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Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.

F

1 INTRODUCTION

Edge detection has remained a fundamental task in computer
vision since the early 1970’s [18], [15], [43]. The detection
of edges is a critical preprocessing step for a variety of
tasks, including object recognition [47], [17], segmentation
[33], [1], and active contours [26]. Traditional approaches to
edge detection use a variety of methods for computing color
gradients followed by non-maximal suppression [7], [19], [50].
Unfortunately, many visually salient edges do not correspond
to color gradients, such as texture edges [34] and illusory
contours [39]. State-of-the-art edge detectors [1], [41], [31],
[21] use multiple features as input, including brightness, color,
texture and depth gradients computed over multiple scales.

Since visually salient edges correspond to a variety of visual
phenomena, finding a unified approach to edge detection is
difficult. Motivated by this observation several recent papers
have explored the use of learning techniques for edge detection
[13], [49], [31], [27]. These approaches take an image patch
and compute the likelihood that the center pixel contains an
edge. Optionally, the independent edge predictions may then
be combined using global reasoning [1], [41], [49], [2].

Edges in a local patch are highly interdependent [31].
They often contain well-known patterns, such as straight lines,
parallel lines, T-junctions or Y-junctions [40], [31]. Recently, a
family of learning approaches called structured learning [36]
has been applied to problems exhibiting similar characteristics.
For instance, [29] applies structured learning to the problem
of semantic image labeling for which local image labels are
also highly interdependent.

In this paper we propose a generalized structured learning
approach that we apply to edge detection. This approach
allows us to take advantage of the inherent structure in edge
patches, while being surprisingly computationally efficient.
We can compute edge maps in realtime, which is orders of
magnitude faster than competing state-of-the-art approaches.
A random forest framework is used to capture the structured

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS [1] on which the popular gPb detector [1]
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.

information [29]. We formulate the problem of edge detection
as predicting local segmentation masks given input image
patches. Our novel approach to learning decision trees uses
structured labels to determine the splitting function at each
branch in the tree. The structured labels are robustly mapped to
a discrete space on which standard information gain measures
may be evaluated. Each forest predicts a patch of edge pixel
labels that are aggregated across the image to compute our
final edge map, see Figure 1. Since the aggregated edge maps
may be diffuse, the edge maps may optionally be sharpened
using local color and depth cues. We show state-of-the-art
results on both the BSDS500 [1] and the NYU Depth dataset
[44]. We demonstrate the potential of our approach as a general
purpose edge detector by showing the strong cross dataset
generalization of our learned edge models.
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A Data-Driven Approach for Realistic Speech Animation
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Figure 1: A decision tree is used to learn the regression from input phoneme labels to output speech animation parameters. The tree generates
continuous, natural-looking speech animation parameters that represent a reference face of an actor and can be retargeted to the face of any
computer generated character. Predictions are made by traversing the tree from root to leaf node evaluating the learned set of discriminative
queries.

Abstract1

In this paper, we present a simple and effective machine learning2

approach for automatically generating natural looking speech an-3

imation that synchronizes to target audio speech. Our approach is4

easy to deploy, requires minimal parameter tuning, generalizes well5

to novel input speech sequences, and is easily composable with ex-6

isting retargeting approaches. This paper provides detailed a de-7

scription of our end-to-end approach, including discussing design8

decisions, and analyzing the relative importance of different sys-9

tem components. We show that realistic speech animation can be10

created for any input speech on a range of characters using a variety11

of voices. We also provide an extensive empirical evaluation, both12

quantitative and subjective, and demonstrate substantial improve-13

ments over previous approaches.14

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional15

Graphics and Realism—Animation; I.2.7 [Artificial Intelligence]:16

Natural Language Processing—Speech recognition and synthesis.17

Keywords: Speech Animation, Visemes, Machine Learning.18

1 Introduction19

Automated speech animation (also known as lip synchronization or20

lip sync) is an important and time-consuming aspect of character21

animation. Broadly speaking, speech animation is the task of mov-22

ing the facial features of a graphics model to give the impression of23

speech (e.g., synchronize with the spoken audio), and the goal of24

automated speech animation is to perform this task in a (near-)fully25

automated fashion.26

The use of speech animation in practice has typically involved an27

unpleasant trade-off between production speed and quality. At one28

extreme, large budget productions employ many professional ani-29

mators who can spend several hours manually animating just a few30

short seconds of speech, and key-framing every frame (or every31

few frames). At the other end, high-volume or low-budget produc-32

tions use overly simplified libraries of lip shapes combined with33

naive interpolation methods to quickly generate low-quality speech34

animation. In the middle are mid-budget productions that use the35

latter approach as an initialization, and them employ a few artists to36

somewhat refine the animation.37

As humans, we are all experts on faces and are able to identify asyn-38

chrony between audio and visual speech, causing poor speech ani-39

mation to appear somewhat distracting. Furthermore, the McGurk40

effect shows that mismatch between visual and audio speech can41

change what the viewer perceives to have heard [McGurk and Mac-42

Donald 1976]. Thus, proper speech animation is crucial for effec-43

tive animation in general.44

In this paper, we show that a simple and fast machine learning ap-45

proach can achieve dramatic improvements upon previous work in46

automatic speech animation. We present an audio-to-visual speech47

animation pipeline based on a recently proposed sliding window48

regression approach [Kim et al. 2015] that can generate realistic49

speech animation. The key performance gains are due to:50

• Utilizing complex predictors such as deep neural networks51

[Rumelhart et al. 1988] and decision trees [Maimon and52

Rokach 2005] that can learn highly non-linear mappings from53

phonetic inputs to animation outputs. We find that both neu-54

ral networks and decision trees perform well, with neural net-55

works performing the best.56

• Utilizing a multivariate sliding window predictor [Kim et al.57

2015] that captures natural variation and coarticulation in58

acoustic and visual speech. One key tuning parameter is the59

size of the sliding window. We find that this parameter is easy60

to tune, in part due to how quickly our predictors train.61

• Making predictions in a relatively compact yet expressive Ac-62

tive Appearance Model space [Cootes et al. 2001; Matthews63

and Baker 2004]. This allows for predictions to be easily com-64

posed with various retargeting approaches and thus mapped to65

arbitrary graphics characters.66

In summary, our approach is simple to employ, requires minimal67

parameter tuning or feature engineering, generalizes well to novel68

input speech sequences, and is easily composable with existing re-69

targeting approaches. Our approach also extends trivially to ensem-70

ble machine learning methods such as random forests; however, we71

find the quantitative performance gains to be minimal, and the sub-72

jective differences to be neglible.73

This paper provides a detailed description of our end-to-end ap-74

proach, including discussing design decisions, and analyzing the75

relative importance of different system components. We show that76

our approach is easy to deploy with respect to design decisions77
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Edge	  Detec6on	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.
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Challenges	  

•  Output	  Space?	  

•  400x300	  Image	  
– 120000	  Pixels	  
– 2120000	  Labels!	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Today:	  Learning	  Reduc6ons	  

•  Convert	  complicated	  problem	  into	  simpler	  ones	  
–  Use	  complex	  models	  for	  simpler	  problems	  
–  E.g.,	  decision	  trees,	  neural	  nets	  

•  Recompose	  predic6ons	  for	  complicated	  problem	  
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Strong	  Local	  Proper6es	  

•  Local	  paYerns	  maYer	  
– E.g.,	  image	  patches	  

•  Complex	  rela6onship	  
– Non-‐linear	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Weak	  Global	  Proper6es	  

•  Edge	  detec6ons	  local	  

•  Can	  ignore	  most	  	  
	  	  	  	  of	  image	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Sliding	  Window	  Approach	  
(Decomposi6on)	  

•  Train	  model	  to	  predict	  
	  	  	  	  patches	  
– E.g.,	  16x16	  

•  Slide	  across	  image	  

•  What	  model?	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Recall:	  Binary	  Decision	  Tree	  

	  
Male?	  

Age>8?	   Age>11?	  

1	   0	   1	   0	  

Yes	  

Yes	   Yes	   No	  

No	  

No	  

Internal	  Nodes	  

Leaf	  Nodes	  

Root	  Node	  

Every	  internal	  node	  has	  a	  binary	  	  
query	  func6on	  q(x).	  

Every	  leaf	  node	  has	  a	  predic6on,	  
e.g.,	  0	  or	  1.	  

Predic6on	  starts	  at	  root	  node.	  
Recursively	  calls	  query	  func6on.	  
Posi6ve	  response	  è	  Lef	  Child.	  
Nega6ve	  response	  è	  Right	  Child.	  
Repeat	  un6l	  Leaf	  Node.	  

Alice	  
Gender:	  Female	  
Age:	  14	  

Input:	  

PredicFon:	  Height	  >	  55”	  	  
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Structured	  Decision	  Tree	  

•  Each	  leaf	  node	  predicts	  a	  16x16	  edge	  matrix	  
– Average	  of	  all	  training	  patch	  labels	  	  

•  Predic6on	  is	  very	  fast!	  
– Slide	  predictor	  across	  image,	  average	  results	  
– No	  need	  for	  Viterbi-‐type	  algorithms	  

•  What	  is	  splikng	  criterion?	  
•  What	  is	  query	  set?	  
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Structured	  Informa6on	  Gain	  
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“Structured	  Random	  Forests	  for	  Fast	  Edge	  DetecFon”	  
Dollár	  &	  Zitnick,	  ICCV	  2013	  
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Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|

m
), were limited to using m  2. Our experiments

indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y

0
= {0, 1}d⇥d for the latter, where d indicates

patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).

Good!	   Bad!	  



Structured	  Informa6on	  Gain	  

1.  First	  map	  labels	  to	  coordinate	  system	  
A.  For	  each	  coordinate,	  choose	  pair	  of	  pixels	  
B.  Set	  coordinate	  to	  1	  if	  in	  same	  segment,	  0	  o.w.	  
•  Coordinate	  1	  =	  0	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	  approach	  more	  complicated.)	  



Structured	  Informa6on	  Gain	  

1.  First	  map	  labels	  to	  coordinate	  system	  
A.  For	  each	  coordinate,	  choose	  pair	  of	  pixels	  
B.  Set	  coordinate	  to	  1	  if	  in	  same	  segment,	  0	  o.w.	  
•  Coordinate	  1	  =	  0	  
•  Coordinate	  2	  =	  1	  
•  Etc…	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	  approach	  more	  complicated.)	  

For	  each	  training	  example!	  



Structured	  Informa6on	  Gain	  

1.  First	  map	  labels	  to	  coordinate	  system	  
A.  For	  each	  coordinate,	  choose	  pair	  of	  pixels	  
B.  Set	  coordinate	  to	  1	  if	  in	  same	  segment,	  0	  o.w.	  
•  Coordinate	  1	  =	  0	  
•  Coordinate	  2	  =	  1	  
•  Etc…	  

2.  Cluster	  training	  labels	  	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.



Mul6class	  Entropy	  

•  Reduced	  training	  labels	  to	  K	  clusters	  
– Can	  treat	  as	  mul6class	  classifica6on	  

•  Impurity	  measure	  =	  mul6class	  entropy	  

16	  

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|

m
), were limited to using m  2. Our experiments

indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y

0
= {0, 1}d⇥d for the latter, where d indicates

patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).



Query	  Set	  
•  Features	  about	  color	  gradients	  

–  Image	  gets	  darker	  from	  column	  1	  to	  column	  5	  
–  Image	  gets	  more	  blue	  from	  row	  7	  to	  row	  3	  
–  Etc…	  
–  7228	  features	  total	  
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Fig. 4. Visualizations of matches and errors of SE+MS+SH compared to BSDS ground truth edges. Edges are thickened to two
pixels for better visibility; the color coding is green=true positive, blue=false positive, red=false negative. Results are shown at three
thresholds: high precision (T⇡.26, P⇡0.88, R=.50), ODS threshold (T⇡.14, P=R⇡.75), and high recall (T⇡.05, P=.50, R⇡0.93).

5 RESULTS
In this section we analyze the performance of our structured
edge (SE) detector in detail. First we analyze the influence
of parameters in §5.1 and test SE variants in §5.2. Next, we
compare results on the BSDS [1] and NYUD [44] datasets
to the state-of-the-art in §5.3 and §5.4, respectively, reporting
both accuracy and runtime. We conclude by demonstrating the
cross dataset generalization of our approach in §5.5.

The majority of our experiments are performed on the
Berkeley Segmentation Dataset and Benchmark (BSDS500)
[35], [1]. The dataset contains 200 training, 100 validation,
and 200 testing images. Each image has hand labeled ground
truth contours. Edge detection accuracy is evaluated using
three standard measures: fixed contour threshold (ODS), per-
image best threshold (OIS), and average precision (AP) [1].
To evaluate accuracy in the high recall regime, we additionally
introduce a new measure, recall at 50% precision (R50), in
§5.2. Prior to evaluation, we apply a standard non-maximal
suppression technique to our edge maps to obtain thinned
edges [7]. Example detections on BSDS are shown in Figure 3
and visualizations of edge accuracy are shown in Figure 4.

5.1 Parameter Sweeps
We set all parameters with the help of the BSDS validation set
which is fully independent of the test set. Parameters include:

structured forest splitting parameters (e.g., m and k), feature
parameters (e.g., image and channel blurring), and model
and tree parameters (e.g. number of trees and data quantity).
Training takes ⇠20 minute per tree using one million patches
and is parallelized over trees. Evaluation of trees is parallelized
as well, we use a quad-core machine for all reported runtimes.

In Figures 5-7 we explore the effect of choices of splitting,
model and feature parameters. For each experiment we train
on the 200 image training set and measure edge detection
accuracy on the 100 image validation set (using the standard
ODS performance metric). All results are averaged over 5
trials. First, we set all parameters to their default values
indicated by orange markers in the plots. Then, keeping all but
one parameter fixed, we explore the effect on edge detection
accuracy as a single parameter is varied.

Since we explore a large number of parameters settings, we
perform our experiments using a slightly reduced accuracy
model that is faster to train. Specifically we train using fewer
patches (2 · 10

5 versus 10

6) and utilize sharpening (SH) but
not multiscale detection (MS). Also, the validation set is
more challenging than the test set and we evaluate using 25
thresholds instead of 99, further reducing accuracy (.71 ODS).
Finally, we note that sweep details have changed slightly from
the our previous work [14]; most notably, the sweeps now
utilize sharpening but not multiscale detection.

“Structured	  Random	  Forests	  for	  Fast	  Edge	  DetecFon”	  
Dollár	  &	  Zitnick,	  ICCV	  2013	  

(Actual	  approach	  more	  complicated.)	  



Pukng	  it	  Together	  	  

•  Create	  new	  training	  set	  Ŝ	  =	  {(x,ŷ)}	  
–  x	  =	  16x16	  image	  patch	  
–  ŷ	  =	  16x16	  ground	  truth	  edges	  

•  Train	  structured	  DT	  on	  Ŝ	  

•  Predict	  by	  sliding	  DT	  over	  input	  image	  
–  Average	  predic6ons	  

18	  

“Structured	  Random	  Forests	  for	  Fast	  Edge	  DetecFon”	  
Dollár	  &	  Zitnick,	  ICCV	  2013	  

(Actual	  approach	  more	  complicated.)	  

DecomposiFon	  

RecomposiFon	  
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Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Input	  

Ground	  
Truth	  

Fo
ur
	  V
er
sio

ns
	  o
f	  M

et
ho

d	  



ODS OIS AP FPS

Human .80 .80 - -
Canny .60 .64 .58 15
Felz-Hutt [11] .61 .64 .56 10
Hidayat-Green [16] .62† - - 20
BEL [9] .66† - - 1/10
gPb + GPU [6] .70† - - 1/2‡

gPb [1] .71 .74 .65 1/240
gPb-owt-ucm [1] .73 .76 .73 1/240
Sketch tokens [21] .73 .75 .78 1
SCG [31] .74 .76 .77 1/280
SE-SS, T=1 .72 .74 .77 60
SE-SS, T=4 .73 .75 .77 30
SE-MS, T=4 .74 .76 .78 6

Table 1. Edge detection results on BSDS500 [1]. Our Structured
Edge (SE) detector achieves top performance on BSDS while be-
ing 1-4 orders of magnitude faster than methods of comparable
accuracy. Three variants of SE are shown utilizing either single
(SS) or multiscale (MS) detection with variable number of evalu-
ated trees T . SE-SS, T = 4 achieves nearly identical accuracy as
gPb-owt-ucm [1] but is dramatically faster. [†Indicates results were
measured on BSDS300; ‡indicates a GPU implementation.]

5. Results

In this section we show results on two different object
contour datasets measuring both detection accuracy and
runtime performance. We conclude by demonstrating the
cross dataset generalization of our approach by testing on
each dataset using decision forests learned on the other.

BSDS 500: We begin by testing on the popular Berkeley
Segmentation Dataset and Benchmark (BSDS 500) [25, 1].
The dataset contains 200 training, 100 validation and 200
testing images. Each image has hand labeled ground truth
contours. Edge detection accuracy is evaluated using three
measures: fixed contour threshold (ODS), per-image best
threshold (OIS), and average precision (AP) [1]. Prior to
evaluation, we apply a standard non-maximal suppression
technique to our edge maps to obtain thinned edges [5]. Ex-
ample detections on BSDS are shown in Figure 2.

We evaluate our Structured Edge (SE) detector computed
at a single scale (SS) and at multiple scales (MS). For SE-
SS we show two results with T = 1 and T = 4 evaluated
decision trees at each location. Precision/recall curves are
shown in Figure 5 and results are summarized in Table 1.
Our multiscale approach either ties or outperforms the state-
of-the-art approaches [1, 31, 21], while being multiple or-
ders of magnitude faster than [1, 31] and 6⇥ faster than [21]
(all frame rates are reported on an image size of 480⇥ 320

for all methods). With only minimal loss in accuracy, our
single scale approach further improves the runtime by 5⇥

to 10⇥. In fact, with T = 1, we can perform at a frame

ODS OIS AP FPS

gPb [1] (rgb) .51 .52 .37 1/240
SCG [31] (rgb) .55 .57 .46 1/280
SE-SS (rgb) .58 .59 .53 30
SE-MS (rgb) .60 .61 .56 6
gPb [1] (depth) .44 .46 .28 1/240
SCG [31] (depth) .53 .54 .45 1/280
SE-SS (depth) .57 .58 .54 30
SE-MS (depth) .58 .59 .57 6
gPb [1] (rgbd) .53 .54 .40 1/240
SCG [31] (rgbd) .62 .63 .54 1/280
SE-SS (rgbd) .62 .63 .59 25
SE-MS (rgbd) .64 .65 .63 5

Table 2. Edge detection results on the NYU Depth dataset [33]
for RGB-only (top), depth-only (middle), and RGBD (bottom).
Across all modalities on all measures SE outperforms both gPb
and SCG while running 3 orders of magnitude faster.

rate of 60hz. This is considerably faster than [1, 31] while
reducing the ODS score from 0.74 to 0.72. Note that the
GPU implementation [6] of [1] only achieves an ODS score
of 0.70 with a runtime of 2 seconds.

In comparison to other learning-based approaches to
edge detection, we considerably outperform [9] which com-
putes edges independently at each pixel given its surround-
ing image patch. We slightly outperform sketch tokens [21]
in both accuracy and runtime performance. This may be the
result of sketch tokens using a fixed set of classes for se-
lecting split criterion at each node, whereas our structured
forests can captured finer patch edge structure.

NYU dataset: The NYU Depth dataset (v2) [33] contains
1, 449 pairs of RGB and depth images with corresponding
semantic segmentations. Ren and Bo [31] adopted the data
for edge detection allowing for testing edge detectors us-
ing multiple modalities including RGB, depth, and RGBD.
We use the exact experimental setup proposed by [31] using
the same 60%/40% training/testing split (and use 1/3 of the
training data as a validation set) with the images reduced to
320 ⇥ 240 resolution (preprocessing scripts available from
[31]). In [31] and our work, we treat the depth channel in
the same manner as the other color channels. Specifically,
we recompute the gradient channels over the depth channel
(with identical parameters) resulting in 11 additional chan-
nels. Example SE results are shown in Figure 4.

In Table 2 we compare our approach to the state-of-the-
art approaches gPb-owt-ucm (adopted to utilize depth) and
SCG [31]. Precision/recall curves for all approaches are
shown in Figure 3. Across all measures, our approaches
(SE-SS and SE-MS) perform significantly better than SCG
when using RGB only and depth only as an input. For
RGBD our multi-scale approach performs considerably bet-

6

Comparable	  accuracy	  	  
vs	  state-‐of-‐the-‐art	  	  
	  
Much	  faster!	  

“Structured	  Random	  Forests	  for	  Fast	  Edge	  DetecFon”	  
Dollár	  &	  Zitnick,	  ICCV	  2013	  

Accuracy	  	  
Measures	  

Speed	  
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Automa6cally	  Animate	  to	  Input	  Audio?	  
(Given	  Training	  Data)	  
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A	  Decision	  Tree	  Framework	  for	  SpaFotemporal	  Sequence	  PredicFon	  
Taehwan	  Kim,	  Yisong	  Yue,	  Sarah	  Taylor,	  Iain	  MaYhews.	  	  KDD	  2015	  
A	  Deep	  Learning	  Approach	  for	  Generalized	  Speech	  AnimaFon	  
Sarah	  Taylor,	  Taehwan	  Kim,	  Yisong	  Yue,	  et	  al.	  	  SIGGRAPH	  2017	  



Training	  Data	  

•  ~2500	  Sentences	  
–  Recorded	  at	  30	  Hz	  
–  ~10	  hours	  of	  recorded	  speech	  

•  Ac6ve	  Appearance	  Model	  
–  Actor’s	  lower	  face	  
–  30	  degrees	  of	  freedom	  (also	  100+)	  

Data	  from	  [Taylor	  et	  al.,	  2012]	  23	  



bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
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varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,
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to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1
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3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
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where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
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Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

Predic6on	  Task	  
Input	  sequence	  

Output	  sequence	  

Goal:	  learn	  predictor	  

Phoneme	  sequence	  

Sequence	  of	  face	  configura6ons	  

24	  



bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
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a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

X

Y

Temporal	  curvature	  can	  vary	  smoothly	  or	  sharply	  
(Depends	  on	  context	  –	  this	  is	  the	  co-‐ar6cula6on	  problem)	  

Minimal	  long-‐range	  dependencies	  
(predicFon	  =	  construcFon	  =	  elecFon…)	  
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/k/	  

Co-‐ArFculaFon	  is	  Hard	  to	  Get	  Right	  
(Strong	  Local	  Proper6es)	  



Weak	  Global	  Proper6es	  

•  No	  need	  to	  model	  en6re	  chain	  directly	  

•  Mo6vates	  sliding	  window	  approach!	  
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bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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This	  is	  the	  only	  thing	  that	  	  
requires	  machine	  learning!	  

Very	  fast!	  
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Query	  Set	  for	  Speech	  Anima6on	  
Frame	  8	  is	  a	  	  
vowel	  that	  
contains	  /a/?	  

Frame	  8	  is	  	  
a	  sibilant	  	  
consonant?	  

Frame	  8	  is	  a	  
long	  vowel?	  

Frame	  8	  is	  a	  	  
front	  consonant?	  

Frame	  8	  is	  a	  
post-‐alveolar	  	  
consonant?	  

Frame	  6	  is	  a	  	  
vowel	  that	  
contains	  /a/?	  

Frame	  8	  is	  a	  	  
vowel	  that	  
contains	  /o/?	  

Frames	  indexed	  by	  1-‐11	  (center	  is	  frame	  6)	  

…
	  

…
	  

…
	  

…
	  

yes	   no	  

yes	   no	   no	  yes	  

Full	  tree	  has	  5K+	  leaf	  nodes	  
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Mul6variate	  Regression	  Tree	  

•  PredicFon:	  

	  
•  Training	  loss:	  mul6variate	  squared	  loss:	  

150	  

=	  Mean	  Predic6on:	  

Training	  Data	  	  
in	  Leaf	  Node:	  

ŷLeaf − ŷ
ŷ∈Leaf
∑

Leaf
∑

2
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Predic6on	  on	  New	  Speaker	  
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A	  Decision	  Tree	  Framework	  for	  SpaFotemporal	  Sequence	  PredicFon	  
Taehwan	  Kim,	  Yisong	  Yue,	  Sarah	  Taylor,	  Iain	  MaYhews.	  	  KDD	  2015	  
A	  Deep	  Learning	  Approach	  for	  Generalized	  Speech	  AnimaFon	  
Sarah	  Taylor,	  Taehwan	  Kim,	  Yisong	  Yue,	  et	  al.	  	  SIGGRAPH	  2017	  



Predic6on	  on	  New	  Speaker	  

33	  

A	  Decision	  Tree	  Framework	  for	  SpaFotemporal	  Sequence	  PredicFon	  
Taehwan	  Kim,	  Yisong	  Yue,	  Sarah	  Taylor,	  Iain	  MaYhews.	  	  KDD	  2015	  
A	  Deep	  Learning	  Approach	  for	  Generalized	  Speech	  AnimaFon	  
Sarah	  Taylor,	  Taehwan	  Kim,	  Yisong	  Yue,	  et	  al.	  	  SIGGRAPH	  2017	  
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Side-‐by-‐Side	  User	  Study	  

Comparing	  our	  approach	  versus	  compe6tor	  on	  50	  held-‐out	  test	  sentences.	  

“A	  Decision	  Tree	  Framework	  for	  SpaFotemporal	  Sequence	  PredicFon”	  
Kim,	  Yue,	  Taylor,	  MaYhews,	  KDD	  2015,	  hYp://projects.yisongyue.com/visual_speech	  	   36	  



Side-‐by-‐Side	  User	  Study	  
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Dynamic	  Vis.	   HMM	   Ground	  Truth	  

Sliding	  Window	   Compe6tor	  

State-‐of-‐the-‐Art	  Baselines	  

Comparing	  our	  approach	  versus	  compe6tor	  on	  50	  held-‐out	  test	  sentences.	  

B	  E	  T	  T	  E	  R	  
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Comparison	  with	  Ground	  Truth	  

We	  under-‐ar6culate	  rela6ve	  to	  ground	  truth!	  
(Could	  be	  solved	  with	  more	  training	  data…)	  

“A	  Decision	  Tree	  Framework	  for	  SpaFotemporal	  Sequence	  PredicFon”	  
Kim,	  Yue,	  Taylor,	  MaYhews,	  KDD	  2015,	  hYp://projects.yisongyue.com/visual_speech	  	   38	  
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E.g.,	  [Sumner	  &	  Popovic	  2004]	  

(chimp	  rig	  courtesy	  of	  Hao	  Li)	  

Edi6ng	  
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Aside:	  Retarge6ng	  
Reference	  face	  è	  target	  face	  
	  

(Semi-‐)AutomaFc:	  
Deforma6on	  Transfer	  [Sumner	  &	  Popovic	  2004]	  
Finds	  linear	  transform	  (requires	  reference	  pose)	  
	  

Manual:	  
Pose	  basis	  shapes	  &	  linear	  blending	  
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Shape model Combined model
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Predic6on	  for	  Very	  Different	  Language	  
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Predic6on	  for	  Very	  Different	  Language	  
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Behind	  the	  Scenes	  of	  Pandora	  -‐	  The	  World	  of	  Avatar	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  hYps://youtu.be/URSOqWtLix4	  	  
	  



Overview	  of	  Learning	  Reduc6ons	  
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Mo6va6on	  

•  Know	  how	  to	  solve	  “standard”	  ML	  problems	  
–  Classifica6on,	  regression,	  etc.	  
–  SVMs,	  logis6c	  regression,	  decision	  trees,	  neural	  nets,	  etc.	  

•  “Reduce”	  complex	  problems	  to	  simple	  ones?	  	  
–  Variable-‐length	  trajectories	  è	  mul6variate	  regression	  

•  Similar	  to	  other	  reduc6on	  problems	  
–  E.g.,	  NP-‐complete	  reduc6ons	  
–  Some	  learning	  reduc6ons	  have	  provable	  guarantees	  

Many	  toolkits	  available!	  

SFll	  non-‐trivial!	  
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Other	  Learning	  Reduc6ons	  

•  Mul6class	  è	  Binary	  
•  Cost-‐weighted	  è	  Unweighted	  
•  Ranking	  è	  Binary	  	  
•  Sequen6al	  è	  Mul6class	  
•  And	  many	  more…	  
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Why	  Mul6class	  è	  Binary?	  

•  Conven6onal	  approach:	  one-‐versus-‐all	  
– Scoring	  func6on	  per	  class	  
– Predict	  class	  with	  highest	  score	  

•  Limita6ons:	  
– Linear	  in	  #classes	  
– Hard	  to	  prove	  generaliza6on	  bounds	  
–  (Binary	  SVM	  analyzes	  generaliza6on	  via	  margin)	  

50	  



Learning	  Reduc6on	  Recipe	  

•  Given	  original	  training	  set:	  

•  Create	  modified	  training	  set(s):	  

	  
– Train	  ĥ’s	  on	  Ŝ’s	  

•  Final	  h	  =	  combining	  predic6ons	  ĥ’s	  
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S = (xi, yi ){ }i=1
N

Ŝ = (xi, ŷi ){ }i=1
N{ }

Mul6class	  

Binary	  



Two	  Flavors	  of	  Analysis	  

•  Error	  Reduc6on:	  
–  Each	  ĥ	  achieves	  0/1	  Loss	  ε	  
–  Implica6on	  for	  mul6class	  0/1	  loss	  of	  h?	  

•  Answer:	  (K-‐1)ε	  

•  Regret	  Reduc6on:	  
–  Each	  ĥ	  achieves	  0/1	  regret	  r	  
–  Implica6on	  of	  mul6class	  regret?	  

•  E.g.,	  Kr?	  
– More	  powerful	  result	  
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r = LP w( )− LP (w*)

ε = LP w( )

Recall:'Illustra-on'

Lecture'11:'Learning'Reduc-ons'&'Recent'Applica-ons'of'Decision'Trees' 22'
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Aside:	  Sliding	  Window	  Regression	  

•  If	  base	  model	  ĥ	  has	  0	  error	  
– Then	  sliding	  window	  predic6on	  has	  0	  error	  

•  What	  about	  when	  ĥ	  has	  >0	  error?	  
– As	  regret	  of	  ĥ	  decreases…	  
– …	  decrease	  in	  regret	  of	  h?	  
– Open	  quesFon!	  

•  Need	  to	  formalize	  lack	  of	  	  
	  	  	  global	  dependencies	  
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Filter	  Tree	  for	  Mul6class	  è	  Binary	  
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hYp://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf	  

h12	   h34	   h56	   h78	  

x	  

y	  

hLed,Right	   hLed,Right	  

hLed,Right	  
Each	  base	  model	  
Is	  a	  binary	  classifier	  



The	  Learning	  Reduc6on	  

•  First	  Layer	  
– Train	  each	  hij	  using	  
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Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

Sij = (x,1 y=i[ ] ) ∀(x, y)∈ S : y ∈ {i, j}{ }

First	  Layer	  



The	  Learning	  Reduc6on	  

•  Second	  Layer	  
– Train	  hLef,Right	  using	  
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Fourth'Try:'Filter'Tree'
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h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

SLeft,Right = (x,1 y∈{L,R}[ ] ) ∀(x, y)∈ S : y ∈ {1,..., 4}∧ no mistake by h12,h34( ){ }

Second	  Layer	   Train	  Lower	  Layers	  only	  	  
using	  mistake-‐free	  	  
training	  data.	  



The	  Learning	  Reduc6on	  

•  Classifica6on	  problem	  dependent	  on	  
classifiers	  learned	  in	  previous	  layers	  

•  Reduc6on	  happens	  itera6vely	  
–  I.e.,	  adap6vely	  
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Recall:	  Two	  Flavors	  of	  Analysis	  

•  Error	  Reduc6on:	  
–  Each	  ĥ	  achieves	  0/1	  Loss	  ε	  
–  Implica6on	  for	  mul6class	  0/1	  loss	  of	  h?	  

•  Answer:	  (K-‐1)ε	  

•  Regret	  Reduc6on:	  
–  Each	  ĥ	  achieves	  0/1	  regret	  r	  
–  Implica6on	  of	  mul6class	  regret?	  

•  E.g.,	  Kr?	  
– More	  powerful	  result	  
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r = LP w( )− LP (w*)

ε = LP w( )

Recall:'Illustra-on'
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Filter	  Tree	  Regret	  Guarantee	  

•  If	  each	  classifier	  has	  regret	  r	  
•  Filter	  Tree	  has	  mul6class	  regret	  ≤	  (log2K)r	  
– Good	  dependence	  on	  K	  

•  Induc6ve	  proof	  
•  See	  details	  in	  paper	  
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hYp://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf	  
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Run6me	  Computa6onal	  Benefits	  

•  Logarithmic	  test	  6me	  
– With	  respect	  to	  #classes	  
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See	  also:	  Logarithmic	  Time	  Online	  MulFclass	  PredicFon	  
hYp://arxiv.org/abs/1406.1822	  	  



Next	  Week	  

•  Unsupervised	  Learning	  

•  Data	  Visualiza6on	  
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