

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 18: Survey of Advanced Topics

What We Covered

Topic Overview

Supervised Learning

Linear Models	Overfitting	Loss Functions
Non-Linear Models	Learning Algorithms & Optimization	Probabilistic Modeling

Unsupervised Learning

Basic Supervised Learning

- Training Data: $S = \{(x_i, y_i)\}_{i=1}^N$ $x \in \mathbb{R}^D$ $y \in \{-1, +1\}$
- Model Class: $f(x | w, b) = w^T x b$ Linear Models

• Loss Function: $L(a,b) = (a-b)^2$ Squared Loss

• Learning Objective:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Basic Unsupervised Learning

Deep Learning

Sequence Prediction

Simple Optimization Algorithms

• Stochastic Gradient Descent

• EM algorithm (for HMMs)

Other Basic Concepts

Cross Validation

• Overfitting

• Bias-Variance Tradeoff

Learning Theory

Generalization Bounds

- Formal characterization of over-fitting
- Example result:

Shattering

 Definition: A set of points is shattered by H if for all possible binary labelings of points, there exists some h that classifies perfectly.

In 2D, any 3 points can always be shattered by linear models!

Slide Material Borrowed From Piyush Rai: https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf

Shattering

 Definition: A set of points is shattered by H if for all possible binary labelings of points, there exists some h that classifies perfectly.

In 2D, linear models cannot shatter 4 points!

Slide Material Borrowed From Piyush Rai: https://www.cs.utah.edu/~piyush/teaching/27-9-print.pdf

VC Dimension

- VC(H) = most # points that can be shattered
 If H is linear models in 2D feature space:
 - VC(H) = 3

With Prob. $\geq 1-\delta$:

$$E_{out}(h) \le E_{in}(h) + O\left(\sqrt{\frac{VC(H)\log\left(\frac{2N}{VC(H)} + 1\right) + \log\left(\frac{1}{\delta}\right)}{N}}\right)$$

Structured Prediction

Examples of Complex Output Spaces

- Part-of-Speech Tagging
 - Given a sequence of words *x*, predict sequence of tags *y*.
 - Dependencies from tag-tag transitions in Markov model.

→ Similarly for other sequence labeling problems, e.g., RNA Intron/Exon Tagging.

Examples of Complex Output Spaces

- Natural Language Parsing
 - Given a sequence of words *x*, predict the parse tree *y*.
 - Dependencies from structural constraints, since y has to be a tree.

Examples of Complex Output Spaces

Information Retrieval

- Given a query x, predict a ranking y.
- Dependencies between results (e.g. avoid redundant hits)
- Loss function over rankings (e.g. Average Precision)

Structured Prediction

General Formula (Linear Models)

Assume scoring function F

$$h(\mathbf{x}; w) = \underset{\mathbf{y} \in Y(\mathbf{x})}{\operatorname{argmax}} F(\mathbf{x}, \mathbf{y}; w)$$

• Assume F is linear:

$$F(\mathbf{x}, \mathbf{y}; w) = w^T \Psi(\mathbf{x}, \mathbf{y})$$

Example 1

 $h(\mathbf{x}; w) = \underset{\mathbf{y} \in Y(\mathbf{x})}{\operatorname{argmax}} F(\mathbf{x}, \mathbf{y}; w) \qquad F(\mathbf{x}, \mathbf{y}; w) = w^T \Psi(\mathbf{x}, \mathbf{y})$

Binary Classification:

$$\Psi(\mathbf{x}, y) = y\mathbf{x}$$

 $Y(\mathbf{x}) = \{-1, +1\}$

 $F(\mathbf{x}, y; w) = y(w^T \mathbf{x})$

$$h(\mathbf{x}; w) = \underset{y \in \{-1,+1\}}{\operatorname{argmax}} y(w^T \mathbf{x})$$

Examples

 $h(\mathbf{x}; w) = \underset{\mathbf{y} \in Y(\mathbf{x})}{\operatorname{argmax}} F(\mathbf{x}, \mathbf{y}; w) \qquad F(\mathbf{x}, \mathbf{y}; w) = w^{T} \Psi(\mathbf{x}, \mathbf{y})$

1st Order Sequences:

 $Y(\mathbf{x})$ = all possible output sequences

$$\Psi(\mathbf{x}, \mathbf{y}) = \sum_{j} \phi(y^{j}, y^{j-1} | \mathbf{x})$$

$$F(\mathbf{x}, \mathbf{y}; w) = w^T \sum_{j} \phi(y^j, y^{j-1} | \mathbf{x})$$

Solve using Viterbi!

Examples

 $h(\mathbf{x}; w) = \underset{\mathbf{y} \in Y(\mathbf{x})}{\operatorname{argmax}} F(\mathbf{x}, \mathbf{y}; w) \qquad F(\mathbf{x}, \mathbf{y}; w) = w^{T} \Psi(\mathbf{x}, \mathbf{y})$

Integer Linear Program:

 $Y(\mathbf{x}) =$ Feasible settings of \mathbf{y} Each $\mathbf{y}^{j} \in \{0, 1\}$

$$\Psi(\mathbf{x},\mathbf{y}) = \sum_{j} y^{j} \phi^{j}(\mathbf{x})$$

$$F(\mathbf{x}, \mathbf{y}; w) = \mathbf{y}^T \mathbf{c} \qquad \mathbf{c} = \begin{bmatrix} w^T \phi^1(\mathbf{x}) \\ w^T \phi^2(\mathbf{x}) \\ \vdots \end{bmatrix}$$

 $h(\mathbf{x}; w) = \underset{\mathbf{y} \in Y(\mathbf{x})}{\operatorname{argmax}} \mathbf{y}^{T} \mathbf{c}$

Structured Prediction Learning Problem

Efficient Inference/Prediction

$$h(\mathbf{x}; w) = \underset{\mathbf{y}}{\operatorname{argmax}} w^{T} \Psi(\mathbf{y}, \mathbf{x})$$

- Viterbi in sequence labeling
- CKY Parser for parse trees
- Sorting for ranking

Efficient Learning/Training

- Learn parameters w from training data $\{x_i, y_i\}_{i=1..N}$
- Structural SVM: Hinge Loss Minimization
- Conditional Random Fields: Log Loss Minimization
- Structured Perceptron, etc...

Perceptron Learning Algorithm

- w¹ = 0, b¹ = 0
- For t = 1
 - Receive example (x,y)
 - $If h(x | w^t) = y$
 - [w^{t+1,} b^{t+1}] = [w^{t,} b^t]
 - Else
 - w^{t+1}= w^t + yx
 - $b^{t+1} = b^t + y$

$$h(x \mid w) = sign(w^T x - b)$$

Training Set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

y \le \{+1, -1\}

Go through training set in arbitrary order (e.g., randomly)

Structured Perceptron

- $w^1 = 0$ $h(x | w) = \operatorname{argmax} w^T \Psi(x, y')$
- For t = 1

- Receive example (x,y)

 $- If h(x | w^t) = y$

– Else

• $w^{t+1} = w^t + \Psi(x,y)$

Training Set:

y'

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

Go through training set in arbitrary order (e.g., randomly)

Conventional SVMs

Structural SVM

- Let x denote a structured input (sentence)
- Let **y** denote a structured output (POS tags)
- Standard objective function: $\frac{1}{2}w^2 + \frac{C}{N}\sum_i \xi_i$
- Constraints are defined for each incorrect labeling y' over each x.

http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html

Sample Research Questions

• Scale

– Predicting over millions of variables

- Structured Representation Learning
 Deep learning for structured outputs?
- Cost of labeling

Crowdsourcing

Acquiring Labels from Annotators

Keyword Tagging Attractions in Paris!

- Please inspect the attraction below.
- · SELECT ALL keywords that are appropriate for this attraction.
- Selected keywords will turn RED.
- . The right pane below displays additional information (e.g., wikipedia page) for your convenience.

Place de la Madeleine

 \equiv

Ancient Ruin	 Palace / Mansion
Architecture	Performance
• Art	Plaza / Open Area
Bridge	 Recreational
Cabaret	 Relaxing / Leisure
Cemetary	Religious
Comedy	 Scenic Nature
Culture	 Scenic Urban
Dining	 Scenic Water
 Fountain 	 Shopping
Garden / Park	 Sightseeing
 Historical 	 Spa / Massage
 Large Building 	Sports
Memorial	Street
 Monument / Statue 	Theater / Opera
Museum Art	Tour
 Museum Other 	 Transportation
Nightlife	 Walking / Strolling
Outdoors	 Zoo / Aquarium

Search Wikipedia

☆

La Madeleine, Paris

The Madeleine church

L'église de la Madeleine (French pronunciation: [legliz de la madelen], Madeleine Church; more formally, L'église Sainte-Marie-Madeleine; less formally, just La Madeleine) is a Roman Catholic church occupying a commanding position in the 8th arrondissement of Paris.

The Madeleine Church was designed in its present form as a temple to the glory of Napoleon's army. To its south lies the Place de la Concorde, to the east is the

Submit

How Reliable are Annotators?

- If we knew what the labels were
 Can judge workers on label quality
- If we knew who the good workers were
 Can create labels from their annotations
- Chicken and egg problem!

Worker Reliability as Latent Variable

• Let z_m denote the reliability of worker m

Differing Ambiguities Across Tasks

• Often collecting annotations for many tasks

• Some tasks are harder than others

• How many labels to collect for each task?

Structured Annotations

http://arxiv.org/pdf/1506.02106v4.pdf
Active Learning

Crowdsourcing

Passive Learning

Active Learning

Goal: Maximize Accuracy with Minimal Cost

On-Demand Crowdsourcing

Comparison with Passive Learning

- Conventional Supervised Learning is considered "Passive" Learning
- Unlabeled training set sampled according to test distribution
- So we label it at random
 - Very Expensive!

Simple Example

- 1 feature
- Learn threshold function

Simple Example

- 1 feature
- Learn threshold function

Comparison with Passive Learning

- # samples to be within ε of true model
- Passive Learning: $O\left(\frac{1}{c}\right)$

• Active Learning:

$$O\left(\log\frac{1}{\varepsilon}\right)$$

Multi-Armed Bandits

Problems with Crowdsourcing

- Assumes you can label by proxy
 - E.g., have someone else label objects in images
- But sometimes you can't!
 - Personalized recommender systems
 - Need to ask the user whether content is interesting
 - Personalized medicine
 - Need to try treatment on patient
 - Requires actual target domain

Personalized Labels

Formal Definition

Average Likes

			10	
0	0	0	1	0

Average Likes

			94 10	
			0	
0	0	0	1	0

Average Likes

			- 19 19	
			0	
0	0	1	1	0

Average Likes

Average Likes

Average Likes

Average Likes

Average Likes

What should Algorithm Recommend?

Exploit:

Economy

Explore:

Best:

How to Optimally Balance Explore/Exploit Tradeoff? Characterized by the Multi-Armed Bandit Problem

Average Likes

	0.44	0.4	0.33	0.2
0	25	10	15	20

$$\bigotimes(ALG) = \bigotimes(\bigotimes) + \bigotimes(\bigotimes) + \bigotimes(\bigotimes) \dots$$

- Opportunity cost of not knowing preferences
- "no-regret" if $R(T)/T \rightarrow 0$

- Efficiency measured by convergence rate

Recap: The Multi-Armed Bandit Problem

The Motivating Problem

• Slot Machine = One-Armed Bandit

Each Arm Has Different Payoff

• **Goal:** Minimize regret From pulling suboptimal arms

http://en.wikipedia.org/wiki/Multi-armed_bandit

Implications of Regret

Regret:
$$R(T) = \bigotimes(OPT) - \bigotimes(ALG)$$

- If R(T) grows linearly w.r.t. T:
 - Then $R(T)/T \rightarrow constant > 0$
 - I.e., we converge to predicting something suboptimal
- If R(T) is sub-linear w.r.t. T:
 - Then $R(T)/T \rightarrow 0$
 - I.e., we converge to predicting the optimal action

Experimental Design

- How to split trials to collect information
- Static Experimental Design
 - Standard practice
 - (pre-planned)

http://en.wikipedia.org/wiki/Design_of_experiments

Sequential Experimental Design

Adapt experiments based on outcomes

Sequential Experimental Design Matters

Monica Almeida/The New York Times, left

Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin cancer in a medical trial; Brandon Ryan had to go without it.

http://www.nytimes.com/2010/09/19/health/research/19trial.html

Sequential Experimental Design

- MAB models sequential experimental design!
 basic
- Each treatment has hidden expected value
 - Need to run trials to gather information
 - "Exploration"
- In hindsight, should always have used treatment with highest expected value
- Regret = opportunity cost of exploration

Online Advertising

Largest Use-Case of Multi-Armed Bandit Problems

Apple - MacBook Pro

https://www.apple.com/macbook-pro/ Apple Inc. With the latest-generation Intel processors, all-new graphics, and faster flash storage, MacBook Pro moves further ahead in power and performance.

Buy MacBook Pro with Retin... With top-of-the-line Intel processors, HD graphics, and ... Compare Mac notebooks MacBook Air or iMac. No matter which Mac you choose, you're ...

More results from apple.com »

Treating Lower Spine Injuries

Reinforcement Learning

Topic of CS159

Actions Impact State

- In MAB:
 - Actions do not impact state
 - Constant reward function
- Reinforcement Learning
 - Actions effect state you're in
 - Reward function depends on state
Video Demo (Deep Reinforcement Learning for Atari)

https://www.youtube.com/watch?v=iqXKQf2BOSE

What is State?

Reward of each action varies depending on state!

Action at current state impacts future states!

Much harder to do exploration!

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Imitation Learning

Topic of CS159

Imitation Learning

• Input:

– Sequence of contexts/states:

- Predict:
 - Sequence of actions

• Learn Using:

Sequences of demonstrated actions

Example: Basketball Player Trajectories

- *s* = location of players & ball
- *a* = next location of player
- Training set: $D = \{(\vec{s}, \vec{a})\}$
 - $-\vec{s}$ = sequence of s
 - $-\vec{a}$ = sequence of a
- **Goal:** learn $h(s) \rightarrow a$

Non-Convex Optimization

Anima Anandkumar

Recall: Hidden Markov Models

Recall: EM Algorithm for HMMs

- If we had y's \rightarrow max likelihood.
- If we had (A,O) → predict y's
- 1. Initialize A and O arbitrarily

2. Predict prob. of y's for each training x

3. Use y's to estimate new (A,O) Maximization Step

4. Repeat back to Step 1 until convergence

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch algorithm

Chicken vs Egg!

Expectation Step

Non-Convex Optimization Problem! Converges to local optimum.

- If we had y's \rightarrow max likelihood.
- If we had (A,O) → predict y's
- 1. Initialize A and O arbitrarily

Expectation Step

Chicken vs Egg!

http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

Inspiration from Dimensionality Reduction

• Find best rank K approximation to Y:

$$\underset{U \in \mathbb{R}^{NxK}, V \in \mathbb{R}^{MxK}}{\operatorname{argmin}} \left\| Y - UV^T \right\|_2^2$$

- Non-convex optimization problem!
 Due to non-convex feasible region
- But optimally solved via SVD!

Spectral Learning of HMMs

Want to Estimate:

$$P(y^{j} | y^{j-1}) = A$$
 $P(x^{j} | y^{j}) = O$

Treat each x^j and y^j as indicator vector

$$\sum^{t} = E\left[x^{j+t}\left(x^{j}\right)^{T}\right] = E\left[E\left[x^{j+t}\left(x^{j}\right)^{T}\middle|y^{j}\right]\right]$$
$$= E\left[E\left[x^{j+t}\middle|y^{j}\right]E\left[\left(x^{j}\right)^{T}\middle|y^{j}\right]\right]$$
and y^j
ector
$$= E\left[\left(OA^{t}ky^{j}\right)\left(Oy^{j}\right)^{T}\right]$$
$$= OA^{t}E\left[y^{j}\left(y^{j}\right)^{T}\right]O^{T}$$
$$= OA^{t}ZO^{T}$$

http://www.cs.cmu.edu/~ggordon/spectral-learning/

Spectral Learning of HMMs

(requires a lot of data)

http://www.cs.cmu.edu/~ggordon/spectral-learning/

...and many more topics!

- Probabilistic Models & Bayesian Reasoning
- Representation Learning
 - Deep learning is the most visible example
- Causal Reasoning
- ML + Game Theory
- ML + Systems
 - Large Scale Machine Learning
- Fairness & Privacy
- Etc ...

CS 159

- Special Topics in Machine Learning
 - Taught Every Spring Term
 - Topics Rotate

• Next Term:

- Interactive Machine Learning
- Reinforcement Learning & Imitation Learning
- Paper Reading & Presenting + Final Project
 - Graded on participation and final project