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Slide material borrowed from Rob Tibshirani, Khalid El-Arini, and Julian McAuley

4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

Learning 
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“Molecular assessment of surgical-resection margins 
of gastric cancer by mass-spectrometric imaging”
Proceedings of the National Academy of Sciences (2014)
Livia S. Eberlin, Robert Tibshirani, Jialing Zhang, Teri Longacre, Gerald Berry,    
David B. Bingham, Jeffrey Norton, Richard N. Zare, and George A. Poultsides
http://www.pnas.org/content/111/7/2436
http://statweb.stanford.edu/~tibs/ftp/canc.pdf

1. Surgeon removes tissue

2. Pathologist examines tissue
– Under microscope

3. If no margin, GOTO Step 1.

Gastric (Stomach) Cancer
9

Normal margin

Cancer

Stromal

Epithelial

Left in patient

Extracted part
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Image Source: http://statweb.stanford.edu/~tibs/ftp/canc.pdf
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Gastric (Stomach) Cancer

• Expensive: requires a pathologist
• Slow: examination can take up to an hour
• Unreliable: 20%-30% can’t predict on the spot

Drawbacks
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Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

Image Source: http://statweb.stanford.edu/~tibs/ftp/canc.pdf

1. Surgeon removes tissue

2. Pathologist examines tissue
– Under microscope

3. If no margin, GOTO Step 1.



Machine Learning to the Rescue!
(actually just statistics)

• Lasso originated from statistics community.  
– But we machine learners love it!

• Train a model to predict cancerous regions!
– Y = {C,E,S} 
– What is X?
– What is loss function?
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argmin
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∑Basic Lasso:



Mass Spectrometry Imaging
• DESI-MSI (Desorption Electrospray Ionization)

• Effectively runs in real-time  (used to generate x)
http://en.wikipedia.org/wiki/Desorption_electrospray_ionization
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Technology to the rescue!

DESI (Desorption electrospray ionization)

An electrically charged “mist” is directed at the sample; surface ions are freed and
enter the mass spec.

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

Image Source: http://statweb.stanford.edu/~tibs/ftp/canc.pdf
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The data for one patient

Epithelial

Stromal

Cancer

Spectrum sampled at 11,000 m/z values

Spectrum for each pixel

Robert Tibshirani, Stanford University Cancer detection /lasso/ customized training

Each pixel is data point

x via spectroscopy
y via cell-type label

x

Image Source: http://statweb.stanford.edu/~tibs/ftp/canc.pdf
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Each pixel has 
11K features.
Visualizing a
few features.

x



Recap: Multiclass Logistic Regression

10http://statweb.stanford.edu/~tibs/ftp/canc.pdf

Referred to as Multinomial Log-Likelihood by Tibshirani

P(y | x,w,b)∝ ey w
T x−b( )

P(y | x,w,b) = e
y wT x−b( )

e
y wT x−b( ) + e

−y wT x−b( )
Binary LR:

“Log Linear” Property:

P(y = k | x,w,b)∝ ewk
T x−bkExtension to Multiclass:

Keep a (wk,bk) 
for each class

(w1,b1) = (-w-1,-b-1)

P(y = k | x,w,b) = ewk
T x−bk

ewm
T x−bm

m
∑

Multiclass LR:

y ∈ −1,+1{ }



Lasso Multiclass Logistic Regression

• Probabilistic model
• Sparse weights
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Back to the Problem

• Image Tissue Samples

• Each pixel is an x
– 11K features via Mass Spec
– Computable in real time
– 1 prediction per pixel

• y via lab results 
– ~2 weeks turn-around
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of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.

Eberlin et al. PNAS | February 18, 2014 | vol. 111 | no. 7 | 2437
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Learn a Predictive Model

• Training set: 28 tissue samples from 14 patients
– Cross validation to select λ

• Test set: 21 tissue samples from 9 patients

• Test Performance:

13

Table S2. Tentative identification of ions selected by the Lasso as statistically significant using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses

m/z

Lasso weights

Measured m/z* Attribution† Mass error (ppm, delta m/z)‡ Molecular formula§Epithelium Cancer Stroma

145.8 −0.513 145.0623 Glutamine +2.76 (0.0004) C5H9O3N2

146.3 −0.523 146.0463 Glutamate +2.74 (0.0004) C5H8O4N
175.3 −0.513 175.0253 Ascorbic acid +2.86 (0.0005) C6H7O6

215.3 −0.678 215.0331 Glucose/Fructose +1.40 (0.0003) C6H12O6Cl
301.3 0.344 301.2173 Eicosapentaenoic acid +0.15 (0.00005) C20H29O2

312.3 0.070 −0.064 312.2551 N-palmitoyl glycine +2.24 (0.0007) C18H34O3N
327.8 0.304 327.2336 Docosahexaenoic acid +1.80 (0.0006) C22H31O2

333.3 0.811 333.2805 Docosatrienoic acid +1.80 (0.0006) C22H37O2

536.8 0.552 537.4896 Oleic acid + palmitic dimer +1.46 (0.0008) C34H65O4

723.3 0.288 723.4802 CL(1′-[18:2/18:2],3′-[18:2/18:2]) +1.93 (0.0014) C81H140O17P2
737.3 0.327 737.5377 SM(d16:1/18:0)+Cl +0.95 (0.0007) C39H79ClN2O6P
742.8 0.435 742.5397 PE(18:0/18:1) +0.67 (0.0005) C41H77O8NP
775.8 0.382 775.5521 PG(18:0/18:1) +3.35 (0.0026) C42H80O10P
788.3 0.173 788.5456 PS(18:0/18:1) +1.14 (0.0009) C42H79O10NP
810.8 0.047 810.5298 PS(18:1/20:3) +0.84 (0.0007) C44H77O10NP
816.3 0.321 816.5773 PS(20:0/18:1) +1.59 (0.0013) C44H83O10NP
844.3 0.271 844.6079 PS(18:1/22:0) +0.71 (0.0006) C46H87O10NP
887.8 0.040 887.5677 PI(18:1/20:2) +2.47 (0.0022) C47H84O13P
913.8 0.216 913.5826 PI(18:2/22:2) +2.63 (0.0024) C49H86O13P

*High mass accuracy/mass resolution measurements were obtained from tissue using an Orbitrap mass spectrometer.
†Tentative assignments were based on data obtained from tandem mass spectrometry experiments and high mass accuracy measurements. CL, cardiolipin; PE,
glycerophosphoethanolamines; PG, glycerophosphoglycerols; PI, glycerophosphoinositols; PS, glycerophosphoserines; SM, sphingomyelin. (X:Y/X:Y) denotes
the number of carbons and double bonds in each fatty-acid chain.
‡Mass errors were calculated based on the exact monoisotopic m/z of the deprotonated form of the assigned molecules.
§Molecular formulas of the deprotonated form of the assigned molecules.

Table S3. Prediction results for the 12,480 pixels analyzed in the training set of samples using
the “don’t-know” category, in comparison with pathologic analysis

Pathology

Predicted

Don’t know Agreement, % Overall agreement, %Cancer Epithelium Stroma

Cancer 5,809 114 2 230 97.0 97.2
Epithelium 134 3,566 118 122 96.8
Stroma 25 82 2,630 143 96.1

Cancer Normal Agreement, % Overall agreement, %

Cancer 5,809 116 230 97.0 98.4
Normal 159 6,396 265 99.7

Eberlin et al. www.pnas.org/cgi/content/short/1400274111 7 of 8

≥0.2 margin 

in probability
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• Lasso yields sparse weights! (Manual Inspection Feasible!)
• Many correlated features

– Lasso tends to focus on one
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of nine gastric-cancer operations in direct comparison with margin
assessment by frozen-section histopathology, and we demonstrate
that this approach could be very valuable for clinical use.

Results
Molecular Imaging of Gastric Tissue. Negative ion mode DESI-MSI
was performed on 62 banked human gastric samples, including
normal and cancerous gastric tissue. For most of the samples
analyzed, evaluation of the 2D DESI-MSI images revealed some
heterogeneity within the sample, with discrete regions within the
samples that presented three main distinct spectral profiles: gas-
tric adenocarcinoma, normal epithelium (mucosa), and normal
stroma (submucosa) tissue, which were later verified by pathologic
evaluation of the same tissue sections using H&E staining (20).
Fig. S1 shows representative negative ion mode DESI mass

spectra for sample GC727, a poorly differentiated gastric ade-
nocarcinoma with areas of cancerous tissue, and an adjacent
normal gastric tissue with regions of both normal epithelial and
adjacent normal stroma tissue. Most of the ions detected in the
mass spectra were identified as small metabolites related to energy
production, free fatty acids, fatty acid dimers, and complex phos-
pholipids. An overall evaluation of the mass-spectral profiles
reveals a higher similarity between the spectra obtained for gastric
cancer and normal epithelial tissue than gastric cancer and stroma
tissue, which is expected given the fact that gastric adenocarcinomas
start from the inner epithelial layer of the stomach. Nevertheless,
strong differences in the relative abundances of various ions were
found within the three distinct regions, which can be clearly seen in
the selected DESI-MS ion images (Fig. 1).

Diagnostic Feature Selection and Identification. The large number of
molecular features obtained from the combination of all pixels
throughout all of the 62 banked samples analyzed makes data in-
terpretation difficult and calls for the use of multivariate statistical
techniques (21–23). Models generated using the Lasso are simpler
and easier to interpret than those from other linear regression
methods, as it yields “sparse” models, that is, models that involve
only a subset of the variables/predictors (24). Using the training set
of samples (28 frozen banked samples from 14 patients), the Lasso
selected a total of 120 m/z values that are important in charac-
terizing all three classes and yielded the lowest cross-validation

errors (Fig. 2 and Table S1). From those 120 m/z values, 44 dif-
ferent m/z values were selected by the classifier as important fea-
tures to characterize gastric cancer whereas 46 m/z values and
30 m/z values were found as important features to characterize
normal epithelium and normal gastric stroma, respectively.
Many of the ions selected as statistically significant by the

Lasso were tentatively identified as biologically relevant mole-
cules (Table S2) using high mass resolution/high mass accuracy
and tandem mass spectrometry analyses of tissue sections. For
example, the species with m/z 723.3, which received a positive
weight by the Lasso for characterizing normal epithelial tissue,
was a doubly charged ion whose accurate mass and isotopic
distribution matched that of the doubly deprotonated form of
the cardiolipin CL(1′-[18:2/18:2],3′-[18:2/18:2]), with a mass error
of +1.93 ppm. CLs are interesting complex phospholipids
(PLs) found almost exclusively in the inner mitochondrial
membrane of cells and are intimately involved in maintaining
mitochondrial functionality, membrane integrity, and ulti-
mately in energy production and metabolism (25). Remarkably,
major abnormalities in CL content such as deficiency of this
mature CL specie have been reported in cancer (25). Other
important peaks that were given positive weight for the nor-
mal epithelial tissue class were identified as phospholipid
(PL) species such as glycerophosphoethanolamine PE(36:1) at
m/z 742.6, glycerophosphoserine PS(36:1) at m/z 788.5, and PS
(38:1) at m/z 816.5, based on accurate mass measurements (mass
errors of less than +1.60 ppm) and tandem MS experiments in
comparison with literature on the fragmentation patterns of
these lipid species (26–28). Note that isomerism of the double
bonds in the fatty-acid (FA) chains of complex lipids compli-
cates precise structural assignment, which is why FA chains
are solely tentatively assigned. Besides PL species, small mol-
ecules related to energy and metabolism, such as m/z 145.2 and
m/z 146.2, which were respectively tentatively assigned as the
amino acids glutamine and glutamate, were selected by the Lasso
as being statistically significant for the epithelial class with
a negative weight, which indicates that a small relative abun-
dance of these peaks in comparison with that detected in other
classes is important for characterizing normal epithelial tissue.
Interestingly, a peak at m/z 312.2 was selected by the Lasso as

Fig. 1. Selected negative ion mode DESI-MS ion images of sample GC727.
Higher relative abundances of the ions atm/z 775,m/z 773,m/z 303,m/z 747,
m/z 797, and m/z 887 were observed in the region of cancer whereas higher
relative abundances of the ions atm/z 788,m/z 723,m/z 812, andm/z 861 are
observed in the region of normal gastric epithelial tissue, and higher relative
abundances of the ions at m/z 737, m/z 818, m/z 215, and m/z 810 are ob-
served in the regions with normal stromal tissue. Other ions, such asm/z 885,
m/z 836, and m/z 281, show similar relative abundances throughout the
cancerous and normal epithelial regions of the tissue sections. Shown is the
optical image of the same tissue section subjected to H&E stain, with regions
of cancer delineated in red, normal gastric epithelial tissue in green, and
normal gastric stromal tissue in blue, as diagnosed by pathologic analysis.

Fig. 2. The Lasso method yields a model with parsimonious sets of features
for discriminating between gastric adenocarcinoma, normal epithelial tissue,
and normal gastric stromal tissue. A mathematical weight for each statisti-
cally informative feature is calculated by the Lasso depending on the im-
portance of the height (or ion abundance) of that peak in characterizing
a certain class. Features that do not contribute to characterizing a class re-
ceive a weight of zero and are disregarded. An ion whose peak height, or
abundance, is important for characterizing a certain class is given a positive
weight whereas ions whose low abundances or absence are important re-
ceive a negative weight. The peak weights given by the Lasso to each of the
selected mass-spectral features are shown in the mass spectra for each m/z
value, with weights for each class displayed in its respective color (epithelium
in green, cancer in red, and stroma in blue), as shown in A. The average mass
spectra for each class for all pixels obtained for the training samples are
shown in its respective color in B.

Eberlin et al. PNAS | February 18, 2014 | vol. 111 | no. 7 | 2437
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Fig. S5. DESI-MSI and Lasso prediction results obtained for gastric-cancer patient A. Selected ion images show a high relative abundance of m/z 333.5 and m/z
775.5, two ions selected by Lasso as statistically significant for characterizing cancer in a large region of the cancer section that was found by pathologic
analysis to be composed of 100% tumor cells, which were infiltrating into adjacent normal epithelial tissue. In both distal and proximal margins, ions that
characterize normal epithelial and stroma tissue, such as m/z 723 and m/z 788, are observed in high relative abundances throughout the entire tissue pieces. In
A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
optical images of the H&E-stained tissue sections are shown with the regions diagnosed by pathology delineated using the same color representation.
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Recap: Cancer Detection

• Seems Awesome!  What’s the catch?
– Small sample size
• Tested on 9 patients

– Machine Learning only part of the solution
• Need infrastructure investment, etc.
• Analyze the scientific legitimacy 

– Social/Political/Legal
• If there is mis-prediction, who is at fault?
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A, negative ion mode DESI-MS ion images ofm/z 333.5 andm/z 788.6 are shown for cancer section and distal and proximal margins. Lasso prediction results are
shown in B for each sample, with pixels predicted as cancer shown in red, as normal epithelium shown in green, and as normal stroma shown in blue. In C,
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Personalization via twitter
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examining(B"

music(

soccer( Labour(

Biden(

September"2012"



overloaded by news

≥ 1 million news articles & blog posts generated every hour*

* [www.spinn3r.com]

“Representing Documents Through Their Readers”
Proceedings of the ACM Conference on Knowledge Discovery and 
Data Mining (2013)
Khalid El-Arini, Min Xu, Emily Fox, Carlos Guestrin
https://dl.acm.org/citation.cfm?id=2487596
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News Recommendation Engine

corpus

Vector representation:
• Bag of words
• LDA topics
• etc.

user
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News Recommendation Engine

corpus

Vector representation:
• Bag of words
• LDA topics
• etc.

user
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user

News Recommendation Engine

corpus

Vector representation:
• Bag of words
• LDA topics
• etc.
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Challenge
Most common representations don’t 
naturally line up with user interests

Fine-grained representations (bag of words) too specific

High-level topics (e.g., from a topic model)
- too fuzzy and/or vague
- can be inconsistent over time

21



Goal

Improve recommendation 
performance through a 
more natural document 

representation

22



An Opportunity: News is Now Social

• In 2012, Guardian announced more readers 
visit site via Facebook than via Google search

23



badges
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Approach

Learn a document representation based on 
how readers publicly describe themselves

25
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Using many tweets, can we learn 
that someone who identifies with

music
reads articles with these words:
via profile badges

?
27



Given: training set of tweeted news articles from 
a specific period of time

1. Learn a badge dictionary from training set

2. Use badge dictionary to encode new articles

music

badges

w
or

ds
3 million articles
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Advantages

• Interpretable
– Clear labels
– Correspond to user interests

• Higher-level than words
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Advantages

• Interpretable
– Clear labels
– Correspond to user interests

• Higher-level than words
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Advantages

• Interpretable
– Clear labels
– Correspond to user interests

• Higher-level than words
• Semantically consistent over time

politics
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Given: training set of tweeted news articles from 
a specific period of time

1. Learn a badge dictionary from training set

2. Use badge dictionary to encode new articles

music

badges

w
or

ds
3 million articles
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Dictionary Learning

y Fleetwood Mac

Nicks

love

album

linux

music

gig

cycling✓

• Training data :
Bag-of-words 

representation of 
document

Identifies badges 
in Twitter profile 

of tweeter

S = zi, yi( ){ }i=1
N

z

y
No
rma

lize
d!
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Dictionary Learning

• Training Objective:

34

Bag-of-words 
representation of 

document

Identifies badges 
in Twitter profile 

of tweeter

S = zi, yi( ){ }i=1
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• Not convex! (because of BW term)

• Convex if only optimize B or W (but not both)

• Alternating Optimization (between B and W)

• How to initialize?           
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• Suppose Badge s often co-occurs with Badge t
– Bs & Bt are correlated

• From perspective of W, B’s are features.
– Lasso tends to focus on one correlated feature

• Graph Guided Fused Lasso:

36
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Graph G of related Badges Co-occurance Rate 
On Twitter Profiles



• Suppose Badge s often co-occurs with Badge t
– Bs & Bt are correlated

• From perspective of W, B’s are features.
– Lasso tends to focus on one correlated feature

• Graph Guided Fused Lasso:
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Many articles might be about Gig, Festival & Music simultaneously.
Graph G of related Badges Co-occurance Rate 

On Twitter Profiles



Encoding New Articles

• Badge Dictionary B is already learned

• Given a new document j with word vector yj
– Learn Badge Encoding Wj:

38

argmin
Wj

λW Wj +λG Wjs −Wjt
(s,t )∈G
∑ + yj −BWj

2



1. Learn a badge dictionary from training set

2. Use badge dictionary to encode new articles

music

badges

w
or

ds

Recap: Badge Dictionary Learning

39



Examining B
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soccer Labour

Biden
September 2012
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Badges Over Time

September 2010

music Biden
September 2012
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A Spectrum of Pundits

• Limit badges to progressive	and TCOT

• Predict political alignments of likely readers?

“top conservatives on Twitter”
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more conservative
• Took all articles by columnist
• Looked at encoding score

• progressive vs TCOT
• Average
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User Study
• Which representation best captures user preferences 

over time?
• Study on Amazon Mechanical Turk with 112 users

1. Show users random 20 articles from Guardian, from time 
period 1, and obtain ratings

2. Pick random representation 
• bag of words, high level topic, Badges

3. Represent user preferences as mean of liked articles
4. GOTO next time period

• Recommend according to preferences
• GOTO STEP 2

43



User Study

tf−idf LDA badges
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Recap: Personalization via twitter

• Sparse Dictionary Learning 
– Learn a new representation of articles
– Encode articles using dictionary
– Better than Bag of Words
– Better than High Level Topics

• Based on social data
– Badges on twitter profile & tweeting
– Semantics not directly evident from text alone
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4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

Learning Visual Style
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Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences 
Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, Serge Belongie, ICCV 2015

Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences

Andreas Veit⇤ 1, Balazs Kovacs⇤ 1, Sean Bell1, Julian McAuley3, Kavita Bala1, Serge Belongie1,2

1 Department of Computer Science, Cornell University 2 Cornell Tech
3 Department of Computer Science and Engineering, UC San Diego

Abstract

With the rapid proliferation of smart mobile devices,
users now take millions of photos every day. These include
large numbers of clothing and accessory images. We would
like to answer questions like ‘What outfit goes well with this
pair of shoes?’ To answer these types of questions, one has
to go beyond learning visual similarity and learn a visual
notion of compatibility across categories. In this paper, we
propose a novel learning framework to help answer these
types of questions. The main idea of this framework is to
learn a feature transformation from images of items into a
latent space that expresses compatibility. For the feature
transformation, we use a Siamese Convolutional Neural
Network (CNN) architecture, where training examples are
pairs of items that are either compatible or incompatible.
We model compatibility based on co-occurrence in large-
scale user behavior data; in particular co-purchase data
from Amazon.com. To learn cross-category fit, we introduce
a strategic method to sample training data, where pairs of
items are heterogeneous dyads, i.e., the two elements of a
pair belong to different high-level categories. While this ap-
proach is applicable to a wide variety of settings, we focus
on the representative problem of learning compatible cloth-
ing style. Our results indicate that the proposed framework
is capable of learning semantic information about visual
style and is able to generate outfits of clothes, with items
from different categories, that go well together.

1. Introduction

Smart mobile devices have become an important part of
our lives and people use them to take and upload millions
of photos every day. Among these photos we can find large
numbers of clothing and food images. Naturally, we would
like to answer questions like “What outfit matches this pair
of shoes?” or “What desserts would go well along this
entrée?” A straightforward approach to answer this type

⇤These two authors contributed equally; the order is picked at random.

Figure 1: Example similar and dissimilar items predicted by
our model. Each row shows a pair of clusters; items on the
same side belong to the same clothing category and clus-
ter. (a): each row shows two clusters that are stylistically
compatible; (b): each row shows incompatible clusters.

of questions would be to use fine grained recognition of
subcategories and attributes, e.g., “slim dark formal pants,”
with a graph that informs which subcategories match to-
gether. However, these approaches require significant do-
main knowledge and do not generalize well to the intro-
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Visually Compatible Visually Incompatible

http://vision.cornell.edu/se3/projects/clothing-style/

http://vision.cornell.edu/se3/projects/clothing-style/


Training Data

• Ground set of items 
– ~1M items
– Image of item x
– Category of item c

• Coat, belt, pants, socks, etc.

• Pairwise relationships
– “frequently bought together”
– Interpret as visually compatible
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Training Goal 
(ignoring regularization)
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argmin
Θ

L+ Φ(xi ),Φ(x j )( )
(i, j )∈D
∑ + L− Φ(xi ),Φ(x j )( )

(i, j )∈ !D
∑

All Model 
Parameters

Compatible 
Pairs

Incompatible 
Pairs

Only pairs in different categories.

Embedding of image Embedding of image

Penalizes too far Penalizes too close



Recall: Convolutional Neural Networks
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Lecture'16:'Deep'Learning' 40'
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Siamese Convolutional Neural Networks

51
More details: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf

CNNxi

CNNxj

φi

φj

L Φ(xi ),Φ(x j )( )Same Model!

http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf


Recap: Training Goal
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argmin
Θ

L+ Φ(xi ),Φ(x j )( )
(i, j )∈D
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∑

All Model 
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Compatible 
Pairs

Incompatible 
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Only pairs in different categories.

Embedding of image Embedding of image

Penalizes too far Penalizes too close

Model Embedding via Siamese Convolutional Neural Network!



Training Details

• Want embedding dimension smaller
– E.g., 128 rather than 4096

• Need to subsample negative pairs
– Most items are not frequently bought together
– Negative component can overwhelm objective
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Figure 3: Visualization of a 2D embedding of the style space trained with strategic sampling computed with t-SNE [19]. The
embedding is based on 200,000 images from the test set. For a clear visual representation we discretize the style space into a
grid and pick one image from each grid cell at random. See the supplemental for the full version.

aggregated co-purchase data from Amazon. In particular,
we define two items to be compatible, comp(a, b), if “a and
b are frequently bought together” or “customers who bought
a also bought b”. These are terms used by Amazon.com.
Further, the relationships in the dataset do not come directly
from the users, but reflect Amazon’s recommendations [13],
which are based on item-to-item collaborative filtering. For
example, two items of similar style tend to be bought to-
gether or by the same customer. Many of the relationships
in the co-purchase graph are not based on visual similarity,
but on an implicit human judgment of compatibility. We ex-
pect the aggregated user behavior data to recover the com-
patibility relationships between products. However, there
are challenges associated with using user behavior data, as it
is very sparse and often noisy. While users tend to buy prod-
ucts they like, not buying a product does not automatically
imply a user dislikes the item. Specifically in the Amazon
dataset, two items that are not labeled as compatible are not
necessarily incompatible.

4. Learning the style space

Given a query image, we want to answer questions like:
“What item is compatible with the query item, but belongs
to a different category?” More formally, let the query image

be denoted by Iq and the item depicted in the image be q.
The membership of the item q to a category Ci is denoted by
q 2 Ci. Further, let comp(q, r) denote the boolean function
that items q and r are compatible with one another. Then,
our goal is to learn a function r = retrieve(Iq, j) to retrieve
an item r such that comp(q, r) and q 2 Ci, r 2 Cj , i 6= j.
To retrieve compatible items, we learn a feature transfor-
mation f : Iq ! sq from the image space I into the style
space S, where compatible items are close together. Then,
we can use the style space descriptor sq to look up compat-
ible neighbors to q.

The data on co-purchased items represents the aggre-
gated preferences of the Amazon customers and defines a
latent space that captures the customers’ consensus on style.
We are especially interested in the specific space that cap-
tures style compatibility of clothing items from different
categories. Since Siamese CNNs learn a space defined by
the training data, choosing the right sampling method of the
training examples is important.

In this section, we first describe our novel sampling strat-
egy to generate training sets that represent notions of style
compatibility across categories. Then, we show how to train
a Siamese CNN to learn a feature transformation from the
image space into the latent style space.

http://www.cs.cornell.edu/~andreas/iccv15.pdf

http://www.cs.cornell.edu/~andreas/iccv15.pdf


Suggesting Outfits
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4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a 2 Ci, b 2 Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ⇡ 1.6 million to ⇡ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally.

We use three different sampling strategies:
Naı̈ve: All positive and negative training examples are

sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

like shoes. Further, convolutional neural networks tend to
map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].
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Suggesting Outfits

• Given query item i
– Embedding ϕi=Φ(xi|Θ)

– Category ci

• For other categories
– Recommend item with closest embedding ϕ

• Not robust to label noise!

56
http://www.cs.cornell.edu/~andreas/iccv15.pdf

http://www.cs.cornell.edu/~andreas/iccv15.pdf


Label Noise

• Amazon category labels are noisy
– Eg., some pants mis-categorized as shoes

• Pants are visually very similar
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Relationships between products

Pants Shoes

Φ(   ) Φ(   )

Relationships between products

≈
Mis-categorized!



Making Robust Suggestions

• Mis-categorizations are rare
– Instead of predicting closest shoe…
– Predict closest cluster of shoes!

• Preprocessing: cluster every category 

• Given input query (category=pants)
– Find closest cluster center (category=shoes)
– Output shoes item close to cluster center
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Compute Coherence of Outfit

59

Outfits in the wild

Least coordinated

Most coordinated
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Temporal dynamics

http://cseweb.ucsd.edu/~jmcauley/pdfs/www16a.pdf

http://cseweb.ucsd.edu/~jmcauley/pdfs/www16a.pdf


Recap

• Sparsity is often useful
– Interpretability, data compression
– Use Lasso/L1 objective

• Representation learning is often useful
– Lower-dimensional embedding
– Better suited to semantics of data domain
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