Caltech # Machine Learning & Data Mining CS/CNS/EE 155 Lecture 6: **Boosting & Ensemble Selection** ## **Kaggle Competition** Kaggle Competition to be released soon Teams of 2-3 Competition will last 1.5-2 weeks - Submit a report - Standard template # Today High Level Overview of Ensemble Methods - Boosting - Ensemble Method for Reducing Bias Ensemble Selection #### Recall: Test Error - "True" distribution: P(x,y) - Unknown to us - Train: $h_S(x) = y$ - Using training data: $S = \{(x_i, y_i)\}_{i=1}^N$ - Sampled from P(x,y) - Test Error: $$L_P(h_S) = E_{(x,y) \sim P(x,y)} [L(y,h_S(x))]$$ Overfitting: Test Error >> Training Error #### True Distribution P(x,y) | | | | (, , , , | |----------|-----|-------|--------------| | Person | Age | Male? | Height > 55" | | James | 11 | 1 | 1 | | Jessica | 14 | 0 | 1 | | Alice | 14 | 0 | 1 | | Amy | 12 | 0 | 1 | | Bob | 10 | 1 | 1 | | Xavier | 9 | 1 | 0 | | Cathy | 9 | 0 | 1 | | Carol | 13 | 0 | 1 | | Eugene | 13 | 1 | 0 | | Rafael | 12 | 1 | 1 | | Dave | 8 | 1 | 0 | | Peter | 9 | 1 | 0 | | Henry | 13 | 1 | 0 | | Erin | 11 | 0 | 0 | | Rose | 7 | 0 | 0 | | lain | 8 | 1 | 1 | | Paulo | 12 | 1 | 0 | | Margaret | 10 | 0 | 1 | | Frank | 9 | 1 | 1 | | Jill | 13 | 0 | 0 | | Leon | 10 | 1 | 0 | | Sarah | 12 | 0 | 0 | | Gena | 8 | 0 | 0 | | Patrick | 5 | 1 | 1 | #### Training Set S | Person | Age | Male? | Height > 55" | | | | | |--------|-----|-------|--------------|----------|--|--|--| | Alice | 14 | 0 | 1 | \ | | | | | Bob | 10 | 1 | 1 | \ | | | | | Carol | 13 | 0 | 1 | \ | | | | | Dave | 8 | 1 | 0 | \ | | | | | Erin | 11 | 0 | 0 | × | | | | | Frank | 9 | 1 | 1 | × | | | | | Gena | 8 | 0 | 0 | \ | | | | | | | | | 4 | | | | | | | | У | h(x) | | | | #### **Test Error:** $$\mathcal{L}(h) = E_{(x,y)^{\sim}P(x,y)}[L(h(x),y)]$$ #### Recall: Test Error Test Error: $$L_P(h) = E_{(x,y) \sim P(x,y)} \left[L(y,h(x)) \right]$$ Treat h_s as random variable: $$h_S = \underset{h}{\operatorname{argmin}} \sum_{(x_i, y_i) \in S} L(y_i, h(x_i))$$ • Expected Test Error: aka test error of model class $$E_{S}[L_{P}(h_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,h_{S}(x))]]$$ #### Recall: Bias-Variance Decomposition $$E_{S}[L_{P}(h_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,h_{S}(x))]]$$ For squared error: $$E_{S}\big[L_{P}(h_{S})\big] = E_{(x,y)\sim P(x,y)} \bigg[E_{S}\Big[\big(h_{S}(x)-H(x)\big)^{2}\Big] + \big(H(x)-y\big)^{2}\bigg]$$ Variance Term Bias Term $$H(x) = E_{S}\big[h_{S}(x)\big]$$ "Average prediction on x" ### **Recall:** Bias-Variance Decomposition #### Recall: Bias-Variance Decomposition Some models experience high test error due to high bias. (Model class to simple to make accurate predictions.) Some models experience high test error due to high variance. (Model class unstable due to insufficient training data.) ### General Concept: Ensemble Methods - Combine multiple learning algorithms or models - Previous Lecture: Bagging & Random Forests - Today: Boosting & Ensemble Selection Decision Trees, SVMs. etc. - "Meta Learning" approach - Does not innovate on base learning algorithm/model - Ex: Bagging - New training sets via bootstrapping - Combines by averaging predictions #### Intuition: Why Ensemble Methods Work - Bias-Variance Tradeoff! - Bagging reduces variance of low-bias models - Low-bias models are "complex" and unstable - Bagging averages them together to create stability - Boosting reduces bias of low-variance models - Low-variance models are simple with high bias - Boosting trains sequence of simple models - Sum of simple models is complex/accurate # Boosting "The Strength of Weak Classifiers"* #### Terminology: Shallow Decision Trees - Decision Trees with only a few nodes - Very high bias & low variance - Different training sets lead to very similar trees - Error is high (barely better than static baseline) - Extreme case: "Decision Stumps" - Trees with exactly 1 split # Stability of Shallow Trees - Tends to learn more-or-less the same model. - h_s(x) has low variance - Over the randomness of training set S # Terminology: Weak Learning • Error rate: $$\varepsilon_{h,P} = E_{P(x,y)} \left[1_{[h(x) \neq y]} \right]$$ - Weak Classifier: $\mathcal{E}_{h,P}$ slightly better than 0.5 - Slightly better than random guessing Shallow Decision Trees are Weak Classifiers! Weak Learners are Low Variance & High Bias! #### How to "Boost" Weak Models? $$E_{S}\big[L_{P}(h_{S})\big] = E_{(x,y)\sim P(x,y)} \bigg[E_{S}\Big[\big(h_{S}(x)-H(x)\big)^{2}\Big] + \big(H(x)-y\big)^{2}\bigg]$$ Expected Test Error Variance Term Bias Term Over randomness of S (Squared Loss) "Average prediction on x" $\longrightarrow H(x) = E_{S}\big[h_{S}(x)\big]$ - Weak Models are High Bias & Low Variance - Bagging would not work - Reduces variance, not bias # First Try (for Regression) - 1 dimensional regression - Learn Decision Stump - (single split, predict mean of two partitions) | h | 1 _{1:t} (| x) = | • h ₁ | (x) | + | ••• | + | h _t (| (x) |) | |---|--------------------|------|------------------|-----|---|-----|---|------------------|-----|---| | | | | | | | | | | | | | | X | у | |---|---|----| | | 0 | 0 | | | 1 | 1 | | S | 2 | 4 | | | 3 | 9 | | | 4 | 16 | | | 5 | 25 | | | 6 | 36 | | y ₁ | h ₁ (x) | y ₂ | h ₂ (x) | h _{1:2} (x) | y ₃ | h ₃ (x) | h _{1:3} (x) | |-----------------------|--------------------|-----------------------|--------------------|----------------------|-----------------------|--------------------|----------------------| | 0 | 6 | -6 | -5.5 | 0.5 | -0.5 | -0.55 | -0.05 | | 1 | 6 | -5 | -5.5 | 0.5 | 0.5 | -0.55 | -0.05 | | 4 | 6 | -2 | 2.2 | 8.2 | -4.2 | -0.55 | 7.65 | | 9 | 6 | -3 | 2.2 | 8.2 | 0.8 | -0.55 | 7.65 | | 16 | 6 | 10 | 2.2 | 8.2 | 7.8 | -0.55 | 7.65 | | 25 | 30.5 | -5.5 | 2.2 | 32.7 | -7.7 | -0.55 | 32.15 | | 36 | 30.5 | 5.5 | 2.2 | 32.7 | 3.3 | 3.3 | 36 | #### First Try (for Regression) $$h_{1:t}(x) = h_1(x) + ... + h_t(x)$$ $y_t = y - h_{1:t-1}(x)$ # **Gradient Boosting (Simple Version)** (Why is it called "gradient"?) (Answer next slides.) (For Regression Only) ### Axis Aligned Gradient Descent (For Linear Model) - Linear Model: $h(x) = w^Tx$ - Squared Loss: $L(y,y') = (y-y')^2$ $$S = \{(x_i, y_i)\}_{i=1}^{N}$$ **Training Set** - Similar to Gradient Descent - But only allow axis-aligned update directions - Updates are of the form: $$w = w - \eta g_d e_d \qquad g = \sum_i \nabla_w L(y_i, w^T x_i)$$ Projection of gradient along d-th dimension Update along axis with greatest projection Unit vector along d-th $$e_d = \begin{bmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$ ## Axis Aligned Gradient Descent ### Function Space & Ensemble Methods - Linear model = one coefficient per feature - Linear over the input feature space - Ensemble methods = one coefficient per model - Linear over a function space Coefficient=1 for models used Coefficient=0 for other models #### "Function Space" (Span of all shallow trees) (Potentially infinite) (Most coefficients are 0) ## **Properties of Function Space** - Generalization of a Vector Space - Closed under Addition - Sum of two functions is a function - Closed under Scalar Multiplication - Multiplying a function with a scalar is a function - Gradient descent: adding a scaled function to an existing function # **Function Space of Models** - Every "axis" in the space is a weak model - Potentially infinite axes/dimensions - Complex models are linear combinations of weak models - $-h = \eta_1 h_1 + \eta_2 h_2 + ... + \eta_n h_n$ - Equivalent to a point in function space - Defined by coefficients η #### Recall: Axis Aligned Gradient Descent #### **Functional Gradient Descent** (Gradient Descent in Function Space) (Derivation for Squared Loss) - Init h(x) = 0 - Loop n=1,2,3,4,... Project functional gradient to best function $$h = h - \underset{h_n}{\operatorname{argmax}} \left(\operatorname{project}_{h_n} \left(\sum_{i} \nabla_h L(y_i, h(x_i)) \right) \right)$$ $$= h + \underset{h_n}{\operatorname{argmin}} \sum_{i} (y_i - h(x_i) - h_n(x_i))^2$$ 1 Equivalent to finding the h_n that minimizes residual loss $$S = \{(x_i, y_i)\}_{i=1}^{N}$$ # Reduction to Vector Space - Function space = axis-aligned unit vectors Weak model = axis-aligned unit vector: $e_d = \begin{bmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}$ $$\mathcal{E}_d = \begin{bmatrix} \cdot \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}$$ - Linear model w has same functional form: - $w = \eta_1 e_1 + \eta_2 e_2 + ... + \eta_D e_D$ - Point in space of D "axis-aligned functions" - **Axis-Aligned Gradient Descent = Functional Gradient** Descent on space of axis-aligned unit vector weak models. # **Gradient Boosting (Full Version)** (Instance of Functional Gradient Descent) (For Regression Only) $$S = \{(x_{i}, y_{i})\}_{i=1}^{N} \quad h_{1:n}(x) = h_{1}(x) + \eta_{2}h_{2}(x) + \dots + \eta_{n}h_{n}(x)$$ $$S_{1} = \{(x_{i}, y_{i})\}_{i=1}^{N} \longrightarrow S_{2} = \{(x_{i}, y_{i} - h_{1}(x_{i}))\}_{i=1}^{N} \longrightarrow S_{n} = \{(x_{i}, y_{i} - h_{1:n-1}(x_{i}))\}_{i=1}^{N}$$ $$h_{1}(x) \quad h_{2}(x) \quad h_{n}(x)$$ ## **Recap:** Basic Boosting Ensemble of many weak classifiers. $$-h(x) = \eta_1 h_1(x) + \eta_2 h_2(x) + ... + \eta_n h_n(x)$$ - Goal: reduce bias using low-variance models - Derivation: via Gradient Descent in Function Space - Space of weak classifiers - We've only seen the regression so far... # AdaBoost Adaptive Boosting for Classification ## **Boosting for Classification** Gradient Boosting was designed for regression Can we design one for classification? - AdaBoost - Adaptive Boosting #### AdaBoost = Functional Gradient Descent AdaBoost is also instance of functional gradient descent: $$-h(x) = sign(a_1h_1(x) + a_2h_2(x) + ... + a_3h_n(x))$$ - E.g., weak models h_i(x) are classification trees - Always predict 0 or 1 - (Gradient Boosting used regression trees) # Combining Multiple Classifiers #### **Aggregate Scoring Function:** $$f(x) = 0.1*h_1(x) + 1.5*h_2(x) + 0.4*h_3(x) + 1.1*h_4(x)$$ #### **Aggregate Classifier:** $$h(x) = sign(f(x))$$ | Data
Point | h ₁ (x) | h ₂ (x) | h ₃ (x) | h ₄ (x) | f(x) | h(x) | |-----------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------|------| | x ₁ | +1 | +1 | +1 | -1 | 0.1 + 1.5 + 0.4 - 1.1 = 0.9 | +1 | | x ₂ | +1 | +1 | +1 | +1 | 0.1 + 1.5 + 0.4 + 1.1 = 3.1 | +1 | | X ₃ | -1 | +1 | -1 | -1 | -0.1 + 1.5 - 0.3 - 1.1 = -0.1 | -1 | | X ₄ | -1 | -1 | +1 | -1 | -0.1 - 1.5 + 0.3 - 1.1 = -2.4 | -1 | ## **Also Creates New Training Sets** - Gradients in Function Space - For Regression - Weak model that outputs residual of loss function - Squared loss = y-h(x) - Algorithmically equivalent to training weak model on modified training set - Gradient Boosting = train on $(x_i, y_i-h(x_i))$ - What about AdaBoost? - Classification problem. # Reweighting Training Data Define weighting D over S: $$S = \{(x_i, y_i)\}_{i=1}^{N}$$ - Sums to 1: $$\sum_{i} D(i) = 1$$ • Examples: | Data Point | D(i) | |-------------|------| | (x_1,y_1) | 1/3 | | (x_2,y_2) | 1/3 | | (x_3,y_3) | 1/3 | | Data Point | D(i) | |--------------|------| | (x_1,y_1) | 0 | | (x_2, y_2) | 1/2 | | (x_3,y_3) | 1/2 | | Data Point | D(i) | |-------------|------| | (x_1,y_1) | 1/6 | | (x_2,y_2) | 1/3 | | (x_3,y_3) | 1/2 | Weighted loss function: $$L_D(h) = \sum_{i} D(i)L(y_i, h(x_i))$$ # Training Decision Trees with Weighted Training Data - Slight modification of splitting criterion. - Example: Bernoulli Variance: $$L(S') = |S'| p_{S'} (1 - p_{S'}) = \frac{\# pos * \# neg}{|S'|}$$ Estimate fraction of positives as: $$p_{S'} = \frac{\sum_{(x_i, y_i) \in S'} D(i) 1_{[y_i = 1]}}{|S'|} \qquad |S'| = \sum_{(x_i, y_i) \in S'} D(i)$$ ## AdaBoost Outline $$S = \{(x_i, y_i)\}_{i=1}^{N}$$ $$h(x) = sign(a_1h_1(x)) + a_2h_2(x) + ... + a_nh_n(x)$$ $$y_i \in \{-1,+1\}$$ D_t – weighting on data points a_t – weight of linear combination http://www.yisongyue.com/courses/cs155/lectures/msri.pdf Stop when validation performance plateaus (will discuss later) #### **Aggregate Scoring Function:** $$f(x) = 0.1*h_1(x) + 1.5*h_2(x) + 0.4*h_3(x) + 1.1*h_4(x)$$ #### **Aggregate Classifier:** $$h(x) = sign(f(x))$$ | Somewhat close to | | | | | |----------------------------|-----------------------|--------------------|------|------| | Decision Boundary | Data
Point | Label | f(x) | h(x) | | Violates Decision Boundary | x ₁ | y ₁ =+1 | 0.9 | +1 | | Boundary | x ₂ | y ₂ =+1 | 3.1 | +1 | | Safely Far from | X ₃ | y ₃ =+1 | -0.1 | -1 | | Decision Boundary> | X ₄ | y ₄ =-1 | -2.4 | -1 | #### **Thought Experiment:** When we train new $h_5(x)$ to add to f(x)... ... what happens when h₅ mispredicts on everything? | Somewhat close to | | | | | |----------------------------|-----------------------|--------------------|------|------| | Decision Boundary | Data
Point | Label | f(x) | h(x) | | Violates Decision Boundary | x ₁ | y ₁ =+1 | 0.9 | +1 | | boundary | X_2 | y ₂ =+1 | 3.1 | +1 | | Safely Far from | X ₃ | y ₃ =+1 | -0.1 | -1 | | Decision Boundary | X ₄ | y ₄ =-1 | -2.4 | -1 | #### **Aggregate Scoring Function:** $$f_{1:5}(x) = f_{1:4}(x) + 0.5*h_5(x)$$ #### **Aggregate Classifier:** $$h_{1:5}(x) = sign(f_{1:5}(x))$$ | Suppose | $a_5 = 0.5$ | |---------|-------------| | | | | Data
Point | Label | f _{1:4} (x) | h _{1:4} (x) | Worst case h ₅ (x) | Worst case f _{1:5} (x) | Impact of h ₅ (x) | |-----------------------|--------------------|----------------------|----------------------|-------------------------------|---------------------------------|------------------------------| | X ₁ | y ₁ =+1 | 0.9 | +1 | -1 | 0.4 | Kind of Bad | | x_2 | y ₂ =+1 | 3.1 | +1 | -1 | 2.6 | Irrelevant | | x ₃ | y ₃ =+1 | -0.1 | -1 | -1 | -0.6 | Very Bad | | x ₄ | y ₄ =-1 | -2.4 | -1 | +1 | -1.9 | Irrelevant | $h_5(x)$ should definitely classify (x_3,y_3) correctly! $h_5(x)$ should probably classify (x_1,y_1) correctly. Don't care about (x_2,y_2) & (x_4,y_4) Implies a weighting over training examples | Data
Point | Label | f _{1:4} (x) | h _{1:4} (x) | Worst case h ₅ (x) | Worst case f _{1:5} (x) | Impact of h ₅ (x) | |-----------------------|--------------------|----------------------|----------------------|-------------------------------|---------------------------------|------------------------------| | X ₁ | y ₁ =+1 | 0.9 | +1 | -1 | 0.4 | Kind of Bad | | x_2 | y ₂ =+1 | 3.1 | +1 | -1 | 2.6 | Irrelevant | | x ₃ | y ₃ =+1 | -0.1 | -1 | -1 | -0.6 | Very Bad | | x ₄ | y ₄ =-1 | -2.4 | -1 | +1 | -1.9 | Irrelevant | h₅(x) that mispredicts on everything #### **Aggregate Scoring Function:** $$f_{1:4}(x) = 0.1*h_1(x) + 1.5*h_2(x) + 0.4*h_3(x) + 1.1*h_4(x)$$ #### **Aggregate Classifier:** $$h_{1:4}(x) = sign(f_{1:4}(x))$$ | Data
Point | Label | f _{1:4} (x) | h _{1:4} (x) | Desired D ₅ | |-----------------------|--------------------|----------------------|----------------------|------------------------| | x ₁ | y ₁ =+1 | 0.9 | +1 | Medium | | x ₂ | y ₂ =+1 | 3.1 | +1 | Low | | X_3 | y ₃ =+1 | -0.1 | -1 | High | | X ₄ | y ₄ =-1 | -2.4 | -1 | Low | ## AdaBoost • Init $$D_1(x) = 1/N$$ $$S = \{(x_i, y_i)\}_{i=1}^{N}$$ $$y_i \in \{-1, +1\}$$ - Train classifier h_t(x) using (S,D_t) - Compute error on (S,D_t): $\varepsilon_t = L_{D_t}(h_t) = \sum_i D_t(i)L(y_i,h_t(x_i))$ - Define step size a_t : $a_t = \frac{1}{2} \log \left\{ \frac{1 \varepsilon_t}{\varepsilon_t} \right\}$ - Update Weighting: $D_{t+1}(i) = \frac{D_t(i)\exp\{-a_t y_i h_t(x_i)\}}{Z_t}$ - **Return:** $h(x) = sign(a_1h_1(x) + ... + a_nh_n(x))$ Normalization Factor s.t. D_{t+1} sums to 1. ## Example $$y_i h_t(x_i) = -1 \text{ or } +1$$ $$\varepsilon_{t} \equiv L_{D_{t}}(h_{t}) = \sum_{i} D_{t}(i) L(y_{i}, h_{t}(x_{i}))$$ $$D_{t+1}(i) = \frac{D_{t}(i)\exp\{-a_{t}y_{i}h_{t}(x_{i})\}}{Z_{t}}$$ $$a_t = \frac{1}{2} \log \left\{ \frac{1 - \varepsilon_t}{\varepsilon_t} \right\}$$ What happens if $\varepsilon = 0.5$? Normalization Factor s.t. D_{t+1} sums to 1. $$\epsilon_1 = 0.4$$ $a_1 = 0.2$ $$\epsilon_2 = 0.45$$ $a_2 = 0.1$ $$\varepsilon_3 = 0.35$$ $a_3 = 0.31$ | Data
Point | Label | D ₁ | h ₁ (x) | D ₂ | h ₂ (x) | D3 | h ₃ (x) | |-----------------------|--------------------|----------------|--------------------|----------------|--------------------|-------|--------------------| | x_1 | y ₁ =+1 | 0.01 | +1 | 0.008 | +1 | 0.007 | -1 | | x ₂ | y ₂ =+1 | 0.01 | -1 | 0.012 | +1 | 0.011 | +1 | | X ₃ | y ₃ =+1 | 0.01 | -1 | 0.012 | -1 | 0.013 | +1 | | X_4 | y ₄ =-1 | 0.01 | -1 | 0.008 | +1 | 0.009 | -1 | ## **Exponential Loss** $$L(y, f(x)) = \exp\{-yf(x)\}\$$ # Upper Bounds 0/1 Loss! Can prove that AdaBoost minimizes Exp Loss (Homework Question) ## **Decomposing Exp Loss** $$L(y, f(x)) = \exp\{-yf(x)\}\$$ $$= \exp\left\{-y\left(\sum_{t=1}^{n} a_{t}h_{t}(x)\right)\right\}$$ $$= \prod_{t=1}^{n} \exp\{-ya_{t}h_{t}(x)\}$$ **Distribution Update Rule!** $$L(y, f(x)) = \exp\left\{-y\sum_{t=1}^{n} a_{t}h_{t}(x)\right\} = \prod_{t=1}^{n} \exp\left\{-ya_{t}h_{t}(x)\right\}$$ - Exp Loss operates in exponent space - Additive update to f(x) = multiplicative update to Exp Loss of f(x) - Reweighting Scheme in AdaBoost can be derived via residual Exp Loss ## AdaBoost = Minimizing Exp Loss • Init $D_1(x) = 1/N$ $S = \{(x_i, y_i)\}_{i=1}^{N}$ Loop t = 1...n: $y_i \in \{-1,+1\}$ - Train classifier h_t(x) using (S,D_t) - Compute error on (S,D_t): $\varepsilon_t = L_{D_t}(h_t) = \sum D_t(i)L(y_i, h_t(x_i))$ - Define step size a_t : $a_t = \frac{1}{2} \log \left\{ \frac{1 \varepsilon_t}{\varepsilon_t} \right\}$ Data points reweighted according to Exp Loss! - Update Weighting: $D_{t+1}(i) = \frac{D_t(i)\exp\{-a_t y_i h_t(x_i)\}}{7}$ - **Return:** $h(x) = sign(a_1h_1(x) + ... + a_nh_n(x))$ s.t. D_{t+1} sums to 1. ## Story So Far: AdaBoost - AdaBoost iteratively finds weak classifier to minimize residual Exp Loss - Trains weak classifier on reweighted data (S,D₁). - Homework: Rigorously prove it! The proof is in earlier slides. - 1. Formally prove Exp Loss ≥ 0/1 Loss - 2. Relate Exp Loss to Z_t : - 3. Justify choice of a_t: - Gives largest decrease in Z_t $$D_{t+1}(i) = \frac{D_{t}(i) \exp\{-a_{t} y_{i} h_{t}(x_{i})\}}{Z_{t}}$$ $$a_t = \frac{1}{2} \log \left\{ \frac{1 - \varepsilon_t}{\varepsilon_t} \right\}$$ ## Recap: AdaBoost - Gradient Descent in Function Space - Space of weak classifiers - Final model = linear combination of weak classifiers - $-h(x) = sign(a_1h_1(x) + ... + a_nh_n(x))$ - I.e., a point in Function Space - Iteratively creates new training sets via reweighting - Trains weak classifier on reweighted training set - Derived via minimizing residual Exp Loss ## **Ensemble Selection** ## **Recall: Bias-Variance Decomposition** $$E_{S}[L_{P}(h_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,h_{S}(x))]]$$ For squared error: $$E_{S}\big[L_{P}(h_{S})\big] = E_{(x,y)\sim P(x,y)} \bigg[E_{S}\Big[\big(h_{S}(x)-H(x)\big)^{2}\Big] + \big(H(x)-y\big)^{2}\bigg]$$ Variance Term Bias Term $$H(x) = E_{S}\big[h_{S}(x)\big]$$ "Average prediction on x" ## **Ensemble Methods** - Combine base models to improve performance - Bagging: averages high variance, low bias models - Reduces variance - Indirectly deals with bias via low bias base models - Boosting: carefully combines simple models - Reduces bias - Indirectly deals with variance via low variance base models - Can we get best of both worlds? ## **Insight:** Use Validation Set Evaluate error on validation set V: $$L_V(h_S) = E_{(x,y)\sim V} \left[L(y, h_S(x)) \right]$$ Proxy for test error: $$E_V \Big[L_V(h_S) \Big] = L_P(h_S)$$ Expected Validation Error Test Error ## **Ensemble Selection** Maintain ensemble model as combination of H: $$h(x) = h_1(x) + h_2(x) + ... + h_n(x) + h_{n+1}(x)$$ Add model from H that maximizes performance on V' Models are trained on S' Ensemble built to optimize V' "Ensemble Selection from Libraries of Models" Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004 ### Reduces Both Bias & Variance - Expected Test Error = Bias + Variance - Bagging: reduce variance of low-bias models - Boosting: reduce bias of low-variance models - Ensemble Selection: who cares! - Use validation error to approximate test error - Directly minimize validation error - Don't worry about the bias/variance decomposition ## What's the Catch? - Relies heavily on validation set - Bagging & Boosting: uses training set to select next model - Ensemble Selection: uses validation set to select next model - Requires validation set be sufficiently large - In practice: implies smaller training sets - Training & validation = partitioning of finite data - Often works very well in practice | MODEL | ACC | FSC | LFT | ROC | APR | BEP | RMS | MXE | CAL | SAR | MEAN | |------------------|------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|------------------|------------------| | ENS. SEL. | 0.956 | 0.944 | 0.992 | 0.997 | 0.985 | 0.979 | 0.980 | 0.981 | 0.906 | 0.996 | 0.969 | | BAYESAVG
BEST | $0.926 \\ 0.928$ | 0.891 0.919 | $0.979 \\ 0.975$ | $0.985 \\ 0.988$ | $0.977 \\ 0.959$ | $0.956 \\ 0.958$ | $0.950 \\ 0.919$ | $0.959 \\ 0.944$ | 0.907
0.924 | $0.941 \\ 0.924$ | 0.948
0.946 | | AVG_ALL | 0.836 | 0.801 | 0.982 | 0.988 | 0.972 | 0.961 | 0.827 | 0.809 | 0.832 | 0.916 | 0.890 | | STACK_LR | 0.275 | 0.777 | 0.835 | 0.799 | 0.786 | 0.847 | 0.332 | -0.990 | -0.011 | 0.705 | 0.406 | | SVM | 0.813 | 0.909 | 0.948 | 0.962 | 0.933 | 0.938 | 0.877 | 0.878 | 0.889 | 0.905 | 0.905 | | ANN
BAG-DT | 0.877
0.811 | $0.875 \\ 0.861$ | $0.949 \\ 0.947$ | $0.955 \\ 0.967$ | $0.917 \\ 0.942$ | $0.914 \\ 0.922$ | $0.853 \\ 0.859$ | 0.863
0.894 | 0.916
0.786 | 0.896
0.904 | 0.902
0.888 | | KNN | 0.756 | 0.846 | 0.909 | 0.937 | 0.885 | 0.889 | 0.761 | 0.735 | 0.876 | 0.847 | 0.844 | | BST-DT
DT | 0.890
0.526 | $0.899 \\ 0.789$ | 0.957
0.850 | 0.978
0.868 | 0.960
0.767 | 0.943
0.795 | $0.607 \\ 0.556$ | $0.611 \\ 0.624$ | $0.413 \\ 0.720$ | 0.871
0.745 | $0.806 \\ 0.722$ | | BST-STMP | 0.732 | 0.790 | 0.906 | 0.919 | 0.861 | 0.834 | 0.304 | 0.286 | 0.389 | 0.659 | 0.669 | Ensemble Selection often outperforms a more homogenous sets of models. Reduces overfitting by building model using validation set. Ensemble Selection won KDD Cup 2009 http://www.niculescu-mizil.org/papers/KDDCup09.pdf #### "Ensemble Selection from Libraries of Models" Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004 #### References & Further Reading "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Bauer & Kohavi, Machine Learning, 36, 105–139 (1999) "Bagging Predictors" Leo Breiman, Tech Report #421, UC Berkeley, 1994, http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf "An Empirical Comparison of Supervised Learning Algorithms" Caruana & Niculescu-Mizil, ICML 2006 "An Empirical Evaluation of Supervised Learning in High Dimensions" Caruana, Karampatziakis & Yessenalina, ICML 2008 "Ensemble Methods in Machine Learning" Thomas Dietterich, Multiple Classifier Systems, 2000 "Ensemble Selection from Libraries of Models" Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004 "Getting the Most Out of Ensemble Selection" Caruana, Munson, & Niculescu-Mizil, ICDM 2006 "Explaining AdaBoost" Rob Schapire, https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf "Greedy Function Approximation: A Gradient Boosting Machine", Jerome Friedman, 2001, http://statweb.stanford.edu/~jhf/ftp/trebst.pdf "Random Forests – Random Features" Leo Breiman, Tech Report #567, UC Berkeley, 1999, "Structured Random Forests for Fast Edge Detection" Dollár & Zitnick, ICCV 2013 "ABC-Boost: Adaptive Base Class Boost for Multi-class Classification" Ping Li, ICML 2009 "Additive Groves of Regression Trees" Sorokina, Caruana & Riedewald, ECML 2007, http://additivegroves.net/ "Winning the KDD Cup Orange Challenge with Ensemble Selection", Niculescu-Mizil et al., KDD 2009 "Lessons from the Netflix Prize Challenge" Bell & Koren, SIGKDD Exporations 9(2), 75—79, 2007 ### **Next Lectures** Deep Learning Joe Marino - Recitation on Thursday - Keras Tutorial