Caltech

Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 5:
Decision Trees, Bagging &
Random Forests



Announcements

 Homework 2 due tomorrow

* Homework 3 release tomorrow
— Easier than HW1 & HW?2



Topic Overview

Supervised Learning

Linear Models Overfitting
: Learning Algorithms o :
Non-Linear Models Probabilistic Modeling

Unsupervised Learning




This Lecture

* Focus on achieving highest possible accuracy
— Decision Trees
— Bagging
— Random Forests
— Highly non-linear models

* Next Lecture
— Boosting
— Ensemble Selection



Decision Trees



(Binary) Decision Tree

Yes No

Yes No Yes No

Don’t overthink this, it is
literally what it looks like.

Person | Age

Alice

Bob

Carol

Dave

Erin

Frank

Gena

14

10

13

8

11

9

10

Height > 55”




(Binary) Decision Tree

Root Node

Leaf Nodes

Internal Nodes

Input: Alice
Gender: Female

Age: 14
Prediction: Height > 55”

Every internal node has a binary
guery function q(x).

Every leaf node has a prediction,
e.g., 0or 1.

Prediction starts at root node.
Recursively calls query function.
Positive response = Left Child.
Negative response = Right Child.
Repeat until Leaf Node.




Queries

* Decision Tree defined by Tree of Queries
* Binary query g(x) maps featuresto O or 1

* Basic form: q(x) = 1[x9 > ]
—1[x3 > 5]
—1[x! > 0]
—1[x>>>1.2]

* Axis aligned partitioning of input space






Basic Decision Tree Function Class

* “Piece-wise Static” Function Class
— All possible partitionings over feature space.
— Each partition has a static prediction.

* Partitions axis-aligned ~ -~ | — -~ ~=- -
— E.g., No Diagonals BRI I
* (Extensions next week) |~ - - [-- - -~
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Decision Trees vs Linear Models

e Decision Trees are NON-LINEAR Models!

. No Linear Model Simple Decision Tree
o
Exa m ple ) Can Achieve O Error Can Achieve O Error
o e
~L T
- - - = —=
e ~ - - N B
u RHF ~ .. %'_'f
[ el
2 -




Decision Trees vs Linear Models

e Decision Trees are NON-LINEAR Models!

No Linear Model Simple Decision Tree
. [ ]
Exa m ple ) Can Achieve O Error Can Achieve O Error
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Decision Trees vs Linear Models

* Decision Trees are AXIS-ALIGNED!
— Cannot easily model diagonal boundaries

Decision Trees Require

¢ Example: Simple Linear SVM can Complex Axis-Aligned

Easily Find Max Margin

Partitioning
- —
e\ / 4=
B A [ o=
N
Lﬁﬂ \ === Wasted / P
- = Boundary < -
L\ = \\ e
\ L/

D%




More Extreme Example

=
. \\ Decision Tree wastes most of model
" = = : :
E[J% — capacity on useless boundaries.
= =
:LE :[15 = (Depicting useful boundaries)
I
T —
[ Lu“ \\ —=
L \:D:/ \ == ==
\,
. da \\ -
T Y e =
\
\—Ujj \ =
LY, -
o o \ ==
La »
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Decision Trees vs Linear Models

e Decision Trees are often more accurate!

* Non-linearity is often more important

— Just use many axis-aligned boundaries to
approximate diagonal boundaries

— (It’s OK to waste model capacity.)

e Catch: requires sufficient training data

— Will become clear later in lecture
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Decision Tree Training

Every node = partition/subset of S Name | Age | Male? | Height
Every Layer = complete partitioning of S S 55

Children = complete partitioning of parent i Alice 14 0O 1
Bob 10 1 1
Carol 13 O 1
Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
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Thought Experiment

* What if just one node?
>55”

— (l.e., just root node) | Alice 14 0 1
— No queries SR P :
— Single prediction for all data
Carol 13 O 1
— g+ | Dave 8 1 0
.-
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0

18






+ “$ =" -
- T o+
_ _ |
= T T 4 & a
p— i
EB: [
S8
Corresponds to Entire Training Set #
)
Makes a Single Prediction: —
Majority class in training set _ -
EIUIj
- _ - : - == LU: EB: [[JI:
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Thought Experiment Continued

>55”

— (l.e., root node + 2 children) | Alice 14 0 1
_ G i ?
Single query (which one?) S .
— 2 predictions
Carol 13 O 1
— How many possible queries?
g4 |Dave 3 1 0
Erin 11 O 0
Yes No Frank 9 1 1
[ ] Gena 10 O 0
- . Y )\ J
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D*N
#Features)

#training points)

(D

N=

How to choose “best” query?




Impurity

Classification Error
of best single prediction

* Define impurity function: /
— E.g., 0/1 Loss: L(S") = gg}(wz)es'l[w]
S S, S,
e o Impurity  _
L (= L - Reduction
. .

il T No Benefit From
L I T | This Split!

L(S)=1 L(S;)=0 L(S,)=1
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Impurity

Classification Error
of best single prediction

* Define impurity function: /
— E.g., 0/1 Loss: L(S)=§r§})al} E 1[9¢y]
(x,y)ES’
S
e o Impurity  _
) g - v , ==|s, Reduction
- -

il e No Benefit From
L I T s, ThisSplit

L(S)=1 L(S;)=0 L(S,)=1
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Impurity

Classification Error

. . . . of best single prediction
* Define impurity function: /
— E.g., 0/1 Loss: L(S") = yré%gll} 1[9¢y]
(x,y)ES'
S S, S,
e o Impurity  _ 4
L - LR | = Reduction
aa aa
* EBJ Choose Split with
L - largest impurity
v o reduction!

L(S)=1 L(S;)=0 L(S,)=0
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Impurity = Loss Function

* Training Goal:
— Find decision tree with low impurity.

* Impurity Over Leaf Nodes = Training Loss

— ' L(S')= min 2 1.
L(S)= Y L(S") (§)=min ), I,
| (x,y)ES'
S
S’ iterates over leaf nodes Classification Erroron S’
Union of S’ =S

(Leaf Nodes = partitioning of S)
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Problems with 0/1 Loss

* What split best reduces impurity?

L(S")= min

y€{0.1} (

E 1[9¢y]

x,y)ES' All Partitionings Give Same
Impurity Reduction!
Sl S2 Sl SZ
I I
o i T il
L3 L
) — ) —=
L il
L(S,)=0 L(S,) =1 L(S,)=0 L(S,)=1
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Problems with 0/1 Loss

 0/1 Loss is discontinuous

* A good partitioning may not improve 0/1 Loss...

— E.g., leads to an accurate model with subsequent split...

S S, S, S, S,
e el B il B
Wq'_'; s Wq'_'; s ﬁq'_‘; P
%HF M o [{ ‘F M - # }j M — S;
+ + +
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Surrogate Impurity Measures

* Want more continuous impurity measure

* First try: Bernoulli Variance:

. , # pos* #ne - : :
L(S")= |S |ps'(1 _ ps') — P g p. = fraction of S’ that are

|.S'] positive examples
. . . . Worst Purity
—~ \ P=1/2, L(S')=|S"|*1/4
%,1 il _ P=1, L(S’) = |S’|*0
| /P -0, LS)=|S'[*0
T o Ps A Perfect Purity

Assuming |S’|=1
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Bernoulli Variance as Impurity

* What split best reduces impurity?

L(S)=|S|ps(1-pg) =

# pos * #neg
N
Sl SZ
[
i - l_l
| ==
i

L(S,)=0 L(S,)=1/2
Best!

po = fraction of S’ that are

positive examples

Sl SZ
%_lj I - l_l
\_U_l
i -
N
L(S;)=0 L(S,)=3/4
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Interpretation of Bernoulli Variance

* Assume each partition = distribution overy
— vy is Bernoulli distributed with expected value pg

— Goal: partitioning where each y has low variance

L(S) =5/6

Sl S2 Sl SZ

EPFJ I 4 | EPFJ I 4 |
. p L

I == T |

LU_/ i T

L(S,)=0 L(S,)=1/2
Best!

L(S;)=0 L(S,)=3/4
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Other Impurity Measures

Define: 0*log(0) =0
* Entropy: L(S')=—‘S"(p5,logp5,+(1 pS)logl

— aka: Information Gain:

IG(A,B1S)=L(S)~L(A)-L(B) & / \

(aka: Entropy Impurity Reduction)
— Most popular.

* Gini Index:
L(s)=|s(1-p3 - (1-py)’)

L(S’)

04 06 08
Ps’

See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

(Terminology is slightly different.) 33



Other Impurity Measures

Define: 0*log(0) =0
* Entropy: L(S')=—‘S"(p5, logpS.+(1 pS)log 1

— aka: Information Gain:

IG(A,B1S)=L(S)-L(A)-L(B) %" / \

(aka: Entropy Impurity Reduction)
— Most popular.

Most Good Impurity Measures
Look Qualitatively The Same!

L(S’)

04 06 08
Ps

See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

(Terminology is slightly different.) 34



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance > 35

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpIne Carol 13 O 1
L(S) = 12/7 g4 |Dave 3 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
- 1 ]\ J
T |
X Yy

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance > 35

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P bpIne Carol 13 O 1
Step 1:
L(S) = 12/7 al <— g4 |Dave 3 1 0
Step 2: & N Erin 11 O 0
L(S) =5/3
Frank 1 1
L(S')=2/3 L(s)=1 e
Gena 10 O 0
- 1 ]\ J
T |
X Yy

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance > 35

Alice 14 O 1
Loop: Choose split with greatest impurity
reduction (over all leaf nodes). Bob 10 1 1
Repeat: until stopping condition.
P PpmE Carol 13 O 1
Step 1:
L(S) = 12/7 Wale? g S |Pave 8 1 0
Step 2: [ J [ J Erin 11 O 0
L) =5/3 Frank 9 1 1
L(S’)=2/3 L(S’)=1
Step 3: Loop over all leaves, find best split. Gena 10 O 0
N l . I\ : ]
X Yy

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf 37



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance

Choose split with greatest impurity
reduction (over all leaf nodes).
Repeat: until stopping condition.

Loop:

Step 1:

L(S) = 12/7 o

Step 2: Try

L(S) =5/3

Step 3:
L(S)=1

L(S’)=0 L(S’)=0

Name | Age | Male? | Height
>55”

Alice 14 0 1
Bob 10 1 1
Carol 13 O 1
Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
L J \ J
|| ||
X Y

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance

Choose split with greatest impurity
reduction (over all leaf nodes).
Repeat: until stopping condition.

Loop:

Step 1:

L(S) = 12/7 o

Step 2:

L(S) =5/3
L(S')=2/3

Step 3:

L(S) = 2/3

L(S’)=0 L(S")=0

Name | Age | Male? | Height
>55”

Alice 14 0 1
Bob 10 1 1
Carol 13 O 1
Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
L J \ J
|| ||
X Y

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf



Top-Down Training

* Define impurity measure L(S’)
— E.g., L(S’) = Bernoulli Variance

Loop: Choose split with greatest impurity
reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 1: Step 4:

L(S) = 12/7 L(S) = 0

Step 2:
L(S) = 5/3

Step 3:
L(S) = 2/3

L(S’)=0 L(S")=0 L(S’)=0 L(S’)=0

Name | Age | Male? | Height
>55”

Alice 14 0 1
Bob 10 1 1
Carol 13 O 1
Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
L J \ J
|| ||
X Y

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf









Properties of Top-Down Training

* Every intermediate step is a decision tree

— You can stop any time and have a model

* Greedy algorithm

— Doesn’t backtrack

— Cannot reconsider different higher-level splits.
S S, S, S, S,

oy
4
oy

AL

I

= 'm
jl_l
=~

T

L
N

N7
L
N N

I

N B

B

T

L
.
A~

a'n
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When to Stop?

* If kept going, can learn tree with zero training error.
— But such tree is probably overfitting to training set.

* How to stop training tree earlier?

— l.e., how to regularize?

Which one has better test error?

= [ | [ [HE
— = \_U_/ o M — == i I
e \:Bj . \—U:‘ L,U_J EBZ e LUJ LIL:|_1| LU__I
_ |

+ |t 7| & o

J, == LLHH p ) %Tj Lﬁﬂ M

s il o |

!




Stopping Conditions (Regularizers)

* Minimum Size: do not split if resulting children are smaller
than a minimum size.

— Most common stopping condition.

 Maximum Depth: do not split if the resulting children are
beyond some maximum depth of tree.

 Maximum #Nodes: do not split if tree already has maximum
number of allowable nodes.

* Minimum Reduction in Impurity: do not split if resulting
children do not reduce impurity by at least 6%.

See also, Section 5 in: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
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Pseudocode for Training

Algorithm 1 TREE(): Initialize Decision (Sub-)Tree Data Structure

Algorithm 3 TRAIN(): Top-Down Decision Tree Training

1: input: S //data partition
2: input: L /loss function
3: Initialize data structure 7T :

4 T .data < S // pointer to training data partition
5: T.q < NULL // decision query
6: T.left < NULL  // subtree for positive query response
7 T .right <~ NULL // subtree for negative query response
8 T.AL <« L(S)  /impurity/loss on training data partition
9: return: T

Stopping condition is minimum
leaf node size: N,

1: input: S, Q, Npin, L

2: T < TREE(S) // root node
3: repeat

4: Q<+ 0

5: for every leaf node 7 in 7 do

6: for every ¢ € Q do

7: S1 + {(x,¥) € T.datal q(x) =1}

8: S+ {(x,y) € T.datal q(x) =0}

9: if ’S1| Z Nmin N |52’ Z Nmin then

10: 71 < TREE(S1, L)

11: Ty <— TREE(S2, L)

12: Q(—QU{(T,C],’H,TQ)}

13: end if

14: end for

o end o Select from Q

16: if |@| > 0 then

17: (1,q,71,T2) < Argmin s gr 1 .1y 7'l — (11 L+ T75.0)
18: T.q <@

19: Tleft < n
20: T.right < T2
21: end if

22: until |Q| =0
23: return: 7

See TreeGrowing (Fig 9.2) in http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
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Classification vs Regression

Classification

Labels are {0,1}

Predict Majority Class in
Leaf Node

Piecewise Constant
Function Class

Goal: minimize 0/1 Loss

Impurity based on fraction
of positives vs negatives

Regression

Labels are Real Valued

Predict Mean of Labels in
Leaf Node

Piecewise Constant
Function Class

Goal: minimize squared loss

Impurity = Squared Loss
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Recap: Decision Tree Training

Train Top-Down

— lteratively split existing leaf node into 2 leaf nodes

Minimize Impurity (= Training Loss)
— E.g., Entropy

Until Stopping Condition (= Regularization)

— E.g., Minimum Node Size

Finding optimal tree is intractable

— E.g., tree satisfying minimal leaf sizes with lowest impurity.

48



Recap: Decision Trees

* Piecewise Constant Model Class

— Non-linear!
— Axis-aligned partitions of feature space

* Train to minimize impurity of training data in
leaf partitions
— Top-Down Greedy Training

e Often more accurate than linear models

— If enough training data

49



Bagging
(Bootstrap Aggregation)

50



Outline

* Recap: Bias/Variance Tradeoff

* Bagging
— Method for minimizing variance
— Not specific to Decision Trees

* Random Forests
— Extension of Bagging
— Specific to Decision Trees



Outline

* Recap: Bias/Variance Tradeoff

* Bagging
— Method for minimizing variance
— Not specific to Decision Trees

* Random Forests
— Extension of Bagging
— Specific to Decision Trees
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Test Error

* “True” distribution: P(x,y)
— Unknown to us

* Train: h(x) =y
— Using training data: S = {(xi’yi)}il
— Sampled from P(x,y)

* Test Error:
LP (hS) = E(x,y)~P(x,y) [L(y9 hS (X))]

e Overfitting: Test Error >> Training Error



True Distribution P(x,y)

Person
James
Jessica
Alice
Amy
Bob
Xavier
Cathy
Carol
Eugene
Rafael
Dave
Peter
Henry
Erin
Rose
lain
Paulo
Margaret
Frank
Jill
Leon
Sarah
Gena

Patrick

Age Male?
11
14
14
12
10
9
9
13
13
12
8
9
13
11
7
8
12
10
9
13
10
12

8

m O O B O Rk O KB KB O O R KRB B RB B O O B KB O O O Bk

5

Height > 55”

= o o O o = (= o = o o o o o = o (= = o = (= = = (=]

Training Set S
Person | Age Male?
Alice 14 0
Bob 10 1
Carol 13 0
Dave 8 1
Erin 11 0
Frank 9 1
Gena 8 0

Height > 55”

Test Error:

L(h) = Eyipionl LN(X),¥) ]

Z{ax <<« <<&



Bias-Variance Decomposition
Eg[Lp(hy)] = Es | E s yypnp [LO: s ()]

* For squared error:

E;|L,(hy)]|= (xy>~p<xy>[ [(h (x)— H(x))2]+(H(x)_y)z]

| ] | J
i i

H(x)=E, [hs (x)] Variance Term Bias Term
¢

“Average prediction on x”
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1.5

0.5

-1.5

Example P(x,y)

90

100
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h¢(x) Linear

1.5¢

0 20 40 60 80 100



h(x) Quadratic

1.5¢ 1.5




h¢(x) Cubic

1.5¢ 1.5¢

0 20 40 60 80 100



Bias-Variance Trade-off

0 20 40 60 80 10C

15 Bias Variance '-° Bias  Variance '° Bias  Variance
1 / 1
0.5 0.5
0 20 40 60 80 100 00 20 40 60 80 100 00 20 40 60 80 10C
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Overfitting vs Underfitting

1.5 1.5 15
1 1 1
0.5 0.5 l 0.5
N l-lun AM_A_MA 0 i L!L.‘..A“h;l‘u\uu. i p 0 A MIJAUA I
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 10C

* High variance implies overfitting
— Model class unstable
— Variance increases with model complexity
— Variance reduces with more training data.

* High bias implies underfitting
— Even with no variance, model class has high error
— Bias decreases with model complexity
— Independent of training data size
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High Variance Models

Unless you Regularize a lot...
...but then often worse than Linear Models

Highly Non-Linear, Can Easily Overfit

Different Training Samples Can Lead to
Very Different Trees




Bagging

Goal: reduce variance sampled independently

/

* |deal setting: many training sets S’

. . ’
— Train model using each S Variance reduces linearly

— Average predictions Bias unchanged
Esl(hg(x) - y)°] = Eql(Z-2)°] + 22 Z=hs(x) -y
\ ' 1 0 1 z = Eg[Z]

Expected Error Variance Bias

On single (x,y)

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 65




Ba ggl ng “Bootstrapping”

P(x,y) S S’

22

e Goal: reduce variance f - 3
rom

Z///

* In practice: resample S’ with replacement
— Train model using each §’

Variance reduces sub-linearly
—_ Average predictions (Because S’ are correlated)
Bias often increases slightly

Es[(hg(x) - y)°] = Eq[(Z-7)?] + 22 Z=hg(x) -y
\ ' 1 0 1 z = Eg[Z]
Expected Error Variance Bias

On single (x,y)

Bagging = Bootstrap Aggregation
“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Recap: Bagging for DTs

* Given: Training Set S

* Bagging: Generate Many Bootstrap Samples S’
— Sampled with replacement from S
* |S'] = [S]
— Train Minimally Regularized DT on §’
* High Variance, Low Bias

* Final Predictor: Average of all DTs

— Averaging reduces variance
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DT Bagged DT

25.00
| Variance
20.00 —
N //7
115.00 /A /
“10.00 —
5.00
< 0.00 N

Bias

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105-139 (1999)
http://ai.stanford.edu/~ronnyk/vote.pdf



Why Bagging Works

* Define Ideal Aggregation Predictor h,(x):
— Each S’ drawn from true distribution P

h,(x)= ES~P(x,y) [hS (x)]
\

Decision Tree Trained on S

* We will first compare the error of h,(x) vs h¢(x)

 Then show how to adapt comparison to Bagging

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Analysis of Ideal ;£ ,  [h]
Aggregate PredICtOr DecisionTreeéined onS
(Squared Loss)

ES [L(y’hs (x))] = ES [(y _ hS (x))z] Linearity of Expectation

-

i
Expected Loss of he

on single (x,y)

E[z2] 2 E[z)>
(Z=hg(x) ) g

/

Definition of h,

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 70




K

* |deal Aggregate

ey Insight

Predictor Improves if:

Eg|hy(x)*

Large improvement

> Eg[hs(0)] = h,(x)’

if h¢(x) is “unstable” (high variance)

h,(x) is guranteed to be at least as good as h¢(x).

* Bagging Predictor Improves if:
L [hS (x)z] >k [ES'~S [hS'(x)]z] =Lk [hB (x)z]

Improves if hy(x) is much more stable than h¢(x)
h;(x) can sometimes be more unstable than hy(x)
Bias of hy(x) can be worse than h¢(x).

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Random Forests

* Goal: reduce variance
— Bagging can only do so much
— Resampling training data asymptotes

* Random Forests: sample data & features!

’
— Samp|e S Further de-correlates trees

— Train DT /

e At each node, sample features

— Average predictions

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. N Alice 14 0 1
Repeat: until stopping condition.
Bob 10 1 1
Step 1: Carol 13 O 1
S’ - Dave 8 1 0
Erin 11 O 0
Frank 9 1 1
Gena 10 O 0
- 1 7\ ]
|| ||
X Y

“Random Forests — Random Features” [Leo Breiman, 1997]

http://oz.berkeley.edu/~breiman/random-forests.pdf 74




Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. N Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: l Carol 13 O 1
8 1 0

Step 2: 5’9 | Pave

Erin 11 O 0
Randomly decide only look at age,
Not gender. Frank 9 1 1
Gena 10 O 0
- . )\ J
T ||
X Y

“Random Forests — Random Features” [Leo Breiman, 1997]
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Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. N Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: Carol 13 O 1
Tr
Y 8 1 0

v | Dave
Step 2: S

Erin 11 O 0
Step 3: Frank 9 1 1
Randomly decide only look at gender. Gena 10 O 0
- | )\ J
T Y
X y

“Random Forests — Random Features” [Leo Breiman, 1997]
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Top-Down Random Forest Training

Loop: Sample T random splits at each Leaf. Name | Age | Male? | Height
Choose split with greatest impurity > 55”

reduction. N Alice 14 0 1
Repeat: until stopping condition.

Bob 10 1 1

Step 1: Carol 13 O 1
Tr
X 8 1 0

v | Dave
Step 2: S

Erin 11 O 0
Step 3: Frank 9 1 1
Randomly decide only look at age. i oena |10 ° : |0 ,
X y

“Random Forests — Random Features” [Leo Breiman, 1997]

http://oz.berkeley.edu/~breiman/random-forests.pdf 77




Recap: Random Forests

* Extension of Bagging to sampling Features

* Generate Bootstrap S’ from S
— Train DT Top-Down on §’
— Each node, sample subset of features for splitting

e Can also sample a subset of splits as well

* Average Predictions of all DTs

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf
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Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008



Next Lecture

* Boosting
— Method for reducing bias

* Ensemble Selection
— Very general method for combining classifiers
— Multiple-time winner of ML competitions

e Recitation Next Week:

— Deep Learning Tutorial (Keras)
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