
Machine	 Learning	 &	 Data	 Mining	
CS/CNS/EE	 155	

Lecture	 9:	
Recent	 Applica6ons:	 	

Edge	 Detec6on	 &	 Speech	 Anima6on	

1	

Recita6ons	

•  Remaining	 Recita6ons	 will	 be	 on	 Tuesdays	

•  Minimize	 overlap	 w/	 Office	 Hours	

2	

Today	

•  Recent	 Applica6ons:	 	

•  Introduc6on	 to	 Learning	 Reduc6ons	

3	

1

Fast Edge Detection Using Structured Forests
Piotr Dollár and C. Lawrence Zitnick

Microsoft Research
{pdollar,larryz}@microsoft.com

Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.

F

1 INTRODUCTION

Edge detection has remained a fundamental task in computer
vision since the early 1970’s [18], [15], [43]. The detection
of edges is a critical preprocessing step for a variety of
tasks, including object recognition [47], [17], segmentation
[33], [1], and active contours [26]. Traditional approaches to
edge detection use a variety of methods for computing color
gradients followed by non-maximal suppression [7], [19], [50].
Unfortunately, many visually salient edges do not correspond
to color gradients, such as texture edges [34] and illusory
contours [39]. State-of-the-art edge detectors [1], [41], [31],
[21] use multiple features as input, including brightness, color,
texture and depth gradients computed over multiple scales.

Since visually salient edges correspond to a variety of visual
phenomena, finding a unified approach to edge detection is
difficult. Motivated by this observation several recent papers
have explored the use of learning techniques for edge detection
[13], [49], [31], [27]. These approaches take an image patch
and compute the likelihood that the center pixel contains an
edge. Optionally, the independent edge predictions may then
be combined using global reasoning [1], [41], [49], [2].

Edges in a local patch are highly interdependent [31].
They often contain well-known patterns, such as straight lines,
parallel lines, T-junctions or Y-junctions [40], [31]. Recently, a
family of learning approaches called structured learning [36]
has been applied to problems exhibiting similar characteristics.
For instance, [29] applies structured learning to the problem
of semantic image labeling for which local image labels are
also highly interdependent.

In this paper we propose a generalized structured learning
approach that we apply to edge detection. This approach
allows us to take advantage of the inherent structure in edge
patches, while being surprisingly computationally efficient.
We can compute edge maps in realtime, which is orders of
magnitude faster than competing state-of-the-art approaches.
A random forest framework is used to capture the structured

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS [1] on which the popular gPb detector [1]
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.

information [29]. We formulate the problem of edge detection
as predicting local segmentation masks given input image
patches. Our novel approach to learning decision trees uses
structured labels to determine the splitting function at each
branch in the tree. The structured labels are robustly mapped to
a discrete space on which standard information gain measures
may be evaluated. Each forest predicts a patch of edge pixel
labels that are aggregated across the image to compute our
final edge map, see Figure 1. Since the aggregated edge maps
may be diffuse, the edge maps may optionally be sharpened
using local color and depth cues. We show state-of-the-art
results on both the BSDS500 [1] and the NYU Depth dataset
[44]. We demonstrate the potential of our approach as a general
purpose edge detector by showing the strong cross dataset
generalization of our learned edge models.

ar
X

iv
:1

40
6.

55
49

v2
 [

cs
.C

V
]

25
 N

ov
 2

01
4

Online Submission ID: 0622

A Data-Driven Approach for Realistic Speech Animation

1 1.5 2 2.5 3 3.5s s s s s ih ih ih g g r r ae ae ae ae f f f

“SIGGRAPH”

Realistic Speech Animation

Target Speech

1 1.5 2 2.5 3 3.5

“SIGGRAPH”

Machine Learning

Neural Network
Decision TreeData-driven Learning

visual context

audio context

Figure 1: A decision tree is used to learn the regression from input phoneme labels to output speech animation parameters. The tree generates
continuous, natural-looking speech animation parameters that represent a reference face of an actor and can be retargeted to the face of any
computer generated character. Predictions are made by traversing the tree from root to leaf node evaluating the learned set of discriminative
queries.

Abstract1

In this paper, we present a simple and effective machine learning2

approach for automatically generating natural looking speech an-3

imation that synchronizes to target audio speech. Our approach is4

easy to deploy, requires minimal parameter tuning, generalizes well5

to novel input speech sequences, and is easily composable with ex-6

isting retargeting approaches. This paper provides detailed a de-7

scription of our end-to-end approach, including discussing design8

decisions, and analyzing the relative importance of different sys-9

tem components. We show that realistic speech animation can be10

created for any input speech on a range of characters using a variety11

of voices. We also provide an extensive empirical evaluation, both12

quantitative and subjective, and demonstrate substantial improve-13

ments over previous approaches.14

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional15

Graphics and Realism—Animation; I.2.7 [Artificial Intelligence]:16

Natural Language Processing—Speech recognition and synthesis.17

Keywords: Speech Animation, Visemes, Machine Learning.18

1 Introduction19

Automated speech animation (also known as lip synchronization or20

lip sync) is an important and time-consuming aspect of character21

animation. Broadly speaking, speech animation is the task of mov-22

ing the facial features of a graphics model to give the impression of23

speech (e.g., synchronize with the spoken audio), and the goal of24

automated speech animation is to perform this task in a (near-)fully25

automated fashion.26

The use of speech animation in practice has typically involved an27

unpleasant trade-off between production speed and quality. At one28

extreme, large budget productions employ many professional ani-29

mators who can spend several hours manually animating just a few30

short seconds of speech, and key-framing every frame (or every31

few frames). At the other end, high-volume or low-budget produc-32

tions use overly simplified libraries of lip shapes combined with33

naive interpolation methods to quickly generate low-quality speech34

animation. In the middle are mid-budget productions that use the35

latter approach as an initialization, and them employ a few artists to36

somewhat refine the animation.37

As humans, we are all experts on faces and are able to identify asyn-38

chrony between audio and visual speech, causing poor speech ani-39

mation to appear somewhat distracting. Furthermore, the McGurk40

effect shows that mismatch between visual and audio speech can41

change what the viewer perceives to have heard [McGurk and Mac-42

Donald 1976]. Thus, proper speech animation is crucial for effec-43

tive animation in general.44

In this paper, we show that a simple and fast machine learning ap-45

proach can achieve dramatic improvements upon previous work in46

automatic speech animation. We present an audio-to-visual speech47

animation pipeline based on a recently proposed sliding window48

regression approach [Kim et al. 2015] that can generate realistic49

speech animation. The key performance gains are due to:50

• Utilizing complex predictors such as deep neural networks51

[Rumelhart et al. 1988] and decision trees [Maimon and52

Rokach 2005] that can learn highly non-linear mappings from53

phonetic inputs to animation outputs. We find that both neu-54

ral networks and decision trees perform well, with neural net-55

works performing the best.56

• Utilizing a multivariate sliding window predictor [Kim et al.57

2015] that captures natural variation and coarticulation in58

acoustic and visual speech. One key tuning parameter is the59

size of the sliding window. We find that this parameter is easy60

to tune, in part due to how quickly our predictors train.61

• Making predictions in a relatively compact yet expressive Ac-62

tive Appearance Model space [Cootes et al. 2001; Matthews63

and Baker 2004]. This allows for predictions to be easily com-64

posed with various retargeting approaches and thus mapped to65

arbitrary graphics characters.66

In summary, our approach is simple to employ, requires minimal67

parameter tuning or feature engineering, generalizes well to novel68

input speech sequences, and is easily composable with existing re-69

targeting approaches. Our approach also extends trivially to ensem-70

ble machine learning methods such as random forests; however, we71

find the quantitative performance gains to be minimal, and the sub-72

jective differences to be neglible.73

This paper provides a detailed description of our end-to-end ap-74

proach, including discussing design decisions, and analyzing the75

relative importance of different system components. We show that76

our approach is easy to deploy with respect to design decisions77

1

Edge	 Detec6on	 Speech	 Anima6on	

Edge	 Detec6on	

4	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

X:	

Y:	

Challenges	

•  Output	 Space?	

•  400x300	 Image	
– 120000	 Pixels	
– 2120000	 Labels!	

5	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Today:	 Learning	 Reduc6ons	

•  Convert	 complicated	 problem	 into	 simpler	 ones	
–  Use	 complex	 models	 for	 simpler	 problems	
–  E.g.,	 decision	 trees,	 neural	 nets	

•  Recompose	 predic6ons	 for	 complicated	 problem	

6	

Strong	 Local	 Proper6es	

•  Local	 paYerns	 maYer	
– E.g.,	 image	 patches	

•  Complex	 rela6onship	
– Non-‐linear	

7	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Weak	 Global	 Proper6es	

•  Edge	 detec6ons	 local	

•  Can	 ignore	 most	 	
	 	 	 	 of	 image	
	

8	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Sliding	 Window	 Approach	
(Decomposi6on)	

•  Train	 model	 to	 predict	
	 	 	 	 patches	
– E.g.,	 16x16	

•  Slide	 across	 image	

•  What	 model?	

9	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Recall:	 Binary	 Decision	 Tree	

	
Male?	

Age>8?	 Age>11?	

1	 0	 1	 0	

Yes	

Yes	 Yes	 No	

No	

No	

Internal	 Nodes	

Leaf	 Nodes	

Root	 Node	

Every	 internal	 node	 has	 a	 binary	 	
query	 func6on	 q(x).	

Every	 leaf	 node	 has	 a	 predic6on,	
e.g.,	 0	 or	 1.	

Predic6on	 starts	 at	 root	 node.	
Recursively	 calls	 query	 func6on.	
Posi6ve	 response	 è	 Lef	 Child.	
Nega6ve	 response	 è	 Right	 Child.	
Repeat	 un6l	 Leaf	 Node.	

Alice	
Gender:	 Female	
Age:	 14	

Input:	

PredicFon:	 Height	 >	 55”	 	

10	

Structured	 Decision	 Tree	

•  Each	 leaf	 node	 predicts	 a	 16x16	 edge	 matrix	
– Average	 of	 all	 training	 patch	 labels	 	

•  Predic6on	 is	 very	 fast!	
– Slide	 predictor	 across	 image,	 average	 results	
– No	 need	 for	 Viterbi-‐type	 algorithms	

•  What	 is	 splikng	 criterion?	
•  What	 is	 query	 set?	

11	

Structured	 Informa6on	 Gain	

12	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|

m
), were limited to using m 2. Our experiments

indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y

0
= {0, 1}d⇥d for the latter, where d indicates

patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).

Good!	 Bad!	

Structured	 Informa6on	 Gain	

1.  First	 map	 labels	 to	 coordinate	 system	
A.  For	 each	 coordinate,	 choose	 pair	 of	 pixels	
B.  Set	 coordinate	 to	 1	 if	 in	 same	 segment,	 0	 o.w.	
•  Coordinate	 1	 =	 0	

13	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	 approach	 more	 complicated.)	

Structured	 Informa6on	 Gain	

1.  First	 map	 labels	 to	 coordinate	 system	
A.  For	 each	 coordinate,	 choose	 pair	 of	 pixels	
B.  Set	 coordinate	 to	 1	 if	 in	 same	 segment,	 0	 o.w.	
•  Coordinate	 1	 =	 0	
•  Coordinate	 2	 =	 1	
•  Etc…	

14	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

(Actual	 approach	 more	 complicated.)	

For	 each	 training	 example!	

Structured	 Informa6on	 Gain	

1.  First	 map	 labels	 to	 coordinate	 system	
A.  For	 each	 coordinate,	 choose	 pair	 of	 pixels	
B.  Set	 coordinate	 to	 1	 if	 in	 same	 segment,	 0	 o.w.	
•  Coordinate	 1	 =	 0	
•  Coordinate	 2	 =	 1	
•  Etc…	

2.  Cluster	 training	 labels	 	

15	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

(Actual	 approach	 more	 complicated.)	

For	 each	 training	 example!	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Mul6class	 Entropy	

•  Reduced	 training	 labels	 to	 K	 clusters	
– Can	 treat	 as	 mul6class	 classifica6on	

•  Impurity	 measure	 =	 mul6class	 entropy	

16	

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use ⇧� with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping ⇧� : Y ! Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|

m
), were limited to using m 2. Our experiments

indicate m � 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y 2 Y into a discrete
set of labels c 2 C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping ⇧� and compute zi = ⇧�(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y 2 Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y 2 Y = Zd⇥d to denote the former
and y0 2 Y

0
= {0, 1}d⇥d for the latter, where d indicates

patch width. An edge map y0 can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions ⇧� used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16⇥16 segmentation mask from a larger 32⇥32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
P

ij(zkj � zij)2. This is equivalent to
mink

P
j(zkj � z̄j)2 and can be computed efficiently in time O(nm).

Query	 Set	
•  Features	 about	 color	 gradients	

–  Image	 gets	 darker	 from	 column	 1	 to	 column	 5	
–  Image	 gets	 more	 blue	 from	 row	 7	 to	 row	 3	
–  Etc…	
–  7228	 features	 total	

17	

7

gr
ou

nd
tru

th
hi

gh
pr

ec
is

io
n

op
tim

al
th

re
sh

hi
gh

re
ca

ll

Fig. 4. Visualizations of matches and errors of SE+MS+SH compared to BSDS ground truth edges. Edges are thickened to two
pixels for better visibility; the color coding is green=true positive, blue=false positive, red=false negative. Results are shown at three
thresholds: high precision (T⇡.26, P⇡0.88, R=.50), ODS threshold (T⇡.14, P=R⇡.75), and high recall (T⇡.05, P=.50, R⇡0.93).

5 RESULTS
In this section we analyze the performance of our structured
edge (SE) detector in detail. First we analyze the influence
of parameters in §5.1 and test SE variants in §5.2. Next, we
compare results on the BSDS [1] and NYUD [44] datasets
to the state-of-the-art in §5.3 and §5.4, respectively, reporting
both accuracy and runtime. We conclude by demonstrating the
cross dataset generalization of our approach in §5.5.

The majority of our experiments are performed on the
Berkeley Segmentation Dataset and Benchmark (BSDS500)
[35], [1]. The dataset contains 200 training, 100 validation,
and 200 testing images. Each image has hand labeled ground
truth contours. Edge detection accuracy is evaluated using
three standard measures: fixed contour threshold (ODS), per-
image best threshold (OIS), and average precision (AP) [1].
To evaluate accuracy in the high recall regime, we additionally
introduce a new measure, recall at 50% precision (R50), in
§5.2. Prior to evaluation, we apply a standard non-maximal
suppression technique to our edge maps to obtain thinned
edges [7]. Example detections on BSDS are shown in Figure 3
and visualizations of edge accuracy are shown in Figure 4.

5.1 Parameter Sweeps
We set all parameters with the help of the BSDS validation set
which is fully independent of the test set. Parameters include:

structured forest splitting parameters (e.g., m and k), feature
parameters (e.g., image and channel blurring), and model
and tree parameters (e.g. number of trees and data quantity).
Training takes ⇠20 minute per tree using one million patches
and is parallelized over trees. Evaluation of trees is parallelized
as well, we use a quad-core machine for all reported runtimes.

In Figures 5-7 we explore the effect of choices of splitting,
model and feature parameters. For each experiment we train
on the 200 image training set and measure edge detection
accuracy on the 100 image validation set (using the standard
ODS performance metric). All results are averaged over 5
trials. First, we set all parameters to their default values
indicated by orange markers in the plots. Then, keeping all but
one parameter fixed, we explore the effect on edge detection
accuracy as a single parameter is varied.

Since we explore a large number of parameters settings, we
perform our experiments using a slightly reduced accuracy
model that is faster to train. Specifically we train using fewer
patches (2 · 10

5 versus 10

6) and utilize sharpening (SH) but
not multiscale detection (MS). Also, the validation set is
more challenging than the test set and we evaluate using 25
thresholds instead of 99, further reducing accuracy (.71 ODS).
Finally, we note that sweep details have changed slightly from
the our previous work [14]; most notably, the sweeps now
utilize sharpening but not multiscale detection.

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

(Actual	 approach	 more	 complicated.)	

Pukng	 it	 Together	 	

•  Create	 new	 training	 set	 Ŝ	 =	 {(x,ŷ)}	
–  x	 =	 16x16	 image	 patch	
–  ŷ	 =	 16x16	 ground	 truth	 edges	

•  Train	 structured	 DT	 on	 Ŝ	

•  Predict	 by	 sliding	 DT	 over	 input	 image	
–  Average	 predic6ons	

18	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

(Actual	 approach	 more	 complicated.)	

DecomposiFon	

RecomposiFon	

19	

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

6

gr
ou

nd
tru

th
gP

b+
ow

t+
uc

m
Sk

et
ch

To
ke

ns
SC

G
SE

SE
+M

S
SE

+S
H

SE
+M

S+
SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

Input	

Ground	
Truth	

Fo
ur
	 V
er
sio

ns
	 o
f	 M

et
ho

d	

ODS OIS AP FPS

Human .80 .80 - -
Canny .60 .64 .58 15
Felz-Hutt [11] .61 .64 .56 10
Hidayat-Green [16] .62† - - 20
BEL [9] .66† - - 1/10
gPb + GPU [6] .70† - - 1/2‡

gPb [1] .71 .74 .65 1/240
gPb-owt-ucm [1] .73 .76 .73 1/240
Sketch tokens [21] .73 .75 .78 1
SCG [31] .74 .76 .77 1/280
SE-SS, T=1 .72 .74 .77 60
SE-SS, T=4 .73 .75 .77 30
SE-MS, T=4 .74 .76 .78 6

Table 1. Edge detection results on BSDS500 [1]. Our Structured
Edge (SE) detector achieves top performance on BSDS while be-
ing 1-4 orders of magnitude faster than methods of comparable
accuracy. Three variants of SE are shown utilizing either single
(SS) or multiscale (MS) detection with variable number of evalu-
ated trees T . SE-SS, T = 4 achieves nearly identical accuracy as
gPb-owt-ucm [1] but is dramatically faster. [†Indicates results were
measured on BSDS300; ‡indicates a GPU implementation.]

5. Results

In this section we show results on two different object
contour datasets measuring both detection accuracy and
runtime performance. We conclude by demonstrating the
cross dataset generalization of our approach by testing on
each dataset using decision forests learned on the other.

BSDS 500: We begin by testing on the popular Berkeley
Segmentation Dataset and Benchmark (BSDS 500) [25, 1].
The dataset contains 200 training, 100 validation and 200
testing images. Each image has hand labeled ground truth
contours. Edge detection accuracy is evaluated using three
measures: fixed contour threshold (ODS), per-image best
threshold (OIS), and average precision (AP) [1]. Prior to
evaluation, we apply a standard non-maximal suppression
technique to our edge maps to obtain thinned edges [5]. Ex-
ample detections on BSDS are shown in Figure 2.

We evaluate our Structured Edge (SE) detector computed
at a single scale (SS) and at multiple scales (MS). For SE-
SS we show two results with T = 1 and T = 4 evaluated
decision trees at each location. Precision/recall curves are
shown in Figure 5 and results are summarized in Table 1.
Our multiscale approach either ties or outperforms the state-
of-the-art approaches [1, 31, 21], while being multiple or-
ders of magnitude faster than [1, 31] and 6⇥ faster than [21]
(all frame rates are reported on an image size of 480⇥ 320

for all methods). With only minimal loss in accuracy, our
single scale approach further improves the runtime by 5⇥

to 10⇥. In fact, with T = 1, we can perform at a frame

ODS OIS AP FPS

gPb [1] (rgb) .51 .52 .37 1/240
SCG [31] (rgb) .55 .57 .46 1/280
SE-SS (rgb) .58 .59 .53 30
SE-MS (rgb) .60 .61 .56 6
gPb [1] (depth) .44 .46 .28 1/240
SCG [31] (depth) .53 .54 .45 1/280
SE-SS (depth) .57 .58 .54 30
SE-MS (depth) .58 .59 .57 6
gPb [1] (rgbd) .53 .54 .40 1/240
SCG [31] (rgbd) .62 .63 .54 1/280
SE-SS (rgbd) .62 .63 .59 25
SE-MS (rgbd) .64 .65 .63 5

Table 2. Edge detection results on the NYU Depth dataset [33]
for RGB-only (top), depth-only (middle), and RGBD (bottom).
Across all modalities on all measures SE outperforms both gPb
and SCG while running 3 orders of magnitude faster.

rate of 60hz. This is considerably faster than [1, 31] while
reducing the ODS score from 0.74 to 0.72. Note that the
GPU implementation [6] of [1] only achieves an ODS score
of 0.70 with a runtime of 2 seconds.

In comparison to other learning-based approaches to
edge detection, we considerably outperform [9] which com-
putes edges independently at each pixel given its surround-
ing image patch. We slightly outperform sketch tokens [21]
in both accuracy and runtime performance. This may be the
result of sketch tokens using a fixed set of classes for se-
lecting split criterion at each node, whereas our structured
forests can captured finer patch edge structure.

NYU dataset: The NYU Depth dataset (v2) [33] contains
1, 449 pairs of RGB and depth images with corresponding
semantic segmentations. Ren and Bo [31] adopted the data
for edge detection allowing for testing edge detectors us-
ing multiple modalities including RGB, depth, and RGBD.
We use the exact experimental setup proposed by [31] using
the same 60%/40% training/testing split (and use 1/3 of the
training data as a validation set) with the images reduced to
320 ⇥ 240 resolution (preprocessing scripts available from
[31]). In [31] and our work, we treat the depth channel in
the same manner as the other color channels. Specifically,
we recompute the gradient channels over the depth channel
(with identical parameters) resulting in 11 additional chan-
nels. Example SE results are shown in Figure 4.

In Table 2 we compare our approach to the state-of-the-
art approaches gPb-owt-ucm (adopted to utilize depth) and
SCG [31]. Precision/recall curves for all approaches are
shown in Figure 3. Across all measures, our approaches
(SE-SS and SE-MS) perform significantly better than SCG
when using RGB only and depth only as an input. For
RGBD our multi-scale approach performs considerably bet-

6

Comparable	 accuracy	 	
vs	 state-‐of-‐the-‐art	 	
	
Much	 faster!	

“Structured	 Random	 Forests	 for	 Fast	 Edge	 DetecFon”	
Dollár	 &	 Zitnick,	 ICCV	 2013	

Accuracy	 	
Measures	

Speed	

20	

Speech	 Anima6on	

21	

Automa6cally	 Animate	 to	 Input	 Audio?	
(Given	 Training	 Data)	

22	

A	 Decision	 Tree	 Framework	 for	 SpaFotemporal	 Sequence	 PredicFon	
Taehwan	 Kim,	 Yisong	 Yue,	 Sarah	 Taylor,	 Iain	 MaYhews.	 	 KDD	 2015	
A	 Deep	 Learning	 Approach	 for	 Generalized	 Speech	 AnimaFon	
Sarah	 Taylor,	 Taehwan	 Kim,	 Yisong	 Yue,	 et	 al.	 	 SIGGRAPH	 2017	

Training	 Data	

•  ~2500	 Sentences	
–  Recorded	 at	 30	 Hz	
–  ~10	 hours	 of	 recorded	 speech	

•  Ac6ve	 Appearance	 Model	
–  Actor’s	 lower	 face	
–  30	 degrees	 of	 freedom	 (also	 100+)	

Data	 from	 [Taylor	 et	 al.,	 2012]	 23	

bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

Predic6on	 Task	
Input	 sequence	

Output	 sequence	

Goal:	 learn	 predictor	

Phoneme	 sequence	

Sequence	 of	 face	 configura6ons	

24	

bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

X

Y

Temporal	 curvature	 can	 vary	 smoothly	 or	 sharply	
(Depends	 on	 context	 –	 this	 is	 the	 co-‐ar6cula6on	 problem)	

Minimal	 long-‐range	 dependencies	
(predicFon	 =	 construcFon	 =	 elecFon…)	

25	

/k/	

Co-‐ArFculaFon	 is	 Hard	 to	 Get	 Right	
(Strong	 Local	 Proper6es)	

Weak	 Global	 Proper6es	

•  No	 need	 to	 model	 en6re	 chain	 directly	

•  Mo6vates	 sliding	 window	 approach!	

27	

bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

X

Y

Temporal)curvature)can)vary)smoothly)or)sharply)
(Depends(on(context(–(this(is(the(co0ar3cula3on(problem)(

Minimal)long5range)dependencies)
(predic7on(=(construc7on(=(elec7on…)(Minimal	 long-‐range	 dependencies	

(predicFon	 =	 construcFon	 =	 elecFon…)	

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -x

ˆx

1

, ˆx

2

, . . .

“ P R E D I C T I O N ”

r ih ih d d
ih ih d d ih
ih d d ih ih
d d ih ih ih
d ih ih ih ih

Input speech:

…

…

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -x

y

ˆx

1

, ˆx

2

, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ P R E D I C T I O N ”

r ih ih d d
ih ih d d ih
ih d d ih ih
d d ih ih ih
d ih ih ih ih

Input speech:

…

…

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n
 1

-50

0

50

100
p r ih d ih k sh uh n

0 5 10 15 20 25
-100

0

100

Decision	 Tree	 Model	
150-‐variate	 regression	

Overlapping	 Sliding	
Window	 of	 Inputs	

Aggregate	 	
Outputs	

This	 is	 the	 only	 thing	 that	 	
requires	 machine	 learning!	

Very	 fast!	
28	

(,)	
(,)	 (,)	

Training	
Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n

 1

-50

0

50

100
p r ih d ih k sh uh n

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n

 1

-50

0

50

100
p r ih d ih k sh uh n Original	 Training	 Data	

(Variable-‐Length	 Trajectory	 Predic6on)	

Modified	 Training	 Data	
(Fixed-‐Length	 Mul6variate	 Regression)	

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -x

y

ˆx

1

, ˆx

2

, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ P R E D I C T I O N ”

r ih ih d d
ih ih d d ih
ih d d ih ih
d d ih ih ih
d ih ih ih ih

Input speech:

…

…

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n
 1

-50

0

50

100
p r ih d ih k sh uh n

0 5 10 15 20 25
-100

0

100

Train	 Decision	 Tree	
(Or	 some	 other	 regression	 model)	

0 6

-60

-40

-20

0

20

40

60

80

100

−, p, p, r, ih
0 6

-60

-40

-20

0

20

40

60

80

100

p, p, r, ih, ih

p, r, ih, ih,d
0 6

-60

-40

-20

0

20

40

60

80

100

,	
,	 …	

29	

Query	 Set	 for	 Speech	 Anima6on	
Frame	 8	 is	 a	 	
vowel	 that	
contains	 /a/?	

Frame	 8	 is	 	
a	 sibilant	 	
consonant?	

Frame	 8	 is	 a	
long	 vowel?	

Frame	 8	 is	 a	 	
front	 consonant?	

Frame	 8	 is	 a	
post-‐alveolar	 	
consonant?	

Frame	 6	 is	 a	 	
vowel	 that	
contains	 /a/?	

Frame	 8	 is	 a	 	
vowel	 that	
contains	 /o/?	

Frames	 indexed	 by	 1-‐11	 (center	 is	 frame	 6)	

…
	

…
	

…
	

…
	

yes	 no	

yes	 no	 no	 yes	

Full	 tree	 has	 5K+	 leaf	 nodes	
30	

Mul6variate	 Regression	 Tree	

•  PredicFon:	

	
•  Training	 loss:	 mul6variate	 squared	 loss:	

150	

=	 Mean	 Predic6on:	

Training	 Data	 	
in	 Leaf	 Node:	

ŷLeaf − ŷ
ŷ∈Leaf
∑

Leaf
∑

2

31	

Predic6on	 on	 New	 Speaker	

32	

A	 Decision	 Tree	 Framework	 for	 SpaFotemporal	 Sequence	 PredicFon	
Taehwan	 Kim,	 Yisong	 Yue,	 Sarah	 Taylor,	 Iain	 MaYhews.	 	 KDD	 2015	
A	 Deep	 Learning	 Approach	 for	 Generalized	 Speech	 AnimaFon	
Sarah	 Taylor,	 Taehwan	 Kim,	 Yisong	 Yue,	 et	 al.	 	 SIGGRAPH	 2017	

Predic6on	 on	 New	 Speaker	

33	

A	 Decision	 Tree	 Framework	 for	 SpaFotemporal	 Sequence	 PredicFon	
Taehwan	 Kim,	 Yisong	 Yue,	 Sarah	 Taylor,	 Iain	 MaYhews.	 	 KDD	 2015	
A	 Deep	 Learning	 Approach	 for	 Generalized	 Speech	 AnimaFon	
Sarah	 Taylor,	 Taehwan	 Kim,	 Yisong	 Yue,	 et	 al.	 	 SIGGRAPH	 2017	

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - l l l l er er er n n n iy iy ng ng ng ng g g g g -(a) x

y

ˆx

1

, ˆx

2

, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ L E A R N I N G ”

l l er er er
l er er er n
er er er n n
er er n n n
er n n n iy

Input speech:

…

…

(b)

(c)

(d)

(e)

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n

 1

0

50

100
l er n iy ng g

0 5 10 15 20 25
-100

0

100

34	

Frame no
0 5 10 15 20 25

P
re

d
ic

te
d
 A

A
M

 p
a
ra

m
e
te

r
1

-100

0

100

200

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Label - s s s s ih ih ih g g g r r ae ae ae ae f f f f -

(a) x

y

ˆx

1

, ˆx

2

, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ S I G G R A P H ”

s s ih ih ih
s ih ih ih g
ih ih ih g g
ih ih g g g
ih g g g r

Input speech:

…

…

(b)

(c)

(d)

(e)

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

P
ar

am
et

er
 1

-50

0

50

100

s ih g r ae f

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

35	

Side-‐by-‐Side	 User	 Study	

Comparing	 our	 approach	 versus	 compe6tor	 on	 50	 held-‐out	 test	 sentences.	

“A	 Decision	 Tree	 Framework	 for	 SpaFotemporal	 Sequence	 PredicFon”	
Kim,	 Yue,	 Taylor,	 MaYhews,	 KDD	 2015,	 hYp://projects.yisongyue.com/visual_speech	 	 36	

Side-‐by-‐Side	 User	 Study	

0	

12.5	

25	

37.5	

50	

62.5	

Dynamic	 Vis.	 HMM	 Ground	 Truth	

Sliding	 Window	 Compe6tor	

State-‐of-‐the-‐Art	 Baselines	

Comparing	 our	 approach	 versus	 compe6tor	 on	 50	 held-‐out	 test	 sentences.	

B	 E	 T	 T	 E	 R	

37	

Comparison	 with	 Ground	 Truth	

We	 under-‐ar6culate	 rela6ve	 to	 ground	 truth!	
(Could	 be	 solved	 with	 more	 training	 data…)	

“A	 Decision	 Tree	 Framework	 for	 SpaFotemporal	 Sequence	 PredicFon”	
Kim,	 Yue,	 Taylor,	 MaYhews,	 KDD	 2015,	 hYp://projects.yisongyue.com/visual_speech	 	 38	

1 1.5 2 2.5 3 3.5

?

? ? ? ?

s s s s s ih ih ih g g r r ae ae ae ae f f f
?

?

Is the phoneme in the 8th
frame a diphthong?

Y
Is the phoneme in the 8th
frame a semivowel?

YY

N

NN

…

Is the phoneme in the 3rd frame
articulated at the back of the mouth?

“SIGGRAPH”

Realistic Speech Animation

Target Speech

Decision Tree

1 1.5 2 2.5 3 3.5

?

? ? ? ?

s s s s s ih ih ih g g r r ae ae ae ae f f f
?

?

Is the phoneme in the 8th
frame a diphthong?

Y
Is the phoneme in the 8th
frame a semivowel?

YY

N

NN

…

Is the phoneme in the 3rd frame
articulated at the back of the mouth?

“SIGGRAPH”

Realistic Speech Animation

Target Speech

Decision Tree

Input	 Audio	

Speech	 Recogni6on	

Speech	 Anima6on	

Retarge6ng	
E.g.,	 [Sumner	 &	 Popovic	 2004]	

(chimp	 rig	 courtesy	 of	 Hao	 Li)	

Edi6ng	

39	

Aside:	 Retarge6ng	
Reference	 face	 è	 target	 face	
	

(Semi-‐)AutomaFc:	
Deforma6on	 Transfer	 [Sumner	 &	 Popovic	 2004]	
Finds	 linear	 transform	 (requires	 reference	 pose)	
	

Manual:	
Pose	 basis	 shapes	 &	 linear	 blending	

�3� +3�

1

2

3

�3� +3�

Shape model Combined model
(a) (b) (c)

40	

41	

Predic6on	 for	 Very	 Different	 Language	

42	

Predic6on	 for	 Very	 Different	 Language	

43	

Behind	 the	 Scenes	 of	 Pandora	 -‐	 The	 World	 of	 Avatar	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 hYps://youtu.be/URSOqWtLix4	 	
	

Overview	 of	 Learning	 Reduc6ons	

46	

Mo6va6on	

•  Know	 how	 to	 solve	 “standard”	 ML	 problems	
–  Classifica6on,	 regression,	 etc.	
–  SVMs,	 logis6c	 regression,	 decision	 trees,	 neural	 nets,	 etc.	

•  “Reduce”	 complex	 problems	 to	 simple	 ones?	 	
–  Variable-‐length	 trajectories	 è	 mul6variate	 regression	

•  Similar	 to	 other	 reduc6on	 problems	
–  E.g.,	 NP-‐complete	 reduc6ons	
–  Some	 learning	 reduc6ons	 have	 provable	 guarantees	

Many	 toolkits	 available!	

SFll	 non-‐trivial!	

47	

Other	 Learning	 Reduc6ons	

•  Mul6class	 è	 Binary	
•  Cost-‐weighted	 è	 Unweighted	
•  Ranking	 è	 Binary	 	
•  Sequen6al	 è	 Mul6class	
•  And	 many	 more…	

48	
hYp://hunch.net/~jl/projects/reduc6ons/reduc6ons.html	

Other	 Learning	 Reduc6ons	

•  MulFclass	 è	 Binary	
•  Cost-‐weighted	 è	 Unweighted	
•  Ranking	 è	 Binary	 	
•  Sequen6al	 è	 Mul6class	
•  And	 many	 more…	

49	
hYp://hunch.net/~jl/projects/reduc6ons/reduc6ons.html	

Why	 Mul6class	 è	 Binary?	

•  Conven6onal	 approach:	 one-‐versus-‐all	
– Scoring	 func6on	 per	 class	
– Predict	 class	 with	 highest	 score	

•  Limita6ons:	
– Linear	 in	 #classes	
– Hard	 to	 prove	 generaliza6on	 bounds	
–  (Binary	 SVM	 analyzes	 generaliza6on	 via	 margin)	

50	

Learning	 Reduc6on	 Recipe	

•  Given	 original	 training	 set:	

•  Create	 modified	 training	 set(s):	

	
– Train	 ĥ’s	 on	 Ŝ’s	

•  Final	 h	 =	 combining	 predic6ons	 ĥ’s	

51	

S = (xi, yi){ }i=1
N

Ŝ = (xi, ŷi){ }i=1
N{ }

Mul6class	

Binary	

Two	 Flavors	 of	 Analysis	

•  Error	 Reduc6on:	
–  Each	 ĥ	 achieves	 0/1	 Loss	 ε	
–  Implica6on	 for	 mul6class	 0/1	 loss	 of	 h?	

•  Answer:	 (K-‐1)ε	

•  Regret	 Reduc6on:	
–  Each	 ĥ	 achieves	 0/1	 regret	 r	
–  Implica6on	 of	 mul6class	 regret?	

•  E.g.,	 Kr?	
– More	 powerful	 result	

52	

r = LP w()− LP (w*)

ε = LP w()

Recall:'Illustra-on'

Lecture'11:'Learning'Reduc-ons'&'Recent'Applica-ons'of'Decision'Trees' 22'

Te
st
'E
rr
or
'

Training'Set'Size'

102 103 104 105 106 107 108 109
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bayes'Op-mal'

Consistent'Learning'Algorithm'

Inconsistent'Learning'Algorithm'

“Regret”'

Zero	 0/1	 Test	 Error	
typically	 not	 possible	

Aside:	 Sliding	 Window	 Regression	

•  If	 base	 model	 ĥ	 has	 0	 error	
– Then	 sliding	 window	 predic6on	 has	 0	 error	

•  What	 about	 when	 ĥ	 has	 >0	 error?	
– As	 regret	 of	 ĥ	 decreases…	
– …	 decrease	 in	 regret	 of	 h?	
– Open	 quesFon!	

•  Need	 to	 formalize	 lack	 of	 	
	 	 	 global	 dependencies	

53	

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -x

y

ˆx

1

, ˆx

2

, . . .

ŷ1, ŷ2, . . .

h(x̂)

“ P R E D I C T I O N ”

r ih ih d d
ih ih d d ih
ih d d ih ih
d d ih ih ih
d ih ih ih ih

Input speech:

…

…

⌧

⌧

⌧

⌧ ⌧

⌧

⌧ ⌧ ⌧ ⌧ ⌧ ⌧

⌧ ⌧

⌧

Frame number

2 4 6 8 10 12 14 16 18 20 22 24

D
im

en
si

o
n

 1

-50

0

50

100
p r ih d ih k sh uh n

0 5 10 15 20 25
-100

0

100

Filter	 Tree	 for	 Mul6class	 è	 Binary	

54	

hYp://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf	

h12	 h34	 h56	 h78	

x	

y	

hLed,Right	 hLed,Right	

hLed,Right	
Each	 base	 model	
Is	 a	 binary	 classifier	

The	 Learning	 Reduc6on	

•  First	 Layer	
– Train	 each	 hij	 using	

55	

Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

Sij = (x,1 y=i[]) ∀(x, y)∈ S : y ∈ {i, j}{ }

First	 Layer	

The	 Learning	 Reduc6on	

•  Second	 Layer	
– Train	 hLef,Right	 using	

56	

Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

SLeft,Right = (x,1 y∈{L,R}[]) ∀(x, y)∈ S : y ∈ {1,..., 4}∧ no mistake by h12,h34(){ }

Second	 Layer	 Train	 Lower	 Layers	 only	 	
using	 mistake-‐free	 	
training	 data.	

The	 Learning	 Reduc6on	

•  Classifica6on	 problem	 dependent	 on	
classifiers	 learned	 in	 previous	 layers	

•  Reduc6on	 happens	 itera6vely	
–  I.e.,	 adap6vely	

	

57	

Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

Recall:	 Two	 Flavors	 of	 Analysis	

•  Error	 Reduc6on:	
–  Each	 ĥ	 achieves	 0/1	 Loss	 ε	
–  Implica6on	 for	 mul6class	 0/1	 loss	 of	 h?	

•  Answer:	 (K-‐1)ε	

•  Regret	 Reduc6on:	
–  Each	 ĥ	 achieves	 0/1	 regret	 r	
–  Implica6on	 of	 mul6class	 regret?	

•  E.g.,	 Kr?	
– More	 powerful	 result	

58	

r = LP w()− LP (w*)

ε = LP w()

Recall:'Illustra-on'

Lecture'11:'Learning'Reduc-ons'&'Recent'Applica-ons'of'Decision'Trees' 22'

Te
st
'E
rr
or
'

Training'Set'Size'

102 103 104 105 106 107 108 109
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bayes'Op-mal'

Consistent'Learning'Algorithm'

Inconsistent'Learning'Algorithm'

“Regret”'

Zero	 0/1	 Test	 Error	
typically	 not	 possible	

Filter	 Tree	 Regret	 Guarantee	

•  If	 each	 classifier	 has	 regret	 r	
•  Filter	 Tree	 has	 mul6class	 regret	 ≤	 (log2K)r	
– Good	 dependence	 on	 K	

•  Induc6ve	 proof	
•  See	 details	 in	 paper	

59	

hYp://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf	

Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

Run6me	 Computa6onal	 Benefits	

•  Logarithmic	 test	 6me	
– With	 respect	 to	 #classes	

60	

Fourth'Try:'Filter'Tree'

Lecture'11:'Learning'Reduc6ons'&'Recent'Applica6ons'of'Decision'Trees' 36'

h?p://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf'

h12$ h34$ h56$ h78$

x'

y'

hLe-,Right$ hLe-,Right$

hLe-,Right$
Each'base'model'

Is'a'binary'classifier'

See	 also:	 Logarithmic	 Time	 Online	 MulFclass	 PredicFon	
hYp://arxiv.org/abs/1406.1822	 	

Next	 Week	

•  Unsupervised	 Learning	

•  Data	 Visualiza6on	

61	

