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feature 3

feature 2

eature 1

DENSITY ESTIMATION
estimating the density of the empirically observed data distribution
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GENERATIVE MODEL

a model of the density of the data distribution



by modeling the data distribution,
generative models are able to generate new data examples
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discriminative model generative mode|
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discriminative models vs. generative models
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can both be trained using supervised learning
generative models are often easier to train with unsupervised methods

generative models typically require more modeling assumptions

straightforward to quantify uncertainty with generative models



one of the main benetits of generative modeling is the ability to
automatically extract structure from data

)

reducing the effective dimensionality of the data
can make it easier to learn and generalize on new tasks
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examples
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any model that has an output in the data space
can be considered a generative model

Dorsal pathway

" Ventral pathway

Nature Reviews | Neuroscience

nervous systems appear to use this mechanism in part

prediction of sensory input using “top-down” pathways
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deep generative model

a generative model that uses deep neural networks
to model the data distribution



FAMILIES OF (DEEP) GENERATIVE MODELS

N

auto-regressive latent variable implicit
models models models
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AUTO-REGRESSIVE
MODELS



a data example

number of features

p(X) :p(ﬂfl,ﬂfg, s 7$M)
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L1 Io9 I3 eo0 T M

p(X) :p(xlaa?Za R 7$M)

use chain rule of probability to split the joint distribution

into a product of conditional distributions

definition of p(a,, b)

conditional probability p(alb) = (D) > p(a,b) = p(alb)p(b)
recursively apply to p(x1,x2,..., 2y )
p(wl,a?g,...,ilfM) :p($1|$2,...,$M)p(CC2,...,LE’M)
p(r1,T2,...,x0) = (1|22, ... 20r)P(T2|23, .-, Tar) - - P(Tar—1|Tar)P(Tar)

note: conditioning order is arbitrary

M
p(xla' . 7xM) — Hp(xj‘ajlv ° 7ajj—1)
7=1



model the conditional distributions of the data

learn to auto-regress to the missing values

slefelelelelelelelels
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model the conditional distributions of the data

learn to auto-regress to the missing values

P(£U1)

® 0000000009
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model the conditional distributions of the data

learn to auto-regress to the missing values

p(w2|r1)

08000000003
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model the conditional distributions of the data

learn to auto-regress to the missing values

$3\£U2,£1?1

{QMJOOOOOOOO
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model the conditional distributions of the data

learn to auto-regress to the missing values

$4|$37 L2, xl

mﬁgOOOOOOO

33



model the conditional distributions of the data

learn to auto-regress to the missing values

£U5|.CE'4, L3, L2, 331

4488000000
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model the conditional distributions of the data

learn to auto-regress to the missing values

556‘555, Lg, 3, L2, 331

d@???%@@@@@
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model the conditional distributions of the data

learn to auto-regress to the missing values

p(CL’M\xM—h ‘e 7371)

__————

L1 Lo I3 oo0 L M
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maximum likelihood

to fit the model to the empirical data distribution,
maximize the likelihood of the true data examples

M
ikelihood: p(x) = Hp(wj\xq)
j=1

auto-regressive
conditionals

optimize the parameters to assign high (log) probability
to the true data examples

learning:  §* = argmax, log p(x)

logarithm for
numerical stability



models

can parameterize conditional distributions using a recurrent neural network

Train time Test time

unrolling auto-regressive generation from an RNN “teacher forcing”

Deep Learning, Goodfellow et al., 2016
(chapter 10)
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models

can parameterize conditional distributions using a recurrent neural network

target chars: ‘e’ % “I”

1.0 0.5 0.1 0.2
22 0.3 0.5 -1.5
output layer 30 o - i
4.1 1.2 -1.1 22
T T T TW_hy
0.3 1.0 0.1 |w hh|-0-3
hidden layer | -0.1 > 03 ~EpEl — e
0.9 0.1 -0.3 0.7
T T T TW_xh
1 0 0 0
' 0 1 0 0
input layer 0 : - ;
0 0 0 0
input chars: “h” “e” “@p “p

The Unreasonable Effectiveness of Recurrent Neural Networks, Karpathy, 2015
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Context Multi-scale context Row LSTM Diagonal BiLSTM

Pixel Recurrent Neural Networks, van den Oord et al., 2016
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models

can also condition on a local window using convolutional neural networks
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Pixel CNN

Pixel Recurrent Neural Networks,

van den Oord et al., 2016
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Conditional Image Generation with PixelCNN Decoders,
van den Oord et al., 2016
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WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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output distributions

need to choose a form for the conditional output distribution,
i.e. how do we express p(xj|x1,...,2j-1)7?

model the data as categorical variables

» multinomial output

model the data as continuous variables

» Gaussian, logistic, etc. output




example applications

Images

occluded completions original
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Pixel Recurrent Neural Networks, van den Oord et al., 2016
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WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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recap: auto-regressive models

336‘335, Lg, X3, L2, $1

1777?%00000

model conditional distributions to auto-regress to missing values

Pros Cons
tractable and straightforward to difficult to capture
evaluate the (log) likelihood "high-level” global structure

, , need to impose
great at capturing details oo
conditioning order

. . sequential sampling is
superior quantitative performance : ,
computationally expensive
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EXPLICIT LATENT
VARIABLE MODELS




reality generates sensory stimuli from underlying latent phenomena

REALITY STIMULI

Mmatter

laws of nature

energy
forces
etc.

can use latent variables to help model these phenomena



probabilistic graphical models provide a framework

for modeling relationships between random variables

PLATE NOTATION

observed variable

O

unobserved (latent)
variable

directed

undirected

set of variables




review exercise:
represent an auto-regressive model of 3 random variables

with plate notation




comparing auto-regressive models and latent variable models

auto-regressive model latent variable model



example: undirected latent variable model

— restricted Boltzmann machine
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example: directed latent variable model

&



example: directed latent variable model

Generation

GENERATIVE MODEL

p(x,2) = p(x|z)p(z)

oint prior
J conditional

likelihood

1. sample z from p(z)

2. use z samples to sample x from p(x|z)

object ~ p(objects)
f lighting ~ p(lighting)
§ background ~ p(bg)




example: directed latent variable model

Posterior Inference

INFERENCE ( ) ioint
P\ X, Z
p(z|x) = ——
6 | p(X) marginal
posterior likelihood

use Bayes' rule (det. of cond. prob.)

orovides conditional distribution
over latent variables

what is the probability that | am observing a cat
given these pixel observations? .

p( ﬁ/ |cat) p(cat)

o)

p(cat |ﬁ/) =



example: directed latent variable model

Model Evaluation

MARGINALIZATION

marginal p(X) — p(X7 Z)dZ
@ 0 likelihood -
joint

to evaluate the likelihood of an observation,

we need to marginalize over all latent variables

i.e. consider all possible underlying states

how likely is this observation under my model?
(what is the probability of observing this?)

for all objects, lighting, backgrounds, etc.:

how plausible is this example?



example: directed latent variable model

to fit the model, we want to evaluate
the marginal (log) likelihood of the data

@ O 0" = argmax, log p(x)

however, this is generally intractable,
due to the integration over latent variables

p(X) — p(X, Z)dZ

integration in
high-dimensions



variational inference

main idea

instead of optimizing the (log) likelihood, optimize a lower bound on it

introduce an approximate posterior, then minimize KL-divergence to the true posterior

q"(z|x) = argmin, Dr 1 (q(2]x)|[p(2]x))

evaluating KL-divergence involves evaluating p(z|x), instead maximize L:

q" (z|x) = argmax, L

where L is the evidence lower bound (ELBO), defined as L = E,.4(zx) [log p(x,z) — log q(z|x)]

L provides a lower bound on log p(x), so we can use £ to (approximately) fit the model

0* = argmax, L

SN



interpreting the ELBO

we can write the ELBO as
L= IE:1’erq(z|x) [lng(X, Z) lOg Q( ’ )]
— IE‘:zwq(z|x) [10gp(X|Z)p( ) lOg Q(Z’X)]

= Ezg(zx) 10gp(x|2) + log p(z) — log ¢(z|x)]
(x[2)

— IE‘zzwq(ZIX) :1ng X% ] DKL( (Z‘X)Hp(z))
) S A N —

reconstruction regularization

q(z|X) is optimized to represent the data while staying close to the prior
many connections to compression, information theory

resembles the “auto-encoding” framework



variational inference involves optimizing
the approximate posterior for each data example

q" (z|x) = argmax, L

can be solved using gradient ascent and (stochastic) backpropagation / REINFORCE,

but can be computationally expensive

—0.5
-4
~1.0

—1.5

‘292.0

can instead amortize inference over data examples by learning

—1.0

| —@- Gradient Ascent
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a separate inference model to output approximate posterior estimates

“variational auto-encoder”
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Learning to Infer, Marino et al., 2017



hierarchical latent variable models
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Auto-regressive Flow, Kingma et al., 2016

o

iterative inference models

: R3S LLLLLLL L L
g Dic1(a(zl)|[p(z)) |+~ p(2) ) YLIGTITSSS
A Cobbbbbbb
3 ; P p(x|2)
! § A VAL t SR L0 lolololololo]
: Eq(alx) [log p(x|2)] ARIRIBIRIEINIRIEL
Deep Variational Bayes Filters: é
WMNW“W*’WWWMWMMW Unsupervised Learning of State Space .
Models from Raw Data, Karl et al., 2016
A Recurrent Latent Variable Model for :  Learning to Infer, Marino et al., 2017

Sequential Data, Chung et al., 2015
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introducing latent variables to a generative mode|
generally makes evaluating the (log) likelihood intractable

“hypotheses”

(
R

(SRR
AR
AN

N

" A
“outcome”

need to consider all possible “hypotheses”
to evaluate (marginal) likelihood of the “outcome”



change of variables

under certain conditions, we can use the change of variables formula

to exactly evaluate the log likelihood

p(x) 4
1
consider a variable in one dimension:  ~ Uniform(0, 1)
>
1 X
p(y) ,
[ o . .
then let y be an affine transformation of x,
0.5 ‘ o
3 “ eqg. Yy =2z + 1.
1 2 3 Yy
dy dy
Yy > Y4 >
dr A 4 . &
to conserve probability mass, p(y) = p(x) &
x :da:r > x Ed:c‘: >

Normalizing Flows Tutorial, Eric Jang, 2018



change of variables

in higher dimensions, conservation of probability mass generalizes to

CHANGE OF VARIABLES FORMULA

dx B
p(y) = p(x) |det—=| = p(x) |det |
y
where J is the Jacobian matrix of the transformation, J = ;l_y
X

|detI | expresses the local distortion in volume from the linear transformation

“law of the unconscious statistician” (LOTUS)
can evaluate the probability from one variable’s distribution by evaluating the
probability of a transformed variable and the volume transformation

for certain classes of transformations, this is tractable to evaluate




change of variables

to use the change of variables formula, we need to evaluate |detJ ™!

for an arbitrary N x N Jacobian matrix, this is worst case O(N?)

restricting the transformations to those with diagonal or triangular
inverse Jacobians allows us to compute |detJ™'| in O(N).

— product of diagonal entries
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change of variables

can transform the data into a space that is easier to model

Data space X Latent space 2

Density Estimation Using Real NVP, Dinh et al., 2016
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change of variables for variational inference: normalizing flows
use more complex approximate posterior, but evaluate a simpler distribution

transform q(z|x)

Radial

O— ©

Uk g
| 5
I ¥
l
| OO0 000l £
| ©
| ] g

000 --- OOOO):(OOQO - 9000 )
Inference network ' Generative model Variational Inference with Normalizing Flows, Rezende & Mohamed, 2015

chain together multiple transforms to get more expressive model

target distribution:  +

~100 +

>
transforms

b4 Normalizing Flows Tutorial, Eric Jang, 2018



transforms

additive coupling layer Dinhetal, 2014

Yi.d = X1:d
Yd+1:D — Xd+1:D + f(Xlzd)

planar flow Rezende & Mohamed, 2015

y =x+ f(x) ©g(h(x)Tx + b(x))

affine coupling layer  Dinhetal, 2016
Yi:d — X1:d
Yd+1:D — Xd+1:D O eXp(f(Xlzd)) + g(Xlzd)

masked auto-regressive flow (MAF)  Papamakarios et al., 2017

y =X ©exp(g9(x)) + f(x)



recent work

NICE: Non-linear Independent Components Estimation Variational Inference with Normalizing Flows

Yeipher @

Dinh et al., 2014 Rezende & Mohamed, 2015
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recap: explicit latent variable models
(2 "

model the data through latent variables

N

Pros Cons
can capture abstract variables, likelihood evaluation / inference
good for semi supervised learning often intractable

. . - requires additional assumptions
relatively fast sampling / training o latent variables

theoretical foundations . ,
. difficult to capture details
from info. theory



IMPLICIT LATENT
VARIABLE MODELS




instead of using an explicit probability density,
learn a model that defines an implicit density

%V

specify a stochastic procedure for generating the data
that does not require an explicit likelihood evaluation

Learning in Implicit Generative Models,
Mohamed & Lakshminarayanan, 2016



Generative Stochastic Networks (GSNs)

Hy——H,——H,— H,

NN XN
NN
A MR
LGN E R
SO
AR T VI NS
SO B Y
SIENIENE
O NSO
O NN S%N X
O () 5 0 0
S B T NI N
=B B RN
O NVNHKHNL N
O SO\

Deep Generative Stochastic Networks Trainable by Backprop, Bengio et al., 2013

train an auto-encoder to learn Monte Carlo sampling transitions

the generative distribution is implicitly defined by this transition



xV

estimate density ratio through Bayesian two-sample test

data distribution p(f() generated distribution p(f{)

(Bayes' rule)

~ p(datalx
p(gen.|x)

(assuming equal dist. prob.)

(

density estimation becomes a sample discrimination task

=
g



Generative Adversarial Networks (GANSs)

S )
z ~ p(z)
&
. . S5 |
oo~ ow —| §8
Data Discriminator 2
X ~ p(x
X))
learn the discriminator:
p(data|x) = D(x) p(gen.|x) =1 — D(x)

Bernoulli outcome: y € {data, gen.}

log p(y|x) = log D(x) + log(1 — D(x))

two-sample criterion:

m(}n mlg)lx Ep(gc) [log D(}A()] =+ Ep(i’c) [log(l T D(i))]

Goodfellow, 2016
Mohamed, 2016



Generative Adversarial Networks (GANSs)

- )
z ~ p(z)
o
. . P!
20 = @) J— 2|8
Data Discriminator S |

two-sample criterion:

m(%n max E, ) log D(x)| + Ep %) [log(1 — D(x))]

In practice:

mgx E, ) log D(x)] + Epz) log(1 — D(x))]

max K

Goodfellow, 2016
Generative Adversarial Networks, Goodfellow et al., 2014



Interpretation

data manifold explicit model implicit model

explicit models tend to cover the entire data manifold, but are
constrained

implicit models tend to capture part of the data manifold,
but can neglect other parts

— “mode collapse”

/4 Aaron Courville



Generative Adversarial Networks (GANSs)

GANs can be difficult to optimize

DCGAN LSGAN WGAN (clippingg WGAN-GP (ours)

Basehne (G- DCGAN D DCGAN)

No normalization in either G or D

) WOy ~ LLe

Gated multlpllcatlve nonhnearltles everywhere in G and D

Improved Training of Wasserstein GANs, Gulrajani et al., 2017
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evaluation

without an explicit likelihood, it is difficult to quantity the performance

inception score

use a pre-trained Inception v3 model to quantity class and distribution entropy

IS(G) = exp (Epz) Dxr(p(y|%)||p(v)))

p(y|X) is the class distribution for a given image

— should be highly peaked (low entropy)

p(y) = /p(y\f&)dfc is the marginal class distribution
— want this to be uniform (high entropy)

Improved Techniques for Training GANs, Salimans et al., 2016
A Note on the Inception Score, Barratt & Sharma, 2018



extensions: Wasserstein GAN

under an “ideal” discriminator, the generator minimizes the Jensen-Shannon divergence

) _ 1 o1 ) _ 1 o1 . -
Dys(p)|lp(x)) = 5 Drr(p&)||5 (p(%) +p(%))) + 5 Drr(p(%)[| 5 (p(%) + p(x)))
however, this metric can be discontinuous, making it difficult to train

c
S | <
c o)
© +
C oo

9 is a gen. model parameter Ué g .
g & 05 | ol 5. -;;.

0 v

can instead use the Wasserstein (Earth Mover’s) distance (which is continuous and diff. almost everywhere):
Wi(p(x),p(x)) = inf Exx)on [[|1X —X
(P&, pE) = _ il Bz k=X

think of it as the “minimum cost of transporting points between two distributions”

intractable to actually evaluate Wasserstein distance, but by constraining the discriminator, can evaluate
minmaxE, ) [D(X)| — E, x) |D(x
G DeD p(X) [ ( )] p(X) [ ( )]

D is the set of Lipschitz functions, which can be enforced through weight clipping or gradient penalty

Wasserstein GANs, Arjovsky et al., 2017
Improved Training of Wasserstein GANs, Gulrajani et al., 2017



extensions: inference

can we also learn to infer a latent representation?

-

~

zZ~q(z|x)
A

-

0 (z, 2) (z,2)

— » D(x,z) |«

O

x ~ q(x)
/
Adversarially Learned Inference, Dumoulin et al., 2017
features data
Vs > é A

(Do

—GHE

.

./

Adversarial Feature Learning, Donahue et al., 2017

/8

z ~ p(z)

(2)*D

z ~p(zx|z)

’L}_)




applications

image to image translation experimental simulation
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Adversarial Networks, Isola et al., 2016 Consistent Adversarial Networks, Zhu et al., 2017 Example, de Oliveira et al., 2017
interpretable representations
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(¢) MidiNet model 3

MIDINET: A CONVOLUTIONAL
GENERATIVE ADVERSARIAL

e ) Wide or Narro NETWORK FOR SYMBOLIC- Zhang et al., 2016
DOMAIN MUSIC GENERATION,

Yang et al., 2017

StackGAN Text to Photo realistic Image Synthe5|s
with Stacked Generative Adversarial Networks,
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InfoGAN: Interpretable Representation
Learning by Information Maximizing Generative
Adversarial Nets, Chen et al., 2016

/9



recap: implicit latent variable models

~

—~
(2)

N
9 ¢
g

5% | — D)

Data Discriminator

JOlelouo
<

Pros Cons

able to learn flexible models difficult to evaluate

requires fewer modeling

, sensitive, difficult to optimize
assumptions

capable of learning latent can be difficult to
representation incorporate model assumptions



DISCUSSION



generative models: what are they good for?

generative models model the data distribution

1. can generate and simulate data

82
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generative models: what's next?

applying generative models to new forms of data
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