number of syllables? What about anything else you can think of? You may use any open source tools to
help you perform some of the analysis, such as NLTK.

Report Deliverable:

In your report, you should explain your interpretation of how a Hidden Markov Model learns patterns
in Shakespeare’s texts. You should briefly elaborate on the methods you used to analyze the model. In
addition, for at least 5 hidden states give a list of the top 10 words that associate with this hidden state and
state any common features among these groups. Furthermore, try to interpret and visualize the learned
transitions between states. A possible suggestion is to draw a transition diagram of your Markov model
and give descriptive names to the states. Feel free to be creative with your visualizations, but remember
that accurately representing data is still your primary objective. Your figures, tables, and diagrams should
contribute to a discussion about your model.

9 Additional Resources
e TED talk: Can a computer write poetry?

Botpoet

Natural Language Processing Toolbox

Markov Contraints for Generating Lyrics with Style

Unsupervised Rhyme Scheme Identification Hip Hop Lyrics Using Hidden Markov Models

https://www.ted.com/talks/oscar_schwartz_can_a_computer_write_poetry?language=en
http://botpoet.com/what-is-computer-poetry/
http://www.nltk.org/
https://www.csl.sony.fr/downloads/papers/2012/barbieri-12a.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-39593-2_3

	Overview
	Introduction
	Pre-processing (15 points)
	Report Deliverable:

	Unsupervised Learning (10 points)
	Report Deliverable:

	Poetry Generation, Part 1: Hidden Markov Models (20 points)
	Some theory
	Naive Poem Generation from HMMs
	Report Deliverable:

	Poetry Generation, Part 2: Recurrent Neural Networks (20 points)
	Report Deliverable:

	Additional Goals (20 points)
	Report Deliverable:
	Rhyme
	Meter
	Incorporating additional texts
	Generating other poetic forms
	Improving recurrent models
	Choose your own!

	Visualization & Interpretation (15 points)
	Report Deliverable:

	Additional Resources

