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What We Covered



Linear Models

Non-Linear Models

Overfitting Loss Functions

Learning Algorithms 
& Optimization

Supervised Learning

Unsupervised Learning

Probabilistic Modeling

Topic Overview



Basic Supervised Learning

• Training Data:

• Model Class:

• Loss Function:

• Learning Objective: 

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear Models

Squared Loss

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Optimization Problem



Basic Unsupervised Learning
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Deep Learning
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Sequence Prediction
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Simple Optimization Algorithms

• Stochastic Gradient Descent

• EM algorithm (for HMMs)



Other Basic Concepts 

• Cross Validation

• Overfitting

• Bias-Variance Tradeoff



Learning Theory 



Generalization Bounds

• Formal characterization of over-fitting

• Example result:

Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
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&
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Trained Model Training Size

Training ErrorTest Error
With Prob. ≥ 1-δ :

Make rigorous!



Shattering

• Definition: A set of points is shattered by H if 
for all possible binary labelings of points, 
there exists some h that classifies perfectly.

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide Material Borrowed From Piyush Rai: 
https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf

In 2D, any 3 points can always be shattered by linear models!
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VC Dimension

• VC(H) = most # points that can be shattered
– If H is linear models in 2D feature space:
• VC(H) = 3

Eout (h) ≤ Ein (h)+O
VC(H )log 2N

VC(H )
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Structured Prediction



• Part-of-Speech Tagging
– Given a sequence of words x, predict sequence of tags y.

– Dependencies from tag-tag transitions in Markov model.

à Similarly for other sequence labeling problems, e.g., RNA 
Intron/Exon Tagging.

The rain wet the catx Det NVDet N
y

Examples of Complex Output Spaces



Examples of Complex Output Spaces

• Natural Language Parsing
– Given a sequence of words x, predict the parse tree y.
– Dependencies from structural constraints, since y has to be a 

tree.

The dog chased the catx

S
VPNP

Det NV

NP

Det N

y



Examples of Complex Output Spaces

• Information Retrieval
– Given a query x, predict a ranking y.
– Dependencies between results (e.g. avoid redundant hits)
– Loss function over rankings (e.g. Average Precision)

SVM
x 1. Kernel-Machines

2. SVM-Light

3. Learning with Kernels

4. SV Meppen Fan Club

5. Service Master & Co.

6. School of Volunteer Management

7. SV Mattersburg Online

…

y



Conservation Reservoir 

Corridors 
Building outward from sources 
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stereo vision

✦ binocular fusion of features observed by 
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]
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the modeled compatibility between inputs x and classes y. 
To classify x, the prediction rule h(x) then simply chooses the 
highest-scoring class

 h(x) y argmax  f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have 
been chosen such that the inequalities f (x, y–) < f (x, y) hold for 
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads 
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n 
1_
2

 __w__2, s.t.  f (xi, yi) ��f (xi, y
–) ≥ 1  (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a 
total of n(k − 1) inequalities that are all linear in w, since one 
can expand f (xi, yi) ��f (xi, y

–) = (wyi 

� wy–) ��)(xi). Hence, it is a 
convex quadratic program.

The first challenge in using (2) for structured outputs is 
that, while there is generalization across inputs x, there is 
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since 
the number of possible outputs can become very large (or 
infinite), naively reducing structured output prediction to 
multiclass classification leads to an undesirable blowup in 
the overall number of parameters.

The key idea in overcoming these problems is to extract 
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of )(x). This yields compatibility 
functions with contributions from combined properties of 
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even 
for outputs that were never actually observed in the training 
data. At the same time, since we will define compatibility 
functions via f (x, y) { w ��<(x, y), the number of parameters 
will simply equal the number of features extracted via <, 
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to 
arrive at the following (hard-margin) optimization problem 
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just 
one parameter for each class, we would already have more 
parameters than we could ever hope to have enough training 
data for. Second, just making a single prediction on a new 
example is a computationally challenging problem, since 
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that 
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least, 
we need efficient training algorithms that have a run-time 
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by 
one, starting with the formulation of the structural SVM 
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural 
SVM from the multiclass SVM.6 These multiclass SVMs use 
one weight vector wy for each class y. Each input x now has 
a score for each class y via f (x, y) { wy ��)(x). Here ) (x) is a 
vector of binary or numeric features extracted from x. Thus, 
every feature will have an additively weighted influence in 

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of 
 proteins (middle), and predicting an equivalence relation over noun phrases (right).
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Figure 2. Structured output prediction as a multiclass problem.
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General Formula 
(Linear Models)

• Assume scoring function F

• Assume F is linear:

h(x;w) = argmax
y∈Y (x)

F(x, y;w)

F(x, y;w) = wTΨ(x, y)



Example 1

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Ψ(x, y) = yxBinary Classification:
Y (x) = −1,+1{ }

F(x, y;w) = y(wTx)

h(x;w) = argmax
y∈ −1,+1{ }

y wTx( )



Examples

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

1st Order Sequences: Ψ(x, y) = φ(y j, y j−1 | x)
j
∑

Y (x) = all possible output sequences

F(x, y;w) = wT φ(y j, y j−1 | x)
j
∑

Solve using Viterbi!



Examples

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Integer Linear Program: Ψ(x, y) = y jφ j x( )
j
∑

Y (x) = Feasible settings of y

F(x, y;w) = yTc c =
wTφ1(x)
wTφ 2 (x)
!

!

"

#
#
#
#

$

%

&
&
&
&

h(x;w) = argmax
y∈Y (x)

yTc

Each yj {0,1}∈



Structured Prediction Learning Problem

• Efficient Inference/Prediction

– Viterbi in sequence labeling

– CKY Parser for parse trees

– Sorting for ranking

• Efficient Learning/Training
– Learn parameters w from training data {xi,yi}i=1..N

– Structural SVM: Hinge Loss Minimization

– Conditional Random Fields: Log Loss Minimization

– Structured Perceptron, etc…

h(x;w) = argmax
y

wTΨ(y,x)



Perceptron Learning Algorithm

• w1 = 0, b1 = 0

• For t = 1 ….
– Receive example (x,y)

– If h(x|wt) = y

• [wt+1, bt+1] = [wt, bt]

– Else

• wt+1= wt + yx

• bt+1 = bt + y

S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training Set:

Go through training set 
in arbitrary order
(e.g., randomly)

h(x |w) = sign(wT x − b)



Structured Perceptron

• w1 = 0

• For t = 1 ….
– Receive example (x,y)

– If h(x|wt) = y

• wt+1 = wt

– Else

• wt+1= wt + Ψ(x,y)

S = (xi, yi ){ }i=1
N

Training Set:

Go through training set 
in arbitrary order
(e.g., randomly)

h(x |w) = argmax
y '

wTΨ(x, y ')



Conventional SVMs
• Input: x (high dimensional point)
• Target: y (either +1 or -1)
• Prediction: sign(wTx)

• Training: 

subject to:

• The sum of slacks         upper bounds the 0/1 loss!
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Structural SVM
• Let x denote a structured input (sentence)
• Let y denote a structured output (POS tags)

• Standard objective function:

• Constraints are defined for each incorrect labeling y�
over each x.

å+
i

iN
Cw x2

2
1

∀i,∀y ' ≠ y(i) :    wTΨ(y(i),x(i) ) ≥ wTΨ(y ',x(i) )+Δi (y ')−ξi

Score(y(i)) Score(y’) Loss(y’) Slack

http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html

http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html


Interpreting Constraints

Suppose for incorrect y�:

Then:

å+
i

iN
Cw x2

2
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∀i,∀y ' ≠ y(i) :    wTΨ(y(i),x(i) ) ≥ wTΨ(y ',x(i) )+Δi (y ')−ξi
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Score(y(i)) Score(y’) Loss(y’) Slack

http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html
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Sample Research Questions

• Scale
– Predicting over millions of variables

• Structured Representation Learning
– Deep learning for structured outputs?

• Cost of labeling



Crowdsourcing



Acquiring Labels from AnnotatorsFigure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Ymij =

⇢
ymij if (i, j) 2 Ȳm

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i

and/or item j).
Analogous to low-rank matrix (2-tensor) factorization approaches

for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Ymij ⇡
DX

d=1

�dumdxidxjd + b,

where each xi and um are unit vectors, and �d are positive weights.
Each xi corresponds to an item representation, and each um corre-
sponds to the diagonal of a user transform Um. In our model, rather
than constraining xi and um to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of xi and um

(or Um) via regularization penalties Rx and Ru.11 We also enforce
um � 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms Um and Vm is related

to (multi-task) metric learning problems under pairwise constraints
11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].



How Reliable are Annotators?

• If we knew what the labels were
– Can judge workers on label quality

• If we knew who the good workers were
– Can create labels from their annotations

• Chicken and egg problem!



Worker Reliability as Latent Variable

• Let zm denote the reliability of worker m

yi =
1
zm

m
∑

yimzm
m
∑

Estimated label

zm =
1
N

L(yi, yim )
i
∑



Differing Ambiguities Across Tasks

• Often collecting annotations for many tasks

• Some tasks are harder than others

• How many labels to collect for each task?



Structured Annotations

http://arxiv.org/pdf/1506.02106v4.pdf

Original image FCN Segmentation
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Full
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Point-level
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Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let sic be the CNN score for pixel i and class c. Let
Sic = exp(sic)/

PN
k=1 exp(sik) be the softmax probability

of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class Gi, the loss on a single training
image is:

Lpix(S,G) = �

X

i2I

log(SiGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0

✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

Limg(S,L, L
0) = � 1

|L|
X

c2L

log(Stcc)�
1

|L0|
X

c2L0

log(1�Stcc)

with tc = argmax
i2I

Sic (2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels Is, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

Lpoint(S,G,L, L0) = Limg(S,L, L
0)�

X

i2Is

↵i log(SiGi) (3)

Here, ↵i determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵i. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |Is| = |L| and ↵i is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵i to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵i corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵i.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let Pi be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic
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Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let sic be the CNN score for pixel i and class c. Let
Sic = exp(sic)/

PN
k=1 exp(sik) be the softmax probability

of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class Gi, the loss on a single training
image is:
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log(SiGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0

✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
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The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels Is, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

Lpoint(S,G,L, L0) = Limg(S,L, L
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i2Is

↵i log(SiGi) (3)

Here, ↵i determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵i. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |Is| = |L| and ↵i is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵i to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵i corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵i.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let Pi be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.
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Comparison with Passive Learning

• Conventional Supervised Learning is considered 
“Passive” Learning

• Unlabeled training set sampled according to test 
distribution

• So we label it at random 
– Very Expensive!



Simple Example

• 1 feature
• Learn threshold function

True Model
Passive Learning
Sample from distribution

Learned Model



Simple Example

• 1 feature
• Learn threshold function

True Model
Active Learning
Binary Search



Comparison with Passive Learning

• # samples to be within ε of true model

• Passive Learning:

• Active Learning:
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Multi-Armed Bandits



Problems with Crowdsourcing

• Assumes you can label by proxy
– E.g., have someone else label objects in images

• But sometimes you can’t!
– Personalized recommender systems
• Need to ask the user whether content is interesting

– Personalized medicine
• Need to try treatment on patient

– Requires actual target domain



Personalized Labels
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Initially Empty

Choose

Repeat

What is Cost?
Real System

End User



Formal Definition

• K actions/classes
• Each action has an average reward: μk

– Unknown to us
– Assume WLOG that u1 is largest

• For t = 1…T
– Algorithm chooses action a(t)
– Receives random reward y(t)

• Expectation μa(t)

• Goal: minimize Tu1 – (μa(1) + μa(2) + … + μa(T))

Basic Setting
K classes
No features

Algorithm Simultaneously
Predicts & Receives Labels

If we had perfect information to start Expected Reward of Algorithm
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Interactive Personalization
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Average Likes : 2

Interactive Personalization
(5 Classes, No features)
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-- 0.44 0.4 0.33 0.2

0 25 10 15 20# Shown

Average Likes : 24

What should Algorithm Recommend?
Exploit: Explore: Best:

PoliticsEconomy Celebrity

How to Optimally Balance Explore/Exploit Tradeoff?
Characterized by the Multi-Armed Bandit Problem 



( )

R(T ) =      OPT( )−      ALG( )

• Opportunity cost of not knowing preferences
• “no-regret”  if R(T)/T è 0

– Efficiency measured by convergence rate

Regret:

Time Horizon

(OPT ) = + ( ) + ( ) …

(ALG) = ( ) ( ) ( )++ …



Recap: The Multi-Armed Bandit Problem

• K actions/classes

• Each action has an average reward: μk

– All unknown to us

– Assume WLOG that u1 is largest

• For t = 1…T

– Algorithm chooses action a(t)

– Receives random reward y(t)

• Expectation μa(t)

• Goal: minimize Tu1 – (μa(1) + μa(2) + … + μa(T))

Basic Setting

K classes

No features

Algorithm Simultaneously

Predicts & Receives Labels

Regret



The Motivating Problem

• Slot Machine = One-Armed Bandit

• Goal: Minimize regret From pulling suboptimal arms
http://en.wikipedia.org/wiki/Multi-armed_bandit

Each Arm Has 
Different Payoff



Implications of Regret

• If R(T) grows linearly w.r.t. T:
– Then R(T)/T è constant > 0
– I.e., we converge to predicting something suboptimal

• If R(T) is sub-linear w.r.t. T:
– Then R(T)/T è 0
– I.e., we converge to predicting the optimal action

R(T ) =      OPT( )−      ALG( )Regret:



Experimental Design

• How to split trials to collect information
• Static Experimental Design 
– Standard practice
– (pre-planned)

http://en.wikipedia.org/wiki/Design_of_experiments

Treatment Placebo Treatment Placebo Treatment

…



Sequential Experimental Design

• Adapt experiments based on outcomes

Treatment Placebo Treatment Treatment

…
Treatment



Sequential Experimental Design Matters

http://www.nytimes.com/2010/09/19/health/research/19trial.html



Sequential Experimental Design
• MAB models sequential experimental design!

• Each treatment has hidden expected value
– Need to run trials to gather information
– “Exploration”

• In hindsight, should always have used treatment 
with highest expected value

• Regret = opportunity cost of exploration

basic



Online Advertising

Largest Use-Case
of Multi-Armed
Bandit Problems



Treating Lower Spine Injuries

49 mm

10 mm

Medtronic 
human 
array

Image source: 
williamcapicottomd.com

SCI Patient
Each patient is unique
109 possible configurations!





Reinforcement Learning

Topic of CS159



Actions Impact State

• In MAB:
– Actions do not impact state
– Constant reward function

• Reinforcement Learning
– Actions effect state you’re in
– Reward function depends on state



Video Demo
(Deep Reinforcement Learning for Atari)

https://www.youtube.com/watch?v=iqXKQf2BOSE

https://www.youtube.com/watch?v=iqXKQf2BOSE


What is State?

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Reward of each action varies depending on state!

Action at current state impacts future states!

Much harder to do exploration!



Imitation Learning

Topic of CS159



Imitation Learning

• Input:
– Sequence of contexts/states: 

• Predict:
– Sequence of actions

• Learn Using:
– Sequences of demonstrated actions

h
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Example: Basketball Player Trajectories

• ! = location of players & ball
• " = next location of player

• Training set: # = !⃗, "⃗
– !⃗ = sequence of !
– "⃗ = sequence of "

• Goal: learn ℎ(!) → "
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Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)

has two macro-goals: 1)

pass the ball (orange) and

2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals cab control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ⇠ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.
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Recall: Hidden Markov Models
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Recall: EM Algorithm for HMMs

• If we had y’s è max likelihood.
• If we had (A,O) è predict y’s

1. Initialize A and O arbitrarily

2. Predict prob. of y’s for each training x

3. Use y’s to estimate new (A,O)

4. Repeat back to Step 1 until convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

Expectation Step

Maximization Step

Chicken vs Egg!



Recall: EM Algorithm for HMMs

• If we had y’s è max likelihood.
• If we had (A,O) è predict y’s

1. Initialize A and O arbitrarily

2. Predict prob. of y’s for each training x

3. Use y’s to estimate new (A,O)

4. Repeat back to Step 1 until convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

Expectation Step

Maximization Step

Chicken vs Egg!

Non-Convex Optimization Problem!
Converges to local optimum.

Can We Train HMMs Optimally?



Inspiration from Dimensionality Reduction

• Find best rank K approximation to Y:

• Non-convex optimization problem!
– Due to non-convex feasible region

• But optimally solved via SVD!

argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2



Spectral Learning of HMMs

P(y j | y j−1) = A P(x j | y j ) =O
Want to 
Estimate:
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Treat each xj and yj

as indicator vector

http://www.cs.cmu.edu/~ggordon/spectral-learning/



Spectral Learning of HMMs

Σt O

At Z OT

=

http://www.cs.cmu.edu/~ggordon/spectral-learning/

A =UT ∑2 UT ∑1( )
−1

Optimal Solution:

(requires a lot of data)

Rank-K SVD of Σ1



…and many more topics!

• Probabilistic Models & Bayesian Reasoning
• Representation Learning
– Deep learning is the most visible example

• Causal Reasoning
• ML + Game Theory
• ML + Systems
– Large Scale Machine Learning

• Fairness & Privacy
• Etc …



CS 159

• Special Topics in Machine Learning
– Taught Every Spring Term
– Topics Rotate

• Next Term: 
– Interactive Machine Learning
– Reinforcement Learning & Imitation Learning

• Paper Reading & Presenting + Final Project
– Graded on participation and final project


