
D E E P L E A R N I N G
PA RT T W O - C O N V O L U T I O N A L & R E C U R R E N T N E T W O R K S

C S / C N S / E E 1 5 5 - M A C H I N E L E A R N I N G & D ATA M I N I N G - L E C T U R E 8

R E V I E W

3

x1

x2
y = 0
y = 1

x = (x1, x2)

we want to learn non-linear decision boundaries

we can do this by composing linear decision boundaries

4

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

neural networks formalize a method for building these composed functions

deep networks are universal function approximators

5

each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

summation: distance from plane to input

non-linearity: convert distance into non-linear field

distance

plane example
transformed

distance

plane

the dot product is the shortest distance between a point and a plane

a geometric interpretation

6

1. cut the space up with hyperplanes
2. evaluate distances of points to hyperplanes
3. non-linearly transform these distances to get new points

repeat until data have been linearized

7

images

“hello”

sound & text virtual/physical control tasks

to scale deep networks to these domains,
we often need to use inductive biases

I N D U C T I V E B I A S E S

9

ultimately, we care about solving tasks

Krizhevsky et al., 2012

object recognition

Ren et al., 2016

object detection object segmentation

He et al., 2017

text translation

Wu et al., 2016

Weston et al., 2015

text question answering

10

ultimately, we care about solving tasks

atari

Minh et al., 2013

object manipulation

Levine, Finn, et al., 2016

go

Silver, Huang et al., 2016

survival & reproduction e.g. teaching

11

bias variance

performing any task involves a bias-variance tradeoff

12

two components for solving any task

priors
(bias)

learning
(variance)

13

priors
things assumed beforehand

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

architecture activities, outputs

w1

w2

L2

param. constraints

model 1

model 2

param. values

14

learning
things extracted from data

Loss

Weight

LOSS/ERROR

GRADIENT

IMPROVEMENT

filter

15

it’s a balance!

strong priors, minimal learning
• fast/easy to learn and deploy
• may be too rigid, unadaptable

weak priors, much learning
• slow/difficult to learn and deploy
• flexible, adaptable

for a desired level of performance on a task…

choose priors and collect data to obtain a model
that achieves that performance in the minimal amount of time

data
x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

16

priors are essential - always have to make some assumptions,
cannot integrate over all possible models

we are all initialized from evolutionary priors

livescience.com

humans seem to have a larger capacity for learning than other organisms

17

up until now, all of our machines have been purely based on priors

these machines can perform tasks that are impossible to hand-design

for the first time in history, we can now create machines that also learn

…but they are mostly still based on priors!

Kormushev et al.

18

we can exploit known structure in spatial and sequential data
to impose priors (i.e. inductive biases) on models

this allows us to learn models in complex, high-dimensional domains
while limiting the number of parameters and data examples

x

y

t

inductive: inferring general laws from examples

C O N V O L U T I O N A L
N E U R A L N E T W O R K S

20

task: object recognition

Yisong

discriminative mapping from image to object identity

21

images contain all of the information about the
binary latent variable Yisong/Not Yisong

extract the relevant information about this
latent variable to form conditional probability

p(Yisong|)inference:

notice that images also contain other nuisance
information, such as pose, lighting, background, etc.

want to be invariant to nuisance information

22

data, label collection

the mapping is too difficult to
define by hand,

need to learn from data

Yisong Not Yisong

then, we need to choose
a model architecture…

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

23

standard neural networks require a fixed input size…

clearer patterns,
but more parameters

fewer parameters,
but unclear patterns

280 x 280 x 3205 x 205 x 3150 x 150 x 3

15
x

15
x
3

50 x 50
x 3

35
x

35
x
3

25
x

25
x
3

100 x 100 x 375 x 75 x 3

235,200

126,075

67,500

30,000

16,875
7,500

3,675

1,875
675

24

convert to grayscale…

clearer patterns,
but more parameters

fewer parameters,
but unclear patterns

280 x 280 x 1205 x 205 x 1150 x 150 x 1

15
x

15
x
1

50 x 50
x 1

35
x

35
x
1

25
x

25
x
1

100 x 100 x 175 x 75 x 1

78,400

42,025

22,500

10,000

5,625
2,500

1,225

625
225

25

10,000

1

100 x 100 x 1

10,000

reshape

26

?

how many units do we need?

x1

x2

xM

⌃

⌃

⌃

1

10
,0

00
INPUT

1

10

100

1,000

10,000

100,000

1,000,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

weights# units x 10,000 =

if we want to recognize even a few basic patterns at each location,
the number of parameters will explode!

27

to reduce the amount of learning,
we can introduce inductive biases

exploit the spatial structure of image data

28

locality
nearby areas tend to contain stronger patterns

nearby patches tend to share characteristics
and are combined in particular ways

nearby pixels tend to be similar and vary
in particular ways

nearby regions tend to be found
in particular arrangements

29

translation invariance
relative (rather than absolute) positions are relevant

Yisong’s identity is independent of absolute location of his pixels

30

let’s translate locality and translation invariance into inductive biases

locality
nearby areas tend
to contain stronger

patterns

inputs can be
restricted to regions

⌃

maintain spatial ordering

translation
invariance
relative positions

are relevant

same filters can be applied
throughout the input

⌃

⌃

same weights

31

these are the inductive biases of convolutional neural networks

special case of standard (fully-connected) neural networks

⌃

fully-connected

⌃

convolutional

weight savings

convolutional

⌃

⌃

(same weights)

fully-connected

⌃

⌃

(different weights)

weight savings

these inductive biases make the number of weights independent of the input size!

32

convolve a set of filters with the input

filter weights:

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

take inner (dot) product of filter and each input location

measures degree of filter feature at input location

feature map

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

33

use padding to preserve spatial size

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

typically add zeros around the perimeter

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

34

use stride to downsample the input

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

only compute output at some integer interval

stride = 2

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

35

filters are applied to all input channels

3 x 3 x 3 filter tensor

each filter results in a new output channel

channel 2

channel 1

channel 3

36

can be applied with padding and stride

5

0

0

0

21

1

8

3

3

4

3

2

1

4

2

5 8

2 4

pooling locally aggregates values in each feature map

predefined operation: maximum, average, etc.

downsampling and invariance

37

convolutional pop-quiz

5

5

16

input feature map

3

3

?

filters

?*
36

?

?

output feature map

if we use unit stride and no padding then…

how many filters are there?

what size is each filter?

what is the output filter map size?

36 same as the number of output channels

3 x 3 x 16 channels match the number of input channels

3 x 3 x 36 result of only valid convolutions

38

Caltech-101

101 classes,
9,146 images

Caltech-256

256 classes,
30,607 images

CIFAR-10

10 classes,
60,000 images

CIFAR-100

100 classes,
60,000 images

ImageNet
Competition

1,000 classes,
1.2 million images

Full

21,841 classes,
14 million images

natural image datasets

39

convolutional models for classification

LeNet

AlexNet

VGG

GoogLeNet ResNet Inception v4

DenseNetResNeXt

40

convolutional models for detection, segmentation, etc.

R-CNN Fast R-CNN Faster R-CNN

FCN Hourglass U-Net

YOLOMask R-CNN

41 https://www.youtube.com/watch?v=OOT3UIXZztE

42 https://www.youtube.com/watch?v=pW6nZXeWlGM

43

convolutional models for image generation

DC-GAN convolutional VAE Pixel CNN

44 https://www.youtube.com/watch?v=XOxxPcy5Gr4

45

filter visualization

Zeiler, 2013

46

filter visualization

Zeiler, 2013

47

filter visualization

Zeiler, 2013

48

filter visualization

Zeiler, 2013

49

filter visualization

Zeiler, 2013

50

filter visualization

Zeiler, 2013

51

filter visualization

Zeiler, 2013

52

filter visualization

Zeiler, 2013

53

filter visualization

Zeiler, 2013

54

filter visualization

https://distill.pub/2017/feature-visualization/

55

convolutions applied to sequences

WaveNet

https://deepmind.com/blog/wavenet-launches-google-assistant/

56

convolutions in non-euclidean spaces

Spline CNN Graph Convolutional Network

Fey et al., 2017 Kipf & Welling, 2016

57

recapitulation

we can exploit spatial structure to impose inductive biases on the model

⌃

locality

⌃

⌃

translation invariance

this limits the number of parameters required,
reducing flexibility in reasonable ways

can then scale these models to complex data sets to perform difficult tasks

ImageNet

recognition detection segmentation generation

R E C U R R E N T
N E U R A L N E T W O R K S

59

task: speech recognition

mapping from input waveform to sequence of characters

Graves & Jaitly, 2014

60

the input waveform contains all of the information
about the corresponding transcribed text

form a discriminative mapping: p(text sequence|)

again, there is nuisance information in the waveform coming from the
speaker’s voice characteristics, volume, background, etc.

61

the mapping is too difficult to
define by hand,

need to learn from data

data, label collection

Audio Transcriptions

“OK Google…”

“Hey Siri…”

“Yo Alexa…”

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

but how do we define
the network architecture?

62

problem: inputs can be of variable size

standard neural networks can only handle data of a fixed input size

?

x1

x2
⌃

⌃

⌃

1

1

⌃

⌃

⌃
x?

63

wait, but convolutional networks can handle variable input sizes…
can’t we just use them?

yes, we could

however, this relies on a fixed input window size

we may be able to exploit additional structure in sequence data
to impose better inductive biases

64

t

the structure of sequence data

sequence data also tends to obey

locality: nearby regions tend to form stronger patterns

translation invariance: patterns are relative rather than absolute

but has a single axis on which extended patterns occur

65

to mirror the sequential structure of the data,
we can process the data sequentially

maintain an internal representation during processing

potentially infinite effective input window
fixed number of parameters

t
each set of colored arrows denotes shared weights

INPUT

HIDDEN

OUTPUT

66

a recurrent neural network (RNN) can be expressed as

Hidden State

ht = �(W|
h[ht�1,xt])

Output

yt = �(W|
yht)

67

basic recurrent networks are also a special case
of standard neural networks with skip connections and shared weights

same

Depth = Steps

68

therefore, we can use standard backpropagation to train,
resulting in backpropagation through time (BPTT)

Gradient

69

primary difficulty of training RNNs involves
propagating information over long horizons

e.g. input at one step is predictive of output at much later step

learning extended sequential dependencies
requires propagating gradients over long horizons

• vanishing / exploding gradients
• large memory/computational footprint

70

naïve attempt to fix information propagation issue

add skip connections across steps

information, gradients can propagate more easily

• increases computation
• must set limit on window size

but…

71

add trainable memory to the network
read from and write to “cell” state

Output Gate

Cell State

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)

ft = �(W|
f [ht�1,xt])it = �(W|

i [ht�1,xt])ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

xt

yt

Output Gate

Cell State

72

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

73

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

74

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft = �(W|
f [ht�1,xt])it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

75

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it = �(W|
i [ht�1,xt])ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

76

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft = �(W|
f [ht�1,xt])it = �(W|

i [ht�1,xt])ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

77

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

78

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt

Output Gate

Cell State

79

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output
yt = �(W|

yht)xt

yt

80

memory networks

Gated Recurrent Unit (GRU)
Cho et al., 2014

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hopfield Network
Hopfield, 1982

Neural Turing Machine (NTM)
Graves et al., 2014

Differentiable Neural Computer (DNC)
Graves, Wayne, et al., 2016

Memory Networks (MemNN)
Weston et al., 2015

81

tons of options!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

82

deep recurrent neural networks

83

auto-regressive generative modeling

output becomes next input

84

auto-regressive generative language modeling

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

85

Pixel RNN uses recurrent networks to perform
auto-regressive image generation

condition the generation of each pixel on a sequence of past pixels

context
generated samples

van den Oord et al., 2016

R E C A P

87

we used additional priors (inductive biases) to
scale deep networks up to handle spatial and sequential data

recapitulation

without these priors, we would need
more parameters and data

88

we live in a spatiotemporal world

we are constantly getting streams of spatial sensory inputs

(embodied) intelligent machines need to learn from
spatial and temporal patterns

Berkeley AI Research

89

CNNs and RNNs are building blocks for
machines that can use spatiotemporal data to solve tasks

Jaderberg, Minh, Czarnecki et al., 2016

90 Jaderberg, Minh, Czarnecki et al., 2016

91

