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DATA DISTRIBUTION

feature 1

feature 2

feature 3

example 1

example 2

example 3
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DATA DISTRIBUTION

feature 1

feature 2

feature 3
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DENSITY ESTIMATION

feature 1

feature 2

feature 3

estimating the density of the empirically observed data distribution
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GENERATIVE MODEL

a model of the density of the data distribution
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by modeling the data distribution, 
generative models are able to generate new data examples

feature 1

feature 2

feature 3

generated 
examples
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generative modeldiscriminative model
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discriminative models vs. generative models

can both be trained using supervised learning

generative models typically require more modeling assumptions

generative models are often easier to train with unsupervised methods

straightforward to quantify uncertainty with generative models
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one of the main benefits of generative modeling is the ability to 
automatically extract structure from data

reducing the effective dimensionality of the data 
can make it easier to learn and generalize on new tasks
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labeled 
examples
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one of the main benefits of generative modeling is the ability to 
automatically extract structure from data

reducing the effective dimensionality of the data 
can make it easier to learn and generalize on new tasks

labeled 
examples
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any model that has an output in the data space 
can be considered a generative model

nervous systems appear to use this mechanism in part

prediction of sensory input using “top-down” pathways
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deep generative model

a generative model that uses deep neural networks 
to model the data distribution
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auto-regressive 
models

latent variable 
models

implicit 
models

FAMILIES OF (DEEP) GENERATIVE MODELS



A U T O - R E G R E S S I V E  
M O D E L S
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a data example

number of features

x1 x2 x3 xM

p(x) = p(x1, x2, . . . , xM )
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x1 x2 x3 xM

p(x) = p(x1, x2, . . . , xM )

use chain rule of probability to split the joint distribution 
into a product of conditional distributions

note: conditioning order is arbitrary

definition of 
conditional probability p(a|b) = p(a, b)

p(b)
p(a, b) = p(a|b)p(b)

p(x1, x2, . . . , xM ) = p(x1|x2, . . . , xM )p(x2, . . . , xM )

recursively apply to p(x1, x2, . . . , xM ) = p(x1|x2, . . . , xM )p(x2, . . . , xM )

p(x1, x2, . . . , xM ) = p(x1|x2, . . . , xM )p(x2|x3, . . . , xM ) . . . p(xM�1|xM )p(xM )

p(x1, . . . , xM ) =
MY

j=1

p(xj |x1, . . . , xj�1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

p(x1)



31

x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(x2|x1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(x3|x2, x1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(x4|x3, x2, x1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(x5|x4, x3, x2, x1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(x6|x5, x4, x3, x2, x1)
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x1 x2 x3 xM

model the conditional distributions of the data

learn to auto-regress to the missing values

MODEL

p(xM |xM�1, . . . , x1)



37

maximum likelihood

to fit the model to the empirical data distribution, 
maximize the likelihood of the true data examples

likelihood: p(x) =
MY

j=1

p(xj |x<j)

optimize the parameters to assign high (log) probability 
to the true data examples

learning: ✓⇤ = argmax✓ log p(x)

auto-regressive 
conditionals

logarithm for 
numerical stability
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models

can parameterize conditional distributions using a recurrent neural network

unrolling auto-regressive generation from an RNN “teacher forcing”

Deep Learning, Goodfellow et al., 2016

(chapter 10)
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models

can parameterize conditional distributions using a recurrent neural network

The Unreasonable Effectiveness of Recurrent Neural Networks, Karpathy, 2015

Pixel Recurrent Neural Networks, van den Oord et al., 2016



can also condition on a local window using convolutional neural networks

40

models

Pixel Recurrent Neural Networks, 
van den Oord et al., 2016

Conditional Image Generation with PixelCNN Decoders, 
van den Oord et al., 2016

WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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output distributions

need to choose a form for the conditional output distribution, 
i.e. how do we express                                ?p(xj |x1, . . . , xj�1)

model the data as categorical variables

model the data as continuous variables

Gaussian, logistic, etc. output

multinomial output
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example applications

text images

Pixel Recurrent Neural Networks, van den Oord et al., 2016

WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016

speech
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recap: auto-regressive models

difficult to capture  
“high-level” global structure

need to impose 
conditioning order

sequential sampling is 
computationally expensive

x1 x2 x3 xM

MODEL

p(x6|x5, x4, x3, x2, x1)

model conditional distributions to auto-regress to missing values

Pros

tractable and straightforward to 
evaluate the (log) likelihood

great at capturing details

superior quantitative performance

Cons



E X P L I C I T  L AT E N T  
VA R I A B L E  M O D E L S
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reality generates sensory stimuli from underlying latent phenomena

REALITY

matter
energy
forces

etc.

laws of nature inference

STIMULI PERCEPTION

object identities
object locations
communication

etc.

can use latent variables to help model these phenomena
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probabilistic graphical models provide a framework 
for modeling relationships between random variables

observed variable

unobserved (latent) 
variable

x y

x y

directed

undirected

PLATE NOTATION

set of variables

x

N
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N

review exercise: 
represent an auto-regressive model of 3 random variables 

with plate notation

x1 x2 x3

✓

p✓(x1) p✓(x2|x1) p✓(x3|x1, x2)
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comparing auto-regressive models and latent variable models

N

x1 x2 x3

✓

p✓(x1) p✓(x2|x1) p✓(x3|x1, x2)

auto-regressive model

N

x1 x2 x3

✓

z

p✓(x1|z) p✓(x2|z) p✓(x3|z)

p✓(z)

latent variable model
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x

z

N

example: undirected latent variable model

cu
t f

or 
tim

e

restricted Boltzmann machine
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example: directed latent variable model

x

z

N

✓
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example: directed latent variable model

p(x, z) = p(x|z)p(z)
GENERATIVE MODEL

joint
conditional 
likelihood

prior

x

z

N

✓

Generation

1. sample     from z p(z)

2. use    samples to sample     from  z p(x|z)x

intuitive example

object ~ p(objects)

lighting ~ p(lighting)

background ~ p(bg)

RENDER
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example: directed latent variable model

posterior

joint

marginal 
likelihood

INFERENCE

p(z|x) = p(x, z)

p(x)

x

z

N

✓

Posterior Inference

use Bayes’ rule (def. of cond. prob.)

provides conditional distribution 
over latent variables

intuitive example

observation

what is the probability that I am observing a cat 
given these pixel observations?

p(cat |       )
p(       |cat) p(cat)
______________=

p(       )



53

example: directed latent variable model

marginal 
likelihood

joint

MARGINALIZATION

p(x) =

Z
p(x, z)dz

x

z

N

✓

Model Evaluation

to evaluate the likelihood of an observation, 
we need to marginalize over all latent variables

i.e. consider all possible underlying states

intuitive example

observation

how likely is this observation under my model?
(what is the probability of observing this?)

for all objects, lighting, backgrounds, etc.:

how plausible is this example?
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example: directed latent variable model

to fit the model, we want to evaluate 
the marginal (log) likelihood of the data

✓⇤ = argmax✓ log p(x)

however, this is generally intractable, 
due to the integration over latent variables

p(x) =

Z
p(x, z)dz

integration in 
high-dimensions

x

z

N

✓
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variational inference

introduce an approximate posterior, then minimize KL-divergence to the true posterior

q⇤(z|x) = argminqDKL(q(z|x)||p(z|x))

✓̃⇤ = argmax✓L
provides a lower bound onL log p(x), so we can use to (approximately) fit the modelL

instead of optimizing the (log) likelihood, optimize a lower bound on it

main idea

p(z|x)

z

q⇤(z|x) = argmaxqL

where      is the evidence lower bound (ELBO), defined asL L ⌘ Ez⇠q(z|x) [log p(x, z)� log q(z|x)]

evaluating KL-divergence involves evaluating           , instead maximize    :p(z|x) L

q(z|x)
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interpreting the ELBO

L ⌘ Ez⇠q(z|x) [log p(x, z)� log q(z|x)]

we can write the ELBO as

= Ez⇠q(z|x) [log p(x|z)p(z)� log q(z|x)]

= Ez⇠q(z|x) [log p(x|z) + log p(z)� log q(z|x)]{
reconstruction

{
regularization

is optimized to represent the data while staying close to the priorq(z|x)

resembles the “auto-encoding” framework

many connections to compression, information theory

= Ez⇠q(z|x) [log p(x|z)]�DKL(q(z|x)||p(z))
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variational inference involves optimizing 
the approximate posterior for each data example

q⇤(z|x) = argmaxqL
can be solved using gradient ascent and (stochastic) backpropagation / REINFORCE, 

but can be computationally expensive

can instead amortize inference over data examples by learning 
a separate inference model to output approximate posterior estimates

“variational auto-encoder”

x inference 
model

z

q(
z|
x
)

p(
z)

generative 
model p(

x
|z
)

Learning to Infer, Marino et al., 2017
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hierarchical latent variable models

x
N

✓

z1

z2

Learning Hierarchical Features from Generative Models, Zhao et al., 2017

Improving Variational Inference with Inverse 

Auto-regressive Flow, Kingma et al., 2016

iterative inference modelssequential latent variable models

A Recurrent Latent Variable Model for 

Sequential Data, Chung et al., 2015

Deep Variational Bayes Filters: 

Unsupervised Learning of State Space 

Models from Raw Data, Karl et al., 2016
Learning to Infer, Marino et al., 2017
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introducing latent variables to a generative model 
generally makes evaluating the (log) likelihood intractable

need to consider all possible “hypotheses” 
to evaluate (marginal) likelihood of the “outcome”

“hypotheses”

“outcome”
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change of variables

under certain conditions, we can use the change of variables formula 
to exactly evaluate the log likelihood

consider a variable in one dimension: x ⇠ Uniform(0, 1)

x

p(x)

1

1

then let     be an affine transformation of    , 
e.g.                       .

y x
y = 2x+ 1

1

1

p(y)

y2 3

0.5

x

y

dx

dy

dy

dx
> 0

x

y

dx

dy

dy

dx
< 0

to conserve probability mass, p(y) = p(x)

����
dx

dy

����

Normalizing Flows Tutorial, Eric Jang, 2018
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change of variables

in higher dimensions, conservation of probability mass generalizes to 

p(y) = p(x)

����det
dx

dy

���� = p(x)
��detJ�1

��

where     is the Jacobian matrix of the transformation,  J J =
dy

dx

CHANGE OF VARIABLES FORMULA

“law of the unconscious statistician” (LOTUS) 
can evaluate the probability from one variable’s distribution by evaluating the 

probability of a transformed variable and the volume transformation

for certain classes of transformations, this is tractable to evaluate

 expresses the local distortion in volume from the linear transformation
��detJ�1

��
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change of variables

to use the change of variables formula, we need to evaluate
��detJ�1

��

for an arbitrary              Jacobian matrix, this is worst caseN ⇥N O(N3)

restricting the transformations to those with diagonal or triangular 
inverse Jacobians allows us to compute                in           .

��detJ�1
��

O(N)

product of diagonal entries
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change of variables

Density Estimation Using Real NVP, Dinh et al., 2016

can transform the data into a space that is easier to model
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change of variables for variational inference: normalizing flows

use more complex approximate posterior, but evaluate a simpler distribution

chain together multiple transforms to get more expressive model

Variational Inference with Normalizing Flows, Rezende & Mohamed, 2015

target distribution:

transforms

Normalizing Flows Tutorial, Eric Jang, 2018

transform q(z|x)
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transforms

additive coupling layer Dinh et al., 2014

yd+1:D = xd+1:D + f(x1:d)
y1:d = x1:d

planar flow Rezende & Mohamed, 2015

y = x+ f(x)� g(h(x)|x+ b(x))

affine coupling layer Dinh et al., 2016

yd+1:D = xd+1:D � exp(f(x1:d)) + g(x1:d)

y1:d = x1:d

inverse auto-regressive flow (IAF) Kingma et al., 2016

y =
x� f(x)

exp(g(x))

masked auto-regressive flow (MAF) Papamakarios et al., 2017

y = x� exp(g(x)) + f(x)
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NICE: Non-linear Independent Components Estimation
Dinh et al., 2014

Variational Inference with Normalizing Flows
Rezende & Mohamed, 2015

Density Estimation Using Real NVP
Dinh et al., 2016

Improving Variational Inference with Inverse Autoregressive Flow
Kingma et al., 2016

recent work
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recap: explicit latent variable models

difficult to capture details

requires additional assumptions 
on latent variables

x

z

N

✓

model the data through latent variables

Pros Cons

can capture abstract variables, 
good for semi supervised learning

relatively fast sampling / training

theoretical foundations 
from info. theory

likelihood evaluation / inference 
often intractable
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instead of using an explicit probability density, 
learn a model that defines an implicit density

p(x̂)

x

specify a stochastic procedure for generating the data 
that does not require an explicit likelihood evaluation

Learning in Implicit Generative Models, 
Mohamed & Lakshminarayanan, 2016

p(x̃)
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Generative Stochastic Networks (GSNs)

train an auto-encoder to learn Monte Carlo sampling transitions

the generative distribution is implicitly defined by this transition

Deep Generative Stochastic Networks Trainable by Backprop, Bengio et al., 2013
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estimate density ratio through Bayesian two-sample test

p(x̃)
p(x̂)

x

p(x̂)data distribution p(x̃)generated distribution

p(x̂)

p(x̃)
=

p(x|data)
p(x|gen.)

density estimation becomes a sample discrimination task

p(x̂)

p(x̃)
=

p(data|x)p(x)/p(data)
p(gen.|x)p(x)/p(gen.) (Bayes’ rule)

p(x̂)

p(x̃)
=

p(data|x)
p(gen.|x) (assuming equal dist. prob.)
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Generative Adversarial Networks (GANs)

learn the discriminator:

p(data|x) = D(x) p(gen.|x) = 1�D(x)

Bernoulli outcome:

log p(y|x) = logD(x̂) + log(1�D(x̃))

y 2 {data, gen.}

Mohamed, 2016

Goodfellow, 2016

two-sample criterion:

min
G

max
D

Ep(x̂) [logD(x̂)] + Ep(x̃) [log(1�D(x̃))]

x̂ ⇠ p(x̂)

x̃ ⇠ p(x̃)
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Generative Adversarial Networks (GANs)

x̂ ⇠ p(x̂)

x̃ ⇠ p(x̃)

two-sample criterion:

min
G

max
D

Ep(x̂) [logD(x̂)] + Ep(x̃) [log(1�D(x̃))]

in practice:
max
D

Ep(x̂) [logD(x̂)] + Ep(x̃) [log(1�D(x̃))]

max
G

Ep(x̃) [logD(x̃)]

Generative Adversarial Networks, Goodfellow et al., 2014
Goodfellow, 2016
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interpretation

data manifold

Aaron Courville

explicit model

explicit models tend to cover the entire data manifold, but are 
constrained

implicit model

implicit models tend to capture part of the data manifold, 
but can neglect other parts

“mode collapse”
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Generative Adversarial Networks (GANs)

GANs can be difficult to optimize

Improved Training of Wasserstein GANs, Gulrajani et al., 2017
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evaluation

inception score

A Note on the Inception Score, Barratt & Sharma, 2018

without an explicit likelihood, it is difficult to quantify the performance 

use a pre-trained Inception v3 model to quantify class and distribution entropy

IS(G) = exp
�
Ep(x̃)DKL(p(y|x̃)||p(y))

�

p(y|x̃) is the class distribution for a given image

p(y) =

Z
p(y|x̃)dx̃ is the marginal class distribution

should be highly peaked (low entropy)

want this to be uniform (high entropy)

Improved Techniques for Training GANs, Salimans et al., 2016
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extensions: Wasserstein GAN

under an “ideal” discriminator, the generator minimizes the Jensen-Shannon divergence

DJS(p(x̂)||p(x̃)) =
1

2
DKL(p(x̂)||

1

2
(p(x̂) + p(x̃))) +

1

2
DKL(p(x̃)||

1

2
(p(x̂) + p(x̃)))

however, this metric can be discontinuous, making it difficult to train

can instead use the Wasserstein (Earth Mover’s) distance (which is continuous and diff. almost everywhere):

W (p(x̂), p(x̃)) = inf
�2⇧(p(x̂),p(x̃))

E(x̂,x̃)⇠� [||x̂� x̃||]

think of it as the “minimum cost of transporting points between two distributions”

intractable to actually evaluate Wasserstein distance, but by constraining the discriminator, can evaluate

min
G

max
D2D

Ep(x̂) [D(x̂)]� Ep(x̃) [D(x̃)]

is the set of Lipschitz functions, which can be enforced through weight clipping or gradient penaltyD

W
as

se
rs

te
in

✓

Je
ns

en
-S

ha
nn

o
n

✓

✓ is a gen. model parameter

Wasserstein GANs, Arjovsky et al., 2017

Improved Training of Wasserstein GANs, Gulrajani et al., 2017
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extensions: inference

Adversarially Learned Inference, Dumoulin et al., 2017

Adversarial Feature Learning, Donahue et al., 2017

can we also learn to infer a latent representation?
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applications
image to image translation

Image-to-Image Translation with Conditional 
Adversarial Networks, Isola et al., 2016

Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al., 2017

experimental simulation

Learning Particle Physics by 
Example, de Oliveira et al., 2017

InfoGAN: Interpretable Representation 
Learning by Information Maximizing Generative 

Adversarial Nets, Chen et al., 2016

interpretable representations
text to image synthesis

StackGAN: Text to Photo-realistic Image Synthesis 
with Stacked Generative Adversarial Networks, 
Zhang et al., 2016

music synthesis

MIDINET: A CONVOLUTIONAL 
GENERATIVE ADVERSARIAL 
NETWORK FOR SYMBOLIC-
DOMAIN MUSIC GENERATION, 
Yang et al., 2017
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recap: implicit latent variable models

x̂ ⇠ p(x̂)

x̃ ⇠ p(x̃)

Pros

able to learn flexible models

requires fewer modeling 
assumptions

capable of learning latent 
representation

Cons

difficult to evaluate

sensitive, difficult to optimize

can be difficult to 
incorporate model assumptions



D I S C U S S I O N



82

generative models: what are they good for?

generative models model the data distribution

1. can generate and simulate data

2. can extract structure from data
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generative models: what’s next?

applying generative models to new forms of data

incorporating generative models into complementary learning systems




