Lecture 12: Embeddings
Past Two Lectures

• Dimensionality Reduction
• Clustering

• Latent Factor Models
 – Learn low-dimensional representation of data
This Lecture

• Embeddings
 – Generalization of Latent-Factor Models

• Warm-up: Locally-Linear Embeddings

• Probabilistic Sequence Embeddings
 – Playlist embeddings
 – Word embeddings
Embedding

• Learn a representation U
 – Each column u corresponds to data point

• Semantics encoded via \(d(u,u') \)
 – Distance between points
 \[
 d(u,u') = \| u - u' \|^2
 \]
 – Similarity between points
 \[
 d(u,u') = u^T u'
 \]

Generalizes Latent-Factor Models
Locally Linear Embedding

• Given: \(S = \{x_i\}_{i=1}^{N} \)

• Learn U such that local linearity is preserved
 – Lower dimensional than x
 – “Manifold Learning”

Any neighborhood looks like a linear plane

https://www.cs.nyu.edu/~roweis/lle/
Approach

• Define relationship of each x to its neighbors

• Find a lower dimensional u that preserves relationship
Locally Linear Embedding

• Create $B(i)$
 – B nearest neighbors of x_i
 – **Assumption**: $B(i)$ is approximately linear
 – x_i can be written as a convex combination of x_j in $B(i)$

$$x_i \approx \sum_{j \in B(i)} W_{ij} x_j$$

$$\sum_{j \in B(i)} W_{ij} = 1$$

$S = \{x_i\}_{i=1}^N$

https://www.cs.nyu.edu/~roweis/lle/
Locally Linear Embedding

Given Neighbors $B(i)$, solve local linear approximation W:

$$
\arg\min_W \sum_i \left| \sum_{j \in B(i)} W_{ij} x_j - x_i \right|^2 = \arg\min_W \sum_i W_{i,*}^T C^i W_{i,*}
$$

$$
\sum_{j \in B(i)} W_{ij} = 1
$$

$$
\left| \sum_{j \in B(i)} W_{ij} (x_i - x_j) \right|^2 = \left| \sum_{j \in B(i)} W_{ij} (x_i - x_j) \right|^2
$$

$$
= \left(\sum_{j \in B(i)} W_{ij} (x_i - x_j) \right)^T \left(\sum_{j \in B(i)} W_{ij} (x_i - x_j) \right)
$$

$$
= \sum_{j \in B(i)} \sum_{k \in B(i)} W_{ij} W_{ik} C^i_{jk}
$$

$$
= W_{i,*}^T C^i W_{i,*}
$$

$$
C^i_{jk} = (x_i - x_j)^T (x_i - x_k)
$$

https://www.cs.nyu.edu/~roweis/lle/
Locally Linear Embedding

Given Neighbors $B(i)$, solve local linear approximation W:

$$\arg\min_W \sum_i \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 = \arg\min_W \sum_i W_{i,*}^T C^i W_{i,*}$$

$$\sum_{j \in B(i)} W_{ij} = 1$$

$$C^i_{jk} = (x_i - x_j)^T (x_i - x_k)$$

• Every x_i is approximated as a convex combination of neighbors
 – How to solve?
Lagrange Multipliers

\[\arg\min_w L(w) \equiv w^T C w \]

s.t. \(|w| = 1 \)

\[\nabla_{w} |w| \begin{cases}
-1 & \text{if } w_j < 0 \\
+1 & \text{if } w_j > 0 \\
[-1, +1] & \text{if } w_j = 0
\end{cases} \]

\[\exists \lambda \geq 0: (L(y, w) \in -\lambda \nabla_w |w|) \land (|w| \leq 1) \]

Solutions tend to be at corners!

http://en.wikipedia.org/wiki/Lagrange_multiplier
Solving Locally Linear Approximation

\[L(W, \lambda) = \sum_i \left(W_i^T C^i W_{i,*} - \lambda_i (\bar{1}^T W_{i,*} - 1) \right) \]

\[\sum_j W_{ij} = \bar{1}^T W_{i,*} \]

\[\partial_{W_{i,*}} L(W, \lambda) = 2 C^i W_{i,*} - \lambda_i \bar{1} \]

\[W_{i,*} = \frac{\lambda_i}{2} \left(C^i \right)^{-1} \bar{1} \propto \left(C^i \right)^{-1} \bar{1} \]

\[W_{ij} \propto \sum_{k \in B(i)} \left(C^i \right)^{-1}_{jk} \]

\[W_{ij} = \frac{\sum_{k \in B(i)} \left(C^i \right)^{-1}_{jk}}{\sum_{l \in B(i)} \sum_{m \in B(i)} \left(C^i \right)^{-1}_{lm}} \]
Locally Linear Approximation

• Invariant to:

 – Rotation \[Ax_i \approx \sum_{j \in B(i)} AW_{ij}x_j \]

 – Scaling \[5x_i \approx \sum_{j \in B(i)} 5W_{ij}x_j \]

 – Translation \[x_i + x' \approx \sum_{j \in B(i)} W_{ij}(x_j + x') \]
Story So Far: Locally Linear Embeddings

Given Neighbors B(i), solve local linear approximation W:

$$\arg\min_W \sum_i \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 = \arg\min_W \sum_i W_{i,*} C^i W_{i,*}$$ \quad \sum_{j \in B(i)} W_{ij} = 1$$

Solution via Lagrange Multipliers:

$$W_{ij} = \frac{\sum_{k \in B(i)} \left(C^i \right)_{jk}}{\sum \sum \left(C^i \right)_{lm}}$$

• Locally Linear Approximation

https://www.cs.nyu.edu/~roweis/lle/
Recall: Locally Linear Embedding

- Given: \[S = \{ x_i \}_{i=1}^{N} \]

- Learn U such that local linearity is preserved
 - Lower dimensional than x
 - “Manifold Learning”

https://www.cs.nyu.edu/~roweis/lle/
Dimensionality Reduction
(Learning the Embedding)

Given local approximation \(W \), learn lower dimensional representation:

\[
\arg\min_U \sum_i \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2
\]

• Find low dimensional \(U \)
 – Preserves approximate local linearity

https://www.cs.nyu.edu/~roweis/lle/
Given local approximation W, learn lower dimensional representation:

$$\text{argmin}_U \sum_i \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2$$

$$UU^T = I_K$$

$$\sum_i u_i = \tilde{0}$$

- Rewrite as:

$$\text{argmin}_U \sum_{ij} M_{ij} \left(u_i^T u_j \right) \equiv \text{trace} \left(UMU^T \right)$$

$$M_{ij} = 1_{[i=j]} - W_{ij} - W_{ji} + \sum_k W_{ki} W_{kj}$$

$$M = (I_N - W)^T (I_N - W)$$

Symmetric positive semidefinite

https://www.cs.nyu.edu/~roweis/lle/
Given local approximation W, learn lower dimensional representation:

$$\arg\min_u \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(UMU^T)$$

$$UU^T = I_K$$

$$\sum_i u_i = \bar{0}$$

$$uu^T = 1$$

• Suppose $K=1$

$$\arg\min_u \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(uMu^T)$$

$$= \arg\max_u \text{trace}(uM^+u^T)$$

• By min-max theorem

 $u = \text{principal eigenvector of } M^+$

http://en.wikipedia.org/wiki/Min-max_theorem
Recap: Principal Component Analysis

\[M = V \Lambda V^T \]

- Each column of \(V \) is an Eigenvector
- Each \(\lambda \) is an Eigenvalue (\(\lambda_1 \geq \lambda_2 \geq ... \))

\[M^+ = V \Lambda^+ V^T \]

\[M M^+ = V \Lambda \Lambda^+ V^T = V_{1:2} V_{1:2}^T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \]
Given local approximation W, learn lower dimensional representation:

$$\text{argmin}_U \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(UMU^T)$$

$$UU^T = I_K$$

\[\sum_i u_i = \text{0} \]

- **$K=1$:**
 - $u = \text{principal eigenvector of } M^+$
 - $u = \text{smallest non-trivial eigenvector of } M$
 - Corresponds to smallest non-zero eigenvalue

- **General K**
 - $U = \text{top } K \text{ principal eigenvectors of } M^+$
 - $U = \text{bottom } K \text{ non-trivial eigenvectors of } M$
 - Corresponds to bottom K non-zero eigenvalues

https://www.cs.nyu.edu/~roweis/lle/

http://en.wikipedia.org/wiki/Min-max_theorem

Lecture 12: Embeddings
Recap: Locally Linear Embedding

• Generate nearest neighbors of each \(x_i, B(i) \)

• Compute Local Linear Approximation:

\[
\text{argmin}_W \sum_{i} \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 \quad \sum_{j \in B(i)} W_{ij} = 1
\]

• Compute low dimensional embedding

\[
\text{argmin}_U \sum_{i} \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2 \quad UU^T = I_K \\
\sum_i u_i = \bar{0}
\]
Results for Different Neighborhoods

(K=2)

https://www.cs.nyu.edu/~roweis/lle/gallery.html
Probabilistic Sequence Embeddings
Example 1: Playlist Embedding

• Users generate song playlists
 – Treat as training data

• Can we learn a probabilistic model of playlists?
Example 2: Word Embedding

- People write natural text all the time
 - Treat as training data

- Can we learn a probabilistic model of word sequences?
Probabilistic Sequence Modeling

- **Training set:**
 \[S = \{ s_1, \ldots, s_{|S|} \} \]
 \[D = \{ p_i \}_{i=1}^{N} \]
 \[p_i = \langle p_{i}^{1}, \ldots, p_{i}^{N_i} \rangle \]
 Songs, Words
 Playlists, Documents
 Sequence Definition

- **Goal:** Learn a probabilistic model of sequences:
 \[P(p_i^j | p_i^{j-1}) \]

- **What is the form of P?**
First Try: Probability Tables

| P(s|s’) | s₁ | s₂ | s₃ | s₄ | s₅ | s₆ | s₇ | Sₐₙₖ |
|--------|------|------|------|------|------|------|------|--------|
| s₁ | 0.01 | 0.03 | 0.01 | 0.11 | 0.04 | 0.04 | 0.01 | 0.05 |
| s₂ | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 |
| s₃ | 0.01 | 0.01 | 0.01 | 0.07 | 0.02 | 0.02 | 0.05 | 0.09 |
| s₄ | 0.02 | 0.11 | 0.07 | 0.01 | 0.07 | 0.04 | 0.01 | 0.01 |
| s₅ | 0.04 | 0.01 | 0.02 | 0.17 | 0.01 | 0.01 | 0.10 | 0.02 |
| s₆ | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.08 |
| s₇ | 0.07 | 0.02 | 0.01 | 0.01 | 0.03 | 0.09 | 0.03 | 0.01 |
First Try: Probability Tables

| P(s|s') | s₁ | s₂ | s₃ | s₄ | s₅ | s₆ | s₇ | s_start |
|-------|-----|-----|-----|-----|-----|-----|-----|---------|
| s₁ | 0.01| 0.03| 0.01| 0.11| 0.04| 0.04| 0.01| 0.05 |
| s₂ | 0.03| 0.01| 0.04| 0.03| 0.02| 0.01| 0.02| 0.02 |
| s₃ | 0.01| 0.01| 0.01| 0.07| 0.02| 0.02| 0.05| 0.09 |
| s₄ | | | | | | | | |
| s₅ | | | | | | | | |
| s₆ | | | | | | | | |
| s₇ | | | | | | | | |

#Parameters = O(|S|²) !!!
(worse for higher-order sequence models)
Outline for Sequence Modeling

• Playlist Embedding
 – Distance-based embedding

• Word Embedding (word2vec)
 – Inner-product embedding
 – https://code.google.com/archive/p/word2vec/

• Compare the two approaches

Homework Question!
Markov Embedding (Distance)

\[P(s | s') \propto \exp \left\{ -\| u_s - v_{s'} \|^2 \right\} \]

\[P(s | s') = \frac{\exp \left\{ -\| u_s - v_{s'} \|^2 \right\}}{\sum_{s''} \exp \left\{ -\| u_{s''} - v_{s'} \|^2 \right\}} \]

- "Log-Radial" function
 - (my own terminology)

\[u_s: \text{entry point of song } s \]
\[v_s: \text{exit point of song } s \]

Sums over all songs

Log-Radial Functions

\[P(s | s') = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{\sum_{s''} \exp\left\{ -\|u_{s''} - v_{s'}\|^2 \right\}} \]

2K parameters per song
2 |S|K parameters total

Each ring defines an equivalence class of transition probabilities
Goals of Sequence Modeling

\[P(s \mid s') = \frac{\exp \left\{ -\|u_s - v_{s'}\|^2 \right\}}{\sum_{s''} \exp \left\{ -\|u_{s''} - v_{s'}\|^2 \right\}} \]

- Probabilistic transitions as “reconstruction”
- Low dimensional embedding as representation
Learning Problem

\[S = \{s_1, \ldots, s_{|S|}\} \]
\[D = \{p_i\}_{i=1}^N \]
\[p_i = \langle p_i^1, \ldots, p_i^{N_i} \rangle \]

Songs
Playlists
Playlist Definition
(each \(p^j \) corresponds to a song)

• Learning Goal:

\[
\arg\max_{U,V} \prod_i P(p_i) = \prod_i \prod_j P(p_i^j \mid p_i^{j-1})
\]

\[
P(s \mid s') = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{\sum_{s''} \exp\left\{ -\|u_{s''} - v_{s'}\|^2 \right\}} = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{Z(s')}
\]

Minimize Neg Log Likelihood

\[
\arg\max_{U,V} \prod_i \prod_j P(p_i^j \mid p_i^{j-1}) = \arg\min_{U,V} \sum_i \sum_j -\log P(p_i^j \mid p_i^{j-1})
\]

• Solve using gradient descent
 – Random initialization

• Normalization constant hard to compute:
 – Approximation heuristics
 • See paper
 \[
P(s \mid s') = \frac{\exp\left\{-\|u_s - v_s\|^2\right\}}{Z(s')}
\]

Story so Far: Playlist Embedding

• Training set of playlists
 – Sequences of songs

• Want to build probability tables $P(s \mid s')$
 – But a lot of missing values, hard to generalize directly
 – Assume low-dimensional embedding of songs

$$P(s \mid s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{\sum_{s''} \exp\left\{-\|u_{s''} - v_{s'}\|^2\right\}} = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{Z(s')}$$
Simpler Version

• Dual point model:
 \[P(s \mid s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{Z(s')} \]

• Single point model:
 \[P(s \mid s') = \frac{\exp\left\{-\|u_s - u_{s'}\|^2\right\}}{Z(s')} \]
 – Transitions are symmetric
 • (almost)
 – Exact same form of training problem
Visualization in 2D

Simpler version:
Single Point Model

\[P(s \mid s') = \frac{\exp\left\{-\|u_s - u_{s'}\|^2\right\}}{Z(s')} \]

Single point model is easier to visualize

Sampling New Playlists

• Given partial playlist:

\[p = \langle p^1, \ldots p^j \rangle \]

• Generate next song for playlist \(p^{j+1} \)

 – Sample according to:

\[
P(s \mid p^j) = \frac{\exp\left\{ -\| u_s - v_{p^j} \|^2 \right\}}{Z(p^j)}
\]

Dual Point Model

\[
P(s \mid p^j) = \frac{\exp\left\{ -\| u_s - u_{p^j} \|^2 \right\}}{Z(p^j)}
\]

Single Point Model

What About New Songs?

• Suppose we’ve trained U:

\[P(s \mid s') = \frac{\exp\left\{-\|u_s - u_{s'}\|^2\right\}}{Z(s')} \]

• What if we add a new song \(s' \)?
 – No playlists created by users yet...
 – Only options: \(u_{s'} = 0 \) or \(u_{s'} = \text{random} \)
 • Both are terrible!
 • “Cold-start” problem
Song & Tag Embedding

• Songs are usually added with tags
 – E.g., indie rock, country
 – Treat as features or attributes of songs

• How to leverage tags to generate a reasonable embedding of new songs?
 – Learn an embedding of tags as well!

\[S = \{ s_1, \ldots, s_{|S|} \} \quad \text{Songs} \]

\[D = \{ p_i \}_{i=1}^N \quad \text{Playlists} \]

\[p_i = \langle p_i^1, \ldots, p_i^{N_i} \rangle \quad \text{Playlist Definition} \]

\[T = \{ T_1, \ldots, T_{|S|} \} \quad \text{Tags for Each Song} \]

Learning Objective:

\[
\arg\max_{U,A} P(D \mid U)P(U \mid A,T) \]

Same term as before:

\[
P(D \mid U) = \prod_i P(p_i \mid U) = \prod_i \prod_j P(p_i^j \mid p_i^{j-1},U) \]

Song embedding \(\approx \) average of tag embeddings:

\[
P(U \mid A, T) = \prod_s P(u_s \mid A, T_s) \propto \prod_s \exp \left\{ -\lambda \left\| u_s - \frac{1}{T_s} \sum_{t \in T_s} a_t \right\|^2 \right\} \]

Solve using gradient descent:

The simplest NLP model is the n-gram models from natural language processing (NLP). Our first quantitative experiment explores how the generalization of these models is improved by moving from a unigram model to a bigram model, which increases the order of the model from 1 to 2, and in more detail where the conventional bigram model fails, while the LME shows no signs of overfitting.

Among the conventional sequence models, the bigram model is a two-state Markov model on sequences of songs. In particular, we explore to what extent the LME improves upon the bigram model on the test set. We now analyze why the LME beats the conventional bigram model and why variants of it would not likely outperform it in the future.

We will see below that a higher-dimensional support of the song distribution provides interesting insight into the semantics of these clusters. The location of the tags provides interesting insight into what the LME learns from the data.

Figure 1: 2D embedding for the top 40 tags on the test songs.

Revisited: What About New Songs?

• No user has s’ added to playlist
 – So no evidence from playlist training data:

 \[D = \left\{ p_i \right\}_{i=1}^N \]

 s’ does not appear in

• Assume new song has been tagged \(T_{s'} \)
 – The \(u_{s'} = \) average of \(A_t \) for tags \(t \) in \(T_{s'} \)
 – Implication from objective:

 \[
 \arg\max_{U,A} P(D \mid U)P(U \mid A,T)
 \]
Switching Gears: Word Embeddings

• Given a large corpus
 – Wikipedia
 – Google News

• Learn a word embedding to model sequences of words (e.g., sentences)

https://code.google.com/archive/p/word2vec/
Switching Gears: Inner Product Embeddings

- Previous: capture semantics via distance

\[P(s | s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{\sum_{s''} \exp\left\{-\|u_{s''} - v_{s'}\|^2\right\}} \]

- Can also capture semantics via inner product

\[P(s | s') = \frac{\exp\left\{u_s^T v_{s'}\right\}}{\sum_{s''} \exp\left\{u_{s''}^T v_{s'}\right\}} \]

Basically a latent-factor model!
Log-Linear Embeddings

$$P(s | s') = \frac{\exp\left\{ u_s^T v_{s'} \right\}}{\sum_{s''} \exp\left\{ u_{s''}^T v_{s'} \right\}}$$

2K parameters per song
2 \(|S|K\) parameters total

Each projection level onto the green line defines an equivalence class
Learning Problem (Version 1)

\[S = \{s_1, \ldots, s_{|S|}\} \]

Words

\[D = \{p_i\}_{i=1}^{N} \]

Sentences

\[p_i = \langle p_i^1, \ldots, p_i^{N_i} \rangle \]

Sentence Definition
(Each \(p_j^i \) is a word)

- Learning Goal:

\[\arg\max_{U,V} \prod_i P(p_i) = \prod_i \prod_j P(p_i^j | p_i^{j-1}) \]

\[P(s | s') = \frac{\exp\{u_s^T v_{s'}\}}{\sum_{s^\prime} \exp\{u_s^T v_{s'}\}} = \frac{\exp\{u_s^T v_{s'}\}}{Z(s')} \]
Skip-Gram Model (word2vec)

- Predict probability of any neighboring word

\[
\text{argmax}_{U,V} \prod_i \prod_j \prod_{k \in [-C,C] \setminus 0} P(p_i^{j+k} \mid p_i^j)
\]

\[
P(s \mid s') = \frac{\exp \{ u_s^T v_{s'} \}}{\sum_{s''} \exp \{ u_{s''}^T v_{s'} \}} = \frac{\exp \{ u_s^T v_{s'} \}}{Z(s')}
\]

https://code.google.com/archive/p/word2vec/
Skip-Gram Model (word2vec)

- Predict probability of any neighboring word

\[
\text{argmax}_{U,V} \prod_i \prod_j \prod_{k \in [-C,C] \setminus 0} P(p_{i+k}^{j+k} \mid p_i^j)
\]

What are benefits of Skip-Gram model?

https://code.google.com/archive/p/word2vec/
Intuition of Skip-Gram Model

- “The dog jumped over the fence.”
- “My dog ate my homework.”
- “I walked my dog up to the fence.”

\[
\text{argmax}_{U,V} \prod_i \prod_j \prod_{k \in [-C,C] \setminus 0} P(p_i^{j+k} | p_i^j)
\]

- Distribution of neighboring words more peaked
- Distribution of further words more diffuse
- Capture everything in a single model
Dimensionality Reduction

• What dimensionality should we choose U,V?
 – E.g., what should K be?

\[P(s \mid s^{'}) = \frac{\exp \{ u_{s}^{T} v_{s^{'}} \}}{\sum_{s^{''}} \exp \{ u_{s^{''}}^{T} v_{s^{'}} \} } \]

• K = |S|^2 implies we can memorize every word pair interaction
• Smaller K assumes words lie in lower-dimensional space
 – Easier to generalize across words
• Larger K can overfit
Example 1

- \(\mathbf{v}_{\text{Czech}} + \mathbf{v}_{\text{currency}} \approx \mathbf{v}_{\text{koruna}} \)

<table>
<thead>
<tr>
<th>Czech + currency</th>
<th>Vietnam + capital</th>
<th>German + airlines</th>
<th>Russian + river</th>
<th>French + actress</th>
</tr>
</thead>
<tbody>
<tr>
<td>koruna</td>
<td>Hanoi</td>
<td>airline Lufthansa</td>
<td>Moscow</td>
<td>Juliette Binoche</td>
</tr>
<tr>
<td>Check crown</td>
<td>Ho Chi Minh City</td>
<td>carrier Lufthansa</td>
<td>Volga River</td>
<td>Vanessa Paradis</td>
</tr>
<tr>
<td>Polish zolty</td>
<td>Viet Nam</td>
<td>flag carrier Lufthansa</td>
<td>upriver</td>
<td>Charlotte Gainsbourg</td>
</tr>
<tr>
<td>CTK</td>
<td>Vietnamese</td>
<td>Lufthansa</td>
<td>Russia</td>
<td>Cecile De</td>
</tr>
</tbody>
</table>

Example 2

- E.g., $\mathbf{v}_{\text{France}} - \mathbf{v}_{\text{Paris}} + \mathbf{v}_{\text{Italy}} \approx \mathbf{v}_{\text{Rome}}$

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>France - Paris</td>
<td>Italy: Rome</td>
<td>Japan: Tokyo</td>
<td>Florida: Tallahassee</td>
</tr>
<tr>
<td>big - bigger</td>
<td>small: larger</td>
<td>cold: colder</td>
<td>quick: quicker</td>
</tr>
<tr>
<td>Miami - Florida</td>
<td>Baltimore: Maryland</td>
<td>Dallas: Texas</td>
<td>Kona: Hawaii</td>
</tr>
<tr>
<td>Einstein - scientist</td>
<td>Messi: midfielder</td>
<td>Mozart: violinist</td>
<td>Picasso: painter</td>
</tr>
<tr>
<td>Sarkozy - France</td>
<td>Berlusconi: Italy</td>
<td>Merkel: Germany</td>
<td>Koizumi: Japan</td>
</tr>
<tr>
<td>copper - Cu</td>
<td>zinc: Zn</td>
<td>gold: Au</td>
<td>uranium: plutonium</td>
</tr>
<tr>
<td>Berlusconi - Silvio</td>
<td>Sarkozy: Nicolas</td>
<td>Putin: Medvedev</td>
<td>Obama: Barack</td>
</tr>
<tr>
<td>Microsoft - Windows</td>
<td>Google: Android</td>
<td>IBM: Linux</td>
<td>Apple: iPhone</td>
</tr>
<tr>
<td>Microsoft - Ballmer</td>
<td>Google: Yahoo</td>
<td>IBM: McNealy</td>
<td>Apple: Jobs</td>
</tr>
<tr>
<td>Japan - sushi</td>
<td>Germany: bratwurst</td>
<td>France: tapas</td>
<td>USA: pizza</td>
</tr>
</tbody>
</table>

Example 3

- 2D PCA projection of countries and cities:

![2D PCA projection of countries and cities](http://arxiv.org/pdf/1310.4546.pdf)
Aside: Embeddings as Features

• Use the learned u (or v) as features

• E.g., linear models for classification:

\[h(x) = \text{sign}(w^T \phi(x)) \]

Can be word identities or word2vec representation!
Training word2vec

• Train via gradient descent

\[
\begin{align*}
\text{argmin}_{U,V} & \sum_i \sum_j \sum_{k \in [-C,C]\setminus0} -\log P(p_{i+k}^j \mid p_i^j) \\
& \text{Sequences} \quad \text{Tokens in each Sequence} \\
& \text{Skip Length} \\
\end{align*}
\]

\[
P(s \mid s') = \frac{\exp \{u_s^T v_{s'}\}}{\sum_{s''} \exp \{u_{s''}^T v_{s'}\}} = \frac{\exp \{u_s^T v_{s'}\}}{Z(s')}
\]

Denominator expensive!

https://code.google.com/archive/p/word2vec/
Hierarchical Approach
(Probabilistic Decision Tree)

- Decision tree of paths
- Leaf node = word
- Choose each branch independently

Hierarchical Approach
(Probabilistic Decision Tree)

\[
P(s_1 | s') = P(B | A, s')P(s_1 | B, s')
\]

\[
P(s_2 | s') = P(B | A, s')P(s_2 | B, s')
\]

\[
P(s_3 | s') = P(C | A, s')P(s_3 | C, s')
\]

\[
P(s_4 | s') = P(C | A, s')P(s_4 | C, s')
\]

Hierarchical Approach
(Probabilistic Decision Tree)

\[P(B \mid A, s) = \frac{1}{1 + \exp\left\{ -u_{BC}^T v_s \right\}} = \frac{1}{1 + \exp\left\{ u_{CB}^T v_s \right\}} \]

\[P(C \mid A, s) = \frac{1}{1 + \exp\left\{ -u_{CB}^T v_s \right\}} = \frac{1}{1 + \exp\left\{ u_{BC}^T v_s \right\}} \]

\[u_{BC} = -u_{CB} \]

Lecture 12: Embeddings
Hierarchical Approach
(Probabilistic Decision Tree)

\[
P(s_1 \mid B, s) = \frac{1}{1 + \exp\{-u_{12}^T v_s\}} = \frac{1}{1 + \exp\{u_{21}^T v_s\}}
\]

\[
P(s_2 \mid B, s) = \frac{1}{1 + \exp\{-u_{21}^T v_s\}} = \frac{1}{1 + \exp\{u_{12}^T v_s\}}
\]

\[u_{12} = -u_{21}\]
Hierarchical Approach
(Probabilistic Decision Tree)

• Compact formula:

\[P(s \mid s') = \prod_{m} P(n_{m,s} \mid n_{m-1,s}, s) \]
Training Hierarchical Approach

• Train via gradient descent (same as before!)

$$\arg\min_{U,V} \sum_{i} \sum_{j} \sum_{k \in [-C,C] \setminus 0} - \log P(p_{i}^{j+k} \mid p_{i}^{j})$$

Sequences

Tokens in each Sequence

Skip Length

$$P(s \mid s') = \prod_{m} P(n_{m,s} \mid n_{m-1,s}, s)$$

Complexity

$$= O(\log_2(|S|))$$

https://code.google.com/archive/p/word2vec/
Summary: Hierarchical Approach

• Each word has s corresponds to:
 – One v_s
 – $\log_2(|S|)$ u’s!

• Target factors u’s are shared across words
 – Total number of U is still $O(|S|)$

• Previous use cases unchanged
 – They all used v_s
 – Vector subtraction, use as features for CRF, etc.
Recap: Embeddings

• **Given:** Training Data
 – Care about some property of training data
 • Markov Chain
 • Skip-Gram

• **Goal:** learn low dim representation
 – “Embedding”
 – Geometry of embedding captures property of interest
 • Either by distance or by inner-product
Visualization Semantics

Distance-Based Embedding
- Similarity measured via distance
- Clustering/locality semantics
- Cannot interpret axes
- Can visualize many clusters simultaneously

Inner-Product Embeddings
- Similarity measured via dot product
- Rotational semantics
- Can interpret axes
- Can only visualize 2 axes at a time
Next Lectures

• Thursday: Recent Applications

• Next Week: Probabilistic Models