Caltech

Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 6:
Boosting & Ensemble Selection



Kaggle Competition

Kaggle Competition to be released soon
Teams of 2-3
Competition will last 1.5-2 weeks

Submit a report
— Standard template



Today

* High Level Overview of Ensemble Methods

* Boosting
— Ensemble Method for Reducing Bias

e Ensemble Selection



Recall: Test Error

* “True” distribution: P(x,y)
— Unknown to us

* Train: h(x) =y
— Using training data: S = {(xi»)’i)}il
— Sampled from P(x,y)

* Test Error:
LP (hS) = E(x,y)~P(x,y) [L(y9 hS (X))]

e Overfitting: Test Error >> Training Error



True Distribution P(x,y)
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Training Set S
Person | Age Male?
Alice 14 0
Bob 10 1
Carol 13 0
Dave 8 1
Erin 11 0
Frank 9 1
Gena 8 0

Height > 55”

Test Error:

L(h) = Eyipionl LN(X),¥) ]

Z{ax <<« <<&



Recall: Test Error

* Test Error:
Lp(h) = E .y, piu [ Ly (X))

* Treat hg as random variable:
hg = argmm E L yl,h(x ))

(x;,Y;)ES
° EXpECtEd Test Error: aka test error of model class

Eg[Ly(h)]=Eg|E, ) p(e [ L hg ()]



Recall: Bias-Variance Decomposition

Es[Ly(hs)] = Eg[E(, gy pic [LO R ()]

* For squared error:

E;|L,(hy)]|= (xy>~p<xy>[ [(h (x)— H(x))2]+(H(x)_y)z]

| ] | J
i i

Variance Term Bias Term
H(x)=Eg|hy(x)]
4

“Average prediction on x”



Recall: Bias-Variance Decomposition
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Recall: Bias-Variance Decomposition

0 20 40 60 80 10C

ome models experience
(Model class to simple to make accurate predictions.)

Some models experience high test error due to high variance.
(Model class unstable due to insufficient training data.)




General Concept: Ensemble Methods

* Combine multiple learning algorithms or models
— Previous Lecture: Bagging & Random Forests
— Today: Boosting & Ensemble Selection

Decision Trees,

e “Meta Learning” approach 7 VM ete
— Does not innovate on base learning algorithm/model

— Ex: Bagging
* New training sets via bootstrapping
 Combines by averaging predictions
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Intuition: Why Ensemble Methods Work

* Bias-Variance Tradeoff!
* Bagging reduces variance of low-bias models

— Low-bias models are “complex” and unstable
— Bagging averages them together to create stability

* Boosting reduces bias of low-variance models
— Low-variance models are simple with high bias

— Boosting trains sequence of simple models
— Sum of simple models is complex/accurate



Boosting
“The Strength of Weak Classifiers”*

* http://www.cs.princeton.edu/~schapire/papers/strengthofweak.pdf
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Terminology: Shallow Decision Trees

* Decision Trees with only a few nodes

* Very high bias & low variance
— Different training sets lead to very similar trees
— Error is high (barely better than static baseline)

* Extreme case: “Decision Stumps”

— Trees with exactly 1 split \ g i A




e Tends to learn more-or-less the same model.

Stability of Shallow Trees

* h¢(x) has low variance

— Over the randomness of training set S

. = =
f =T
gwf
+ — 44

I
T T,
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Terminology: Weak Learning

e Error rate: Enp = EP(x,y) [l[h(X)?ﬁy]]

* Weak Classifier: €, , slightly better than 0.5
— Slightly better than random guessing

Shallow Decision Trees are Weak Classifiers!

Weak Learners are Low Variance & High Bias!

15



How to “Boost” Weak Models?

E; [LP(hS)]'= E. . pim [ES [(hs(x) ~H(x)) ] +(H(x)- y)z]

L
1 J] I ]
L Y T

Expected Test Error Variance Term Bias Term
Over randomness of S

(Squared Loss)

“Average prediction on x” —» H(x)=E| [hs (x)]

* Weak Models are High Bias & Low Variance
* Bagging would not work

— Reduces variance, not bias
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First Try (for Regression)

1 dimensional regression

Learn Decision Stump

— (single split, predict mean of two partitions)

o U A W N —, O

0O 6 -6
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4 6 -2
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16 6 10
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36 30.5 5.5

-5.5
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/

Yo=Y —hya(x)

hy(x) = hy(x) + .

-0.5 -0.55
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-7.7 -0.55

3.3 3.3

.+ h(x)

-0.05
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h (X)) = h(x) +... + hy(x)

First Try (for Regression) Ve=y = hp. (%)
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Gradient Boosting (Simple Version)

(Why is it called “gradient”?) (For Regression Only)
(Answer next slides.)
S={(x. )} h(x) = h,(x) + h,(x) + ... + h_(x)

S, ={(x. )} =8, ={(x.y, - (x)} —> S, ={(x.y -k, (x)}

¥ ¥ ¥

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf 19



Axis Alighed Gradient Descent

(For Linear Model)

* Linear Model: h(x) = w'x Training Set

e Squared Loss: L(y,y’) = (y-Yy')? \) ={(xi,yi)}il

e Similar to Gradient Descent
— But only allow axis-aligned update directions

— Updates are of the form: 0
T Unit vector 0

w=w-"1g,€, g=EVWL(yi,W x,-) alongd-th ¢, =| 1
i Dimension 0

Projection of gradient along d-th dimension 6

Update along axis with greatest projection

20



Axis Aligned Gradient Descent

A
|
[
I

Update along
axis with largest
projection

This concept
will become
useful in ~5

slides
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Function Space & Ensemble Methods

* Linear model = one coefficient per feature
— Linear over the input feature space

 Ensemble methods = one coefficient per model

— Linear over a function space

- Coefficient=1 for models used
- Eog-’ h - hl + h2 + XK} + hn . . _
Coefficient=0 for other models

A “Function Space”
A

(Span of all shallow trees)
(Potentially infinite)

(Most coefficients are 0)
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Properties of Function Space

Generalization of a Vector Space

Closed under Addition

— Sum of two functions is a function

Closed under Scalar Multiplication

— Multiplying a function with a scalar is a function

Gradient descent: adding a scaled function to
an existing function

23



Function Space of Models

* Every “axis” in the space is a weak model
— Potentially infinite axes/dimensions

* Complex models are linear combinations of
weak models
—h=n/h;+n,h, +...+n h,
— Equivalent to a point in function space
* Defined by coefficients n

24



Recall: Axis Aligned Gradient Descent

A
|
[
1

Project to closest

axis & update
(smallest squared dist)

Imagine each axis
is a weak model.

Every point is a
linear combination
of weak models
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Functional Gradient Descent

(Gradient Descent in Function Space)
(Derivation for Squared Loss)

* Inith(x)=0
Project functional
* LOOp n=1,2,3,4,... gradient to best function

/
zvhuy,-,h(x,.»))

= h+argmin E(yl. ~h(x,)=h,(x,))’
h, l.

\

Equivalent to finding the h_
that minimizes residual loss

h = h—argmax (projeot "
hn

S={(xi’yi)}j\=,1

26



Reduction to Vector Space

* Function space = axis-alighed unit vectors
— Weak model = axis-alighed unit vector: e, =

e Linear model w has same functional form:

— Point in space of D “axis-aligned functions”

* Axis-Aligned Gradient Descent = Functional Gradient
Descent on space of axis-aligned unit vector weak models.

[

27



Gradient Boosting (Full Version)

(Instance of Functional Gradient Descent) (For Regression Only)

S = {(xl.,yl.)}i1 h,..(x) = hy(x) + n,h,(x) + ... + n h_(x)

l

S, ={x. )} =8, ={(x.y, ~h(x)} —> S, ={(x.y -k, ()}

¥ ¥ ¥

4 ) 4 ) 4 )

\_ _/ \_ _/ \_ _/
h,(x) h,(x) h,(x)

http://statweb.stanford.edu/~ihf/ftp/trebst.odf €——— See reference for how to set n 28



Recap: Basic Boosting

Ensemble of many weak classifiers.
— h(x) = n;hy(x) +n,h,(x) + ... + n h (x)

Goal: reduce bias using low-variance models

Derivation: via Gradient Descent in Function
Space

— Space of weak classifiers

We’'ve only seen the regression so far...

29



AdaBoost
Adaptive Boosting for Classification

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf

30



Boosting for Classification

* Gradient Boosting was designed for regression
* Can we design one for classification?

* AdaBoost
— Adaptive Boosting

31



AdaBoost = Functional Gradient Descent

e AdaBoost is also instance of functional
gradient descent:

— h(x) = sign( a;h,(x) + a,h,(x) + ... + ash(x) )

* E.g., weak models h,(x) are classification trees
— Always predict O or 1
— (Gradient Boosting used regression trees)

32



Combining Multiple Classifiers
Aggregate Scoring Function:
f(x) = 0.1*h,(x) + 1.5%h,(x) + 0.4%h,(x) + 1.1*h,(x)

Aggregate Classifier:
h(x) = sign(f(x))

Data | hy(x) | hy(x) | hy(x) | hy(x) | f(x) h(x)

Point

X4 +1 +1 +1 -1 01+15+04-1.1=0.9 +1
X5 +1 +1 +1 +1 01+15+04+1.1=3.1 +1
X3 -1 +1 -1 -1 -0.1+15-03-11=-0.1 -1
X, -1 -1 +1 -1 -0.1-15+03-1.1=-24 -1

33



Also Creates New Training Sets

For Regression

* Gradients in Function Space -

— Weak model that outputs residual of loss function
e Squared loss = y-h(x)

— Algorithmically equivalent to training weak
model on modified training set

* Gradient Boosting = train on (x, yi—h(x))

 What about AdaBoost?
— Classification problem.

34



Reweighting Training Data

. . . N
* Define weighting D over S: S ={(x.y)}
—Sumsto 1: Y D(i)=1
* Examples:
(X1,Y1) 1/3 (X1,Y1) 0 (X1,Y1) 1/6
(X2,Y5) 1/3 (X2,Y5) 1/2 (X5,Y5) 1/3
(X3,Y3) 1/3 (X3,¥5) 1/2 (X3,Y3) 1/2

 Weighted loss function:
Ly(h) ="y D()L(y;,h(x,))



Training Decision Trees with
Weighted Training Data

* Slight modification of splitting criterion.

 Example: Bernoulli Variance:

, , # pos*#ne
L(S")=|S'|ps(1- pg) = pm &

e Estimate fraction of positives as:

E D(i)l[y,:l]

Py = (x,-’)’i)ES'|S'| |S|| = E D(l)
(x;,y;,)ES"

36



AdaBoost Outline "
S={(xi’yi)}i=l

h(x) = sign(a;h,(x)} a,h,(x))+ .. +a_h (x)) 3 E{-L+1}

(S, D;=Uniform) (S,D,) (S,D,)
. . .
4 N 4 N 4 N
\_ J \_ J \_ J
h,(x) h,(x) h,(x)

D, — weighting on data points

. . . Stop when validation
a, — weight of linear combination

performance plateaus
http://www.yisongyue.com/courses/cs155/lectures/msri.pdf (will discuss later) -




Intuition

Aggregate Scoring Function:

f(x) = 0.1*h,(x) + 1.5%h,(x) + 0.4%h,(x) + 1.1*h,(x)
Aggregate Classifier:

h(x) = sign(f(x))

Somewhat close to
Decision Boundary Data | Label | f(x) | h(x)

Point

Violates Decision X, y,=t1 0.9 | +1

Boundary
X, y,=+1 3.1 | +1
Safely Far from X3 y;=t1 -0.1) -1

Decision Boundary —> | x, y,=-1 -2.4| -1




Intuition

Thought Experiment:
When we train new h.(x) to add to f(x)...

... what happens when h, mispredicts on everything?

Somewhat close to
Decision Boundary Data | Label | f(x) | h(x)

Point

Violates Decision X, y,=t1 0.9 | +1

Boundary
X, y,=+1 3.1 | +1
Safely Far from X3 y;=t1 -0.1) -1

Decision Boundary —> | x, y,=-1 -2.4| -1
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Intuition

Aggregate Scoring Function:
fl.c(x) = f.4(x)+ 0.5%hc(x)

Aggregate Classifier: \

Suppose a. = 0.5

h,.c(x) = sign(f;.c(x)) l
Worst case | Worst case | Impact of
h:(x) f,.s(x) h:(x)
X4 y,=t1 0.9 +1 -1 0.4 Kind of Bad
X, y,=t1 3.1 +1 -1 2.6 Irrelevant
X3 y;=t1 -0.1 -1 -1 -0.6 Very Bad
X, y,=-1 -2.4 -1 +1 -1.9 Irrelevant
0

h(x) that mispredicts on everything



Intuition

s(X) should definitely classify (x;,y;) correctly!
h:(x) should probably classify (x,,y,) correctly.
Don’t care about (x,,y,) & (X,,Y,)

Implies a weighting over training examples

Worst case | Worst case | Impact of

h:(x) f,.s(x) h:(x)
X4 y,=t1 0.9 +1 -1 0.4 Kind of Bad
X, y,=t1 3.1 +1 -1 2.6 Irrelevant
X3 y;=t1 -0.1 -1 -1 -0.6 Very Bad
X, y,=-1 -2.4 -1 +1 -1.9 Irrelevant
A

h(x) that mispredicts on everything

41



Intuition

Aggregate Scoring Function:

f1.4(x) =0.2*%h,(x) + 1.5%h,(x) + 0.4%h,(x) + 1.1*h,(x)
Aggregate Classifier:

h,.4(x) = sign(f;.4(x))

Desired D,
X4 y,=t1 0.9 +1 Medium
X, y,=+t1 3.1 +1 Low
X3 y,=+1 -0.1 -1 High
X4 y,=-1 -2.4 -1 Low

42



AdaBoost

[ ] I —_ N
Init D, (x) = 1/N E.g., best decision stump 5= {('xi’yi)}i=1
e L t=1..n:
oop n - y, €{-1,+1}
— Train classifier h,(x) using (S,D,)

— Compute erroron (5,D): ¢ =L, (h)= EDt(i)L(y,-,ht(xi))

: : 1 1-
— Define step size a,: ¢, = 5108{ 8’}
&

t

Dt(i)exp{_atyiht(xi)}
Zl‘
* Return: h(x) = sign(a,h,(x) + ... + a h (x))

— Update Weighting: D, (i) =

Normalization Factor
s.t. D,,; sums to 1.

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf 43



Example )= or 31

\
. D.(i)expi—-a,yh (x,
e, =Ly, (h) = D,()L(y,.h (x) D, (i) =2 P{Z i ()}
i t
N
1 1-¢ . Normalization Factor

a, = Elog : What happens if €=0.5? s.t. D,,, sums to 1.
£,=0.4 £,=0.45 £;=0.35
a,=0.2 a,=0.1 a,=0.31

X, y,=+1 001 +1 0008 +1  0.007 -1
X, y,=+1 0.01 -1 0.012 +1 0011 +1
X3 y;=+1 0.01 -1 0.012 -1 0.013 +1
X, y,=1 001 -1 0.008 +1  0.009 -1




Exponential Loss
L(y, f(x)) = exp{-yf(x)}

g

Exp Loss

Targety

1
-1.5

0 0.5 1 1.5

f($<)

2.5

Upper Bounds
0/1 Loss!

Can prove that
AdaBoost minimizes

Exp Loss
(Homework Question)

45



Decomposing Exp Loss

L(y, f(x)) = exp{-yf (x)}

= eXp4— (ia ht(x))

Y

=1

HeXp{ ya,h,(x)}
J

=1 |

Distribution Update Rule!

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf
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Intuition

n

L(y,f(x)=expi-y ¥ ah(x)t = | [exp{-yah,(x)}

=1

* Exp Loss operates in exponent space

e Additive update to f(x) = multiplicative update
to Exp Loss of f(x)

* Reweighting Scheme in AdaBoost can be
derived via residual Exp Loss

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf



AdaBoost = Minimizing Exp Loss

* InitD,(x) =1/N 5 = {('xi’yi)}i]zl

. L t = 1--- :
°oP " y, € {-1,+1}
— Train classifier h,(x) using (S,D,)

— Compute erroron (5,D): ¢ =L, (h)= ED,(i)L(y,-,ht(xi))

—¢ Data points reweighted
£ according to Exp Loss!

/

Dt(i)exp{_atyiht(xi)}
Zl‘
* Return: h(x) = sign(a,h,(x) + ... + a h (x))

: : 1 |
— Define step size a,: ¢, = Elog{

t

— Update Weighting: D, (i) =

Normalization Factor
s.t. D,,; sums to 1.

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf 48



Story So Far: AdaBoost

 AdaBoost iteratively finds weak classifier to minimize
residual Exp Loss

— Trains weak classifier on reweighted data (S,D,).

The proofisin
earlier slides.

e

* Homework: Rigorously prove it!

1. Formally prove Exp Loss > 0/1 Loss

D;(i)exp{_atyiht (xi)}
Z

t

2. Relate Exp Loss to Z;: D, @)=

1. f1-
3. Justify choice of a;: a, =§10g{ g’}

€,

*  Gives largest decrease in Z,

http://www.yisongyue.com/courses/cs155/lectures/msri.pdf 49



Recap: AdaBoost

* Gradient Descent in Function Space
— Space of weak classifiers

* Final model = linear combination of weak classifiers
— h(x) = sign(a;h,(x) + ... + a, h_(x))

— l.e., a point in Function Space

* |teratively creates new training sets via reweighting

— Trains weak classifier on reweighted training set
— Derived via minimizing residual Exp Loss

50



Ensemble Selection
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Recall: Bias-Variance Decomposition

Es[Ly(hs)] = Eg[E(, gy pic [LO R ()]

* For squared error:

E;|L,(hy)]|= (xy>~p<xy>[ [(h (x)— H(x))2]+(H(x)_y)z]

| ] | J
i i

Variance Term Bias Term
H(x)=Eg|hy(x)]
4

“Average prediction on x”
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Ensemble Methods

Combine base models to improve performance

Bagging: averages high variance, low bias models
— Reduces variance
— Indirectly deals with bias via low bias base models

Boosting: carefully combines simple models

— Reduces bias

— Indirectly deals with variance via low variance base models

Can we get best of both worlds?
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Insight: Use Validation Set

e Evaluate error on validation set V:

L,(h)=E,.  ,[L(yhg(x))]

* Proxy for test error:

L, [LV (hs)] =L, (hy)
]\ J
| |
Expected Validation Error Test Error

\
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Ensemble Selection

Training S’
. ‘ H = {2000 models trained using S’}

Validation V’ /

Maintain ensemble model as combination of H:
h(x) = h,(x) + hy(x) + ... + h_(x) +h,,;(x)

l TDenote ash.,,

Add model from H that maximizes performance on V’ ’

Repeat

Models are trained on S’
Ensemble built to optimize V’

“Ensemble Selection from Libraries of Models”

Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004



Reduces Both Bias & Variance

Expected Test Error = Bias + Variance
Bagging: reduce variance of low-bias models
Boosting: reduce bias of low-variance models

Ensemble Selection: who cares!

— Use validation error to approximate test error

— Directly minimize validation error

— Don’t worry about the bias/variance decomposition
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What's the Catch?

Relies heavily on validation set

— Bagging & Boosting: uses training set to select next model
— Ensemble Selection: uses validation set to select next model

Requires validation set be sufficiently large

In practice: implies smaller training sets
— Training & validation = partitioning of finite data

Often works very well in practice



MODEL ACC FSC LFT ROC APR BEP RMS MXE CAL SAR MEAN
[(ENns. seL. | 0.956  0.944  0.992 | 0.997 0.985 0.979 | 0.980 0.981  0.906 | 0.996 || 0.969 |
BAYESAVG | 0.926 0.801 0.979 | 0.985 0.977 0.956 | 0.950 0.959 0907 | 0.941 [ 0.94%8
BEST 0.928 0.919 0.975 | 0.988 0.959 0.958 | 0.919 0.944 0.924 | 0.924 || 0.946
AVG_ALL 0.836 0.801 0.982 | 0.988 0.972 0.961 | 0.827 0.809 0.832 | 0.916 | 0.890
STACK_LR | 0.275 0.777 0.835 | 0.799 0.786 0.847 | 0.332 -0.990 -0.011 | 0.705 || 0.406
SVM 0.813 0.909 0.948 | 0.962 0.933 0.938 | 0.877 0.878  0.889 | 0.905 || 0.905
ANN 0.877 0.875 0.949 | 0.955 0.917 0.914 | 0.853 0.863 0.916 | 0.896 | 0.902
BAG-DT 0.811 0.861 0.947 | 0.967 0.942 0.922 | 0.859 0.894 0.786 | 0.904 | 0.888
KNN 0.756  0.846 0.909 | 0.937 0.885 0.889 | 0.761  0.735  0.876 | 0.847 || 0.844
BST-DT 0.890 0.899 0.957 | 0.978 0.960 0.943 | 0.607 0.611  0.413 | 0.871 || 0.806
DT 0.526 0.780 0.850 | 0.868 0.767 0.795 | 0.556 0.624  0.720 | 0.745 || 0.722
BST-STMP | 0.732 0.790 0.906 | 0.919 0.861 0.834 | 0.304 0.286  0.389 | 0.659 || 0.669

Ensemble Selection often outperforms a more homogenous sets of models.
Reduces overfitting by building model using validation set.

Ensemble Selection won KDD Cup 2009

http://www.niculescu-mizil.org/papers/KDDCup09.pdf

“Ensemble Selection from Libraries of Models”
Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004
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Next Lectures

* Deep Learning

* Recitation on Thursday
— Keras Tutorial

Joe Marino
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