Caltech

Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 9:
Recent Applications:
Edge Detection & Speech Animation



Recitations

* Remaining Recitations will be on Tuesdays

* Minimize overlap w/ Office Hours



Today

* Recent Applications:

Edge Detection Speech Animation
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* Introduction to Learning Reductions



Edge Detection




Challenges

* Output Space?

* 400x300 Image
— 120000 Pixels
— 2120000 3pels!




Today: Learning Reductions

* Convert complicated problem into simpler ones
— Use complex models for simpler problems
— E.g., decision trees, neural nets

 Recompose predictions for complicated problem



Strong Local Properties

* Local patterns matter
— E.g., image patches

 Complex relationship

— Non-linear




Weak Global Properties

* Edge detections local

* Canignore most

of image




Sliding Window Approach

(Decomposition)

* Train model to predict

patches
— E.g., 16x16

* Slide across image

e What model?




Recall: Binary Decision Tree

Root Node

Leaf Nodes

Internal Nodes

Input: Alice
Gender: Female

Age: 14
Prediction: Height > 55”

Every internal node has a binary
guery function q(x).

Every leaf node has a prediction,
e.g., 0or 1.

Prediction starts at root node.
Recursively calls query function.
Positive response = Left Child.

Negative response = Right Child.

Repeat until Leaf Node.
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Structured Decision Tree

Each leaf node predicts a 16x16 edge matrix
— Average of all training patch labels

Prediction is very fast!
— Slide predictor across image, average results

— No need for Viterbi-type algorithms

What is splitting criterion?
What is query set?
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Structured Information Gain
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“Structured Random Forests for Fast Edge Detection”
Dollar & Zitnick, ICCV 2013



Structured Information Gain

1. First map labels to coordinate system
A. For each coordinate, choose pair of pixels
B. Set coordinate to 1 if in same segment, 0 o.w.

e Coordinate1=0

(Actual approach more complicated.)

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013 13



Structured Information Gain

1. First map labels to coordinate system
A. For each coordinate, choose pair of pixels
B. Set coordinate to 1 if in same segment, 0 o.w.

e Coordinate1=0
e (Coordinate2=1
. Etc...

For each training example!

(Actual approach more complicated.)

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013 14



Structured Information Gain

1. First map labels to coordinate system
A. For each coordinate, choose pair of pixels
B. Set coordinate to 1 if in same segment, 0 o.w.

e Coordinate1=0
e (Coordinate2=1
. Etc...

For each training example!

2. Cluster training labels a '

(Actual approach more complicated.)

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013 15



Multiclass Entropy

* Reduced training labels to K clusters
— Can treat as multiclass classification

* Impurity measure = multiclass entropy
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Query Set

* Features about color gradients
— Image gets darker from column 1 to column 5
— Image gets more blue from row 7 to row 3
— Etc...
— 7228 features total

(Actual approach more complicated.)

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013 17



Putting it Together

e Create new training set S = {(x,¥)}

— X =16x16 image patch \

— ¥ =16x16 ground truth edges Decomposition

e Train structured DT on S

* Predict by sliding DT over input image
— Average predictions <—

— Recomposition
(Actual approach more complicated.)

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013 18



Input
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Comparable accuracy
vs state-of-the-art

Much faster!

ODS OIS AP FPS

Human .80 .80 - -
Canny .60 64 .58 15
Felz-Hutt [ 1 1] .61 .64 .56 10
Hidayat-Green [ 1 6] 627 - - 20
BEL [9] 667 - - 1/10
gPb + GPU [6] g0t - - 1/2*
gPb [1] 1 74 .65 1/240
gPb-owt-ucm [ 1] 73 76 73 1/240
Sketch tokens [2 1] 73 75 78 1
SCG [31] 74 JJ6 77 1/280
SE-SS, T=1 12 g4 .77 60
SE-SS, T=4 73 5 77 30
SE-MS, T=4 74 76 .78 6

Accuracy Speed

Measures

“Structured Random Forests for Fast Edge Detection”

Dollar & Zitnick, ICCV 2013
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Speech Animation



Automatically Animate to Input Audio?
(Given Training Data)

A Decision Tree Framework for Spatiotemporal Sequence Prediction

Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017 22



Training Data

e ¥2500 Sentences

— Recorded at 30 Hz
— ~10 hours of recorded speech

* Active Appearance Model

— Actor’s lower face

— 30 degrees of freedom (also 100+)

Frame # 2 5 7 9 11 16 19 21 24
Phoneme  /eh/ K/ /s rf ley/ It/ /ih/ i\ /m/
==
EE
=
ok

Data from [Taylor et al., 2012}



Prediction Task

Input sequence X =<T1,%2y...,T|g >
_ D
Output sequence Y =<y1,%2,-- -+ Yy > ;Y € R

Goal: learn predictor h: X — Y

X Frame 1 2 3 4 5 6 7 8 9 1011121314151617 181920 21 22
Token - p p r thih d d ih ih ith ith k k sh sh sh sh uh uh n

uh Phoneme sequence
d ih

—
v&
Y

—
=
c
z
=
[
£
A

2 4 6 8 10 12 14 16 18 20
Frame number

22 24

Sequence of face configurations
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Temporal curvature can vary smoothly or sharply
(Depends on context — this is the co-articulation problem)

/

16 17 18 19 20 211

Frame | 2 3 4 5 6 7|8 9 101112131415 2
Token {1 p p r ith ih d|d ih ih ith ith k k sh|sh sh sh uh uh n
ih k h uh n

100 T T T T
% ) \ L A
z o
té) 0 \\ |
= —

-50 l l l l l l l -

10 12 14 16 18 20 22

Frame number

\/

Minimal long-range dependencies
(prediction = construction = election...)

25



Co-Articulation is Hard to Get Right
(Strong Local Properties)

-

/k/



Weak Global Properties

* No need to model entire chain directly

Frame 23456 718 9101112131415(1617 18192021 22
X Token p p r ih ih d|d ih ih ih ih k k sh|sh sh shuhuh n |

p T ih d ih k h
100 T T T T T T T
g 50 \/, _
Y é 0 .—_\
5 &
-50 1 1 1 1 1 1 1 1
b 4 6 8 6 18 20 22 24

Frame number

Minimal long-range dependencies
(prediction = construction = election...)

* Motivates sliding window approach!
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Input speech: “PREDICTION?”

Frame|1 2 3 4 5 6 7 8 9 1011 121314151617 18 19 20 21 22
X Token - p p r thith d d ih ih ih ith k k sh sh sh shuhuh n -

. r ihih d d . o
ih ih d d ih Overlapping Sliding
X1,X2; .- d d ihih ik Window of Inputs
d ih\ih ih ih
! N * Decision Tree Model
h(%) /; ;\F\ 150-variate regression
e L i i 11y This is the only thing that
\ l requires machine learning!
8.5 \=— — B
yi.y2,-.. J/
Aggregate
Outputs

Very fast!
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Training

(Inputspeech: “PREDICTION?”

Frame

x Token| -

100

12345678 910111213141516171819202122
p p r ihih d d ih ih ih ih k k sh sh sh shuhuh n -

@
1=

~

o Original Training Data

50

0F

<
Dimension 1

-50

(Variable-Length Trajectory Prediction)

| -
18 20 22 24

J

1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
Frame number

Modified Training Data

(Fixed-Length Multivariate Regression) ((p,r,ih,ih,d>’ / ) ’

N\
(<—,p,p,r,ih>’ 4 ))((p,p,r,ih,ih}l ya )

\.
4

Train Decision Tree
(Or some other regression model)




Query Set for Speech Animation

Frame 8 is a
vowel that
yes |contains/a/?| no

Frame 8 is a Frame 8 is
long vowel? a sibilant
consonant?
yes no yes \no
Frame 6 is a Frame 8 is a Frame 8 is a Frame 8 is a
vowel that vowel that post-alveolar front consonant?
contains /a/? contains /o/? consonant?

Frames indexed by 1-11 (center is frame 6)

Full tree has 5K+ leaf nodes
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Multivariate Regression Tree

150

* Prediction: jraimine e i

\_'_l
Prediction; === = Mean

* Training loss: multivariate squared loss:

2 2

Leaf yELeaf

2

yLeaf - y
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Prediction on New Speaker

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017
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Prediction on New Speaker

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017
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Input speech: “LEARNING?”

Frame

(@ x Token - I 1 1 1 ererern n niyiyngngngng g g g ¢

(b) X1,%2,

)

>

(©) h(

(d) 5\7175\727

)y

o o o

50

Dimension 1

o

.1 1 ererer
]l erer er n

erern n n

ern\nniy
| /*/(*\ |
L
e i T iri\ v

Frame number

1 2345678 91011121314151617 1819 2021 22
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Input speech: “SIGGRAPH?”

(g x Frame 1 2 3 4 5 6 7 8 91011121314151617 181920 21 22
Label - s s s s ithihih g g g r r acacacae f f f f

. s s_ih ih ih
5 ih ih ih g
(b) R, Rz, ... ih i
thih g g ¢
ih g\g g T
-
© h(R) e e
e
. A N

[ [ )
(d) 3\’175\727"' = l

100
50

)y

Parameter 1
(@)

-50

Frame number
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Side-by-Side User Study

Comparing our approach versus competitor on 50 held-out test sentences.

“A Decision Tree Framework for Spatiotemporal Sequence Prediction”

Kim, Yue, Taylor, Matthews, KDD 2015, http://projects.yisongyue.com/visual_speech 36



D

431139

Side-by-Side User Study

M Sliding Window Competitor

62.5

50
37.5 —

25 —
12.5 B

O I
Dynamic Vis. HMM Ground Truth
*

State-of-the-Art Baselines

Comparing our approach versus competitor on 50 held-out test sentences.
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Comparison with Ground Truth

We under-articulate relative to ground truth!
(Could be solved with more training data...)

“A Decision Tree Framework for Spatiotemporal Sequence Prediction”

Kim, Yue, Taylor, Matthews, KDD 2015, http://projects.yisongyue.com/visual_speech 38



v

sssssihihihggrraeaeaeaefff

~

Input Audio

Speech Recognition

[ S AE AN

Speech Animation ]

~

B 0 T, 5,5,

(chimp rig courtesy of Hao Li)

Retargeting
E.g., [Sumner & Popovic 2004]

Editing
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Aside: Retargeting

—3 430 -3¢ 430 Reference face = target face
(Semi-)Automatic:
@ @ 5 Deformation Transfer [Sumner & Popovic 2004]
Finds linear transform (requires reference pose)
=)= /3N Manual:
Shape model Combined model Pose basis shapes & linear blending

B,8,8,8,8,8,9
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Prediction for Very Different Language




Prediction for Very Different Language







PANDOR

THE WORLD OF AVATAR

DISNEY'S ANIMAL KINGDOM
SUMMER 2017“’*.‘“‘“; |

Behind the Scenes of Pandora - The World of Avatar https://youtu.be/URSOgW<1Lix4




Overview of Learning Reductions



Motivation

 Know how to solve “standard” ML problems

— Classification, regression, etc. Many toolkits available!

— SVMs, logistic regression, decision trees, neural nets, etc.

 “Reduce” complex problems to simple ones?
— Variable-length trajectories =» multivariate regression
Still non-trivial!
* Similar to other reduction problems
— E.g., NP-complete reductions

— Some learning reductions have provable guarantees
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Other Learning Reductions

* Multiclass =2 Binary

* Cost-weighted = Unweighted
* Ranking =2 Binary

* Sequential =» Multiclass
 And many more...

http://hunch.net/~jl/projects/reductions/reductions.html
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Other Learning Reductions

* Multiclass = Binary

* Cost-weighted = Unweighted
* Ranking =2 Binary

* Sequential =» Multiclass
 And many more...

http://hunch.net/~jl/projects/reductions/reductions.html

49



Why Multiclass =2 Binary?

* Conventional approach: one-versus-all
— Scoring function per class
— Predict class with highest score

* Limitations:
— Linear in #classes
— Hard to prove generalization bounds

— (Binary SVM analyzes generalization via margin)

50



Learning Reduction Recipe

* Given original training set: S = {(Xi»yi)}:

\

. Multiclass
* Create modified training set(s):

{3’ = {(Xiaj\’i)}i]\_—]l}

Dy A, Binary
— Train h'son S’s

* Final h = combining predictions h’s
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Two Flavors of Analysis

 Error Reduction: e=L,(w)

— Each h achieves 0/1 Loss € Zero 0/1 Test Error

icati : typically not ibl
— Implication for multiclass 0/1 loss of h? ~ YP!ceY Ot POSSIIE

* Answer: (K-1)¢

* Regret Reduction: r=L,(w)-L,(w")

— Each h achieves 0/1 regret r

Consistent Learning Algorithm

/ Inconsistent Learning Algorithm

— Implication of multiclass regret?
e E.g., Kr? g

— More powerful result T
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Aside: Sliding Window Regression

* |If base model h has 0 error
— Then sliding window prediction has 0 error

« What about when h has >0 error?

— As regret of h decreases...

— ... decrease in regret of h? v 3““?3:;\;“:]
— Open question! “ k|
. N
* Need to formalize lack of nee o e

global dependencies




Filter Tree for Multiclass =2 Binary

X
N
h

h34

56

IN'Lef't,Right h Left,Right

Each base model
Is a binary classifier hLeft,Right

Y

http://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf
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The Learning Reduction

* First Layer
— Train each h;; using

Sy =V €Sy €L

First Layer
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The Learning Reduction

e Second Layer

— Train hLeﬂ’Right using

S et Right = {(x,l[ye{L,R}])‘V(x,y) eS:.ye{l,.. 4} (no mistake by hlz,h34)}

Second Layer | i .
Each base model

Train Lower Layers only
using mistake-free
training data.

Is a binary classifier
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The Learning Reduction

* Classification problem dependent on
classifiers learned in previous layers

 Reduction happens iteratively
— |.e., adaptively X
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Recall: Two Flavors of Analysis

 Error Reduction: e=L,(w)

— Each h achieves 0/1 Loss € Zero 0/1 Test Error

icati : typicall t ibl
— Implication for multiclass 0/1 loss of h? ~ YP!eeY OEPOSSIE

* Answer: (K-1)¢

* Regret Reduction: r=L,(w)-L,(w")

— Each h achieves 0/1 regret r

Consistent Learning Algorithm

/ Inconsistent Learning Algorithm

— Implication of multiclass regret?
e E.g., Kr? g

— More powerful result T
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Filter Tree Regret Guarantee

 |f each classifier has regret r

* Filter Tree has multiclass regret < (log,K)r
— Good dependence on K

* |Inductive proof
* See details in paper

v
http://mi.eng.cam.ac.uk/~mjfg/local/Projects/filter_tree.pdf
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Runtime Computational Benefits

* Logarithmic test time
— With respect to #classes

I Left,Right I Left,Right

Each base model
Is a binary classifier

I Left,Right

See also: Logarithmic Time Online Multiclass Prediction
http://arxiv.org/abs/1406.1822
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Next Week

* Unsupervised Learning

e Data Visualization
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