Caltech

Machine Learning & Data Mining CS/CNS/EE 155

Lecture 5:

Decision Trees, Bagging & Random Forests

Announcements

- Homework 2 due tomorrow
- Homework 3 release tomorrow
 - Easier than HW1 & HW2

Topic Overview

Supervised Learning

Linear Models

Overfitting

Loss Functions

Non-Linear Models

Learning Algorithms & Optimization

Probabilistic Modeling

Unsupervised Learning

This Lecture

- Focus on achieving highest possible accuracy
 - Decision Trees
 - Bagging
 - Random Forests
 - Highly non-linear models
- Next Lecture
 - Boosting
 - Ensemble Selection

Decision Trees

(Binary) Decision Tree

Don't overthink this, it is literally what it looks like.

Person	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
	X		y

(Binary) Decision Tree

Input:

Alice

Gender: Female

Age: 14

Prediction: Height > 55"

Every **internal node** has a **binary** query function q(x).

Every **leaf node** has a prediction, e.g., 0 or 1.

Prediction starts at **root node**.

Recursively calls query function.

Positive response → Left Child.

Negative response → Right Child.

Repeat until Leaf Node.

Queries

- Decision Tree defined by Tree of Queries
- Binary query q(x) maps features to 0 or 1
- Basic form: $q(x) = \mathbf{1}[x^d > c]$
 - $-1[x^3 > 5]$
 - $-1[x^1 > 0]$
 - $-1[x^{55} > 1.2]$
- Axis aligned partitioning of input space

Basic Decision Tree Function Class

- "Piece-wise Static" Function Class
 - All possible partitionings over feature space.
 - Each partition has a static prediction.
- Partitions axis-aligned
 - E.g., No Diagonals

(Extensions next week)

Decision Trees are NON-LINEAR Models!

Example:

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

Decision Trees are NON-LINEAR Models!

Example:

No Linear Model
Can Achieve 0 Error

Simple Decision Tree Can Achieve 0 Error

- Decision Trees are AXIS-ALIGNED!
 - Cannot easily model diagonal boundaries

• Example: Simple Linear SVM can Easily Find Max Margin

Decision Trees Require Complex Axis-Aligned Partitioning

Wasted Boundary

More Extreme Example

- Decision Trees are often more accurate!
- Non-linearity is often more important
 - Just use many axis-aligned boundaries to approximate diagonal boundaries
 - (It's OK to waste model capacity.)
- Catch: requires sufficient training data
 - Will become clear later in lecture

Real Decision Trees

Decision Tree Training

Thought Experiment

- What if just one node?
 - (I.e., just root node)
 - No queries
 - Single prediction for all data

1 S

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	V

Thought Experiment Continued

- What if 2 Levels?
 - (I.e., root node + 2 children)
 - Single query (which one?)
 - 2 predictions
 - How many possible queries?

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'}$$

Classification Error of best single prediction $\hat{y}\neq y$

Impurity Reduction = 0

No Benefit From This Split!

Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1$$

S

L(S) = 1

ŷ≠y]

Impurity

Reduction

Classification Error

of best single prediction

No Benefit From This Split!

Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'}$$

Impurity _ 1

Reduction

Classification Error

of best single prediction

Choose Split with largest impurity reduction!

Impurity = Loss Function

Training Goal:

Find decision tree with low impurity.

Impurity Over Leaf Nodes = Training Loss

$$L(S) = \sum_{S'} L(S')$$

S' iterates over leaf nodes Union of S' = S (Leaf Nodes = partitioning of S)

$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

Classification Error on S'

Problems with 0/1 Loss

What split best reduces impurity?

$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

All Partitionings Give Same Impurity Reduction!

Problems with 0/1 Loss

- 0/1 Loss is discontinuous
- A good partitioning may not improve 0/1 Loss...
 - E.g., leads to an accurate model with subsequent split...

Surrogate Impurity Measures

- Want more continuous impurity measure
- First try: Bernoulli Variance:

$$L(S') = |S'| p_{S'} (1 - p_{S'}) = \frac{\# pos * \# neg}{|S'|}$$
 $p_{S'} = \text{fraction of S' that are positive examples}$

positive examples

Worst Purity

$$P = 1/2, L(S') = |S'|*1/4$$
 $P = 1, L(S') = |S'|*0$
 $P = 0, L(S') = |S'|*0$

Perfect Purity

Assuming |S'|=1

Bernoulli Variance as Impurity

What split best reduces impurity?

$$L(S') = |S'| p_{S'} (1 - p_{S'}) = \frac{\# pos * \# neg}{|S'|}$$

 $p_{S'}$ = fraction of S' that are positive examples

Best!

 $L(S_2) = 3/4$

Interpretation of Bernoulli Variance

- Assume each partition = distribution over y
 - y is Bernoulli distributed with expected value $p_{S'}$
 - Goal: partitioning where each y has low variance

Other Impurity Measures

Define: 0*log(0) = 0

- Entropy: $L(S') = -|S'|(p_{S'} \log p_{S'} + (1 p_{S'}) \log (1 p_{S'}))$
 - aka: Information Gain:

$$IG(A, B | S') = L(S') - L(A) - L(B)$$

- (aka: Entropy Impurity Reduction)
- Most popular.
- Gini Index:

$$L(S') = |S'| \left(1 - p_{S'}^2 - \left(1 - p_{S'}\right)^2\right)$$

Other Impurity Measures

Define: 0*log(0) = 0

- Entropy: $L(S') = -|S'|(p_{S'} \log p_{S'} + (1 p_{S'}) \log (1 p_{S'}))$
 - aka: Information Gain:

$$IG(A, B | S') = L(S') - L(A) - L(B)$$

- (aka: Entropy Impurity Reduction)
- Most popular.

Most Good Impurity Measures
Look Qualitatively The Same!

See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf (Terminology is slightly different.)

Top-Down Training

Define impurity measure L(S')

– E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 1: L(S) = 12/7

<u>1</u> ← S

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

Top-Down Training

Define impurity measure L(S')

– E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 1: L(S) = 12/7

Step 2: L(S) = 5/3

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	У

- Define impurity measure L(S')
 - E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 3: Loop over all leaves, find best split.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	У

Define impurity measure L(S')

– E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

Define impurity measure L(S')

– E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 1:

$$L(S) = 12/7$$

Step 2:

$$L(S) = 5/3$$

Step 3:

$$L(S) = 2/3$$

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

Define impurity measure L(S')

– E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

•	tep 4: (S) = 0	Male	e? ←		S
Step 2: L(S) = 5/3	Age	>8?	Age>	11?	
Step 3: L(S) = 2/3	1 L(S')=0	0 L(S')=0 L	1 (S')=0	0	

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	<u>_</u> у

	_	+	-				4		
	7		+		+			4	+
		+ = +	+		-	+	-		
+	-	+	+		-			7 4	
					-	C	-	+	
		4	- 🕂	=				-	4
								_	
++									42

Properties of Top-Down Training

- Every intermediate step is a decision tree
 - You can stop any time and have a model
- Greedy algorithm
 - Doesn't backtrack
 - Cannot reconsider different higher-level splits.

When to Stop?

- If kept going, can learn tree with zero training error.
 - But such tree is probably overfitting to training set.
- How to stop training tree earlier?
 - I.e., how to regularize?

Which one has better test error?

Stopping Conditions (Regularizers)

- **Minimum Size:** do not split if resulting children are smaller than a minimum size.
 - Most common stopping condition.
- Maximum Depth: do not split if the resulting children are beyond some maximum depth of tree.
- Maximum #Nodes: do not split if tree already has maximum number of allowable nodes.
- Minimum Reduction in Impurity: do not split if resulting children do not reduce impurity by at least $\delta\%$.

Pseudocode for Training

Algorithm 1 TREE(): Initialize Decision (Sub-)Tree Data Structure

```
1: input: S
                                                                   //data partition
2: input: L
                                                                    //loss function
3: Initialize data structure \mathcal{T}:
         \mathcal{T}.data \leftarrow S
                                        // pointer to training data partition
4:
        \mathcal{T}.q \leftarrow \text{NULL}
                                                                // decision query
5:
                                     // subtree for positive query response
6:
        \mathcal{T}.left \leftarrow \text{NULL}
         \mathcal{T}.right \leftarrow \text{NULL} // subtree for negative query response
         \mathcal{T}.\ell \leftarrow L(S)
                                // impurity/loss on training data partition
9: return: \mathcal{T}
```

Stopping condition is minimum leaf node size: N_{min}

```
Algorithm 3 TRAIN(): Top-Down Decision Tree Training
  1: input: S, \mathcal{Q}, N_{min}, L
  2: \mathcal{T} \leftarrow \text{TREE}(S)
                                                                                            // root node
  3: repeat
  4:
             Q \leftarrow \emptyset
  5:
             for every leaf node \tau in \mathcal{T} do
                   for every q \in \mathcal{Q} do
  6:
  7:
                         S_1 \leftarrow \{(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \tau.data | q(\hat{\mathbf{x}}) = 1\}
                          S_2 \leftarrow \{(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \tau.data | q(\hat{\mathbf{x}}) = 0\}
  8:
                         if |S_1| \geq N_{min} \wedge |S_2| \geq N_{min} then
  9:
                                \tau_1 \leftarrow \text{TREE}(S_1, L)
10:
                               \tau_2 \leftarrow \text{TREE}(S_2, L)
11:
                                Q \leftarrow Q \cup \{(\tau, q, \tau_1, \tau_2)\}
12:
13:
                         end if
                   end for
14:
                                                              Select from Q
15:
             end for
             if |Q| > 0 then
16:
                   (\tau, q, \tau_1, \tau_2) \leftarrow \operatorname{argmin}_{(\tau', q', \tau'_1, \tau'_2)} \tau' \cdot \ell - (\tau'_1 \cdot \ell + \tau'_2 \cdot \ell)
17:
18:
                   \tau \cdot q \leftarrow q
19:
                   \tau.left \leftarrow \tau_1
                   \tau.right \leftarrow \tau_2
20:
21:
             end if
22: until |Q| = 0
23: return: \mathcal{T}
```

Classification vs Regression

Classification	Regression
Labels are {0,1}	Labels are Real Valued
Predict Majority Class in Leaf Node	Predict Mean of Labels in Leaf Node
Piecewise Constant Function Class	Piecewise Constant Function Class
Goal: minimize 0/1 Loss	Goal: minimize squared loss
Impurity based on fraction of positives vs negatives	Impurity = Squared Loss

Recap: Decision Tree Training

- Train Top-Down
 - Iteratively split existing leaf node into 2 leaf nodes
- Minimize Impurity (= Training Loss)
 - E.g., Entropy
- Until Stopping Condition (= Regularization)
 - E.g., Minimum Node Size
- Finding optimal tree is intractable
 - E.g., tree satisfying minimal leaf sizes with lowest impurity.

Recap: Decision Trees

- Piecewise Constant Model Class
 - Non-linear!
 - Axis-aligned partitions of feature space
- Train to minimize impurity of training data in leaf partitions
 - Top-Down Greedy Training
- Often more accurate than linear models
 - If enough training data

Bagging (Bootstrap Aggregation)

Outline

- Recap: Bias/Variance Tradeoff
- Bagging
 - Method for minimizing variance
 - Not specific to Decision Trees

- Random Forests
 - Extension of Bagging
 - Specific to Decision Trees

Outline

Recap: Bias/Variance Tradeoff

- Bagging
 - Method for minimizing variance
 - Not specific to Decision Trees

- Random Forests
 - Extension of Bagging
 - Specific to Decision Trees

Test Error

- "True" distribution: P(x,y)
 - Unknown to us
- Train: $h_S(x) = y$
 - Using training data: $S = \{(x_i, y_i)\}_{i=1}^N$
 - Sampled from P(x,y)
- Test Error:

$$L_P(h_S) = E_{(x,y) \sim P(x,y)} [L(y,h_S(x))]$$

Overfitting: Test Error >> Training Error

True Distribution P(x,y)

			. ,,,,
Person	Age	Male?	Height > 55"
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margaret	10	0	1
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

Training Set S

Person	Age	Male?	Height > 55"	
Alice	14	0	1	\
Bob	10	1	1	\
Carol	13	0	1	~
Dave	8	1	0	\
Erin	11	0	0	X
Frank	9	1	1	×
Gena	8	0	0	\
				4
			У	h(x)

Test Error:

$$\mathcal{L}(h) = E_{(x,y)^{\sim}P(x,y)}[L(h(x),y)]$$

Bias-Variance Decomposition

$$E_{S}[L_{P}(h_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,h_{S}(x))]]$$

For squared error:

$$E_{S}\big[L_{P}(h_{S})\big] = E_{(x,y)\sim P(x,y)} \Big[E_{S}\Big[\big(h_{S}(x)-H(x)\big)^{2}\Big] + \big(H(x)-y\big)^{2}\Big]$$

$$H(x) = E_{S}\Big[h_{S}(x)\Big] \qquad \text{Variance Term} \qquad \text{Bias Term}$$

"Average prediction on x"

Example P(x,y)

h_S(x) Linear

h_S(x) Quadratic

h_S(x) Cubic

Bias-Variance Trade-off

Overfitting vs Underfitting

High variance implies overfitting

- Model class unstable
- Variance increases with model complexity
- Variance reduces with more training data.

High bias implies underfitting

- Even with no variance, model class has high error
- Bias decreases with model complexity
- Independent of training data size

Bagging

Goal: reduce variance

sampled independently

- Ideal setting: many training sets S'
 - Train model using each S'
 - Average predictions

Variance reduces linearly Bias unchanged

$$E_{S}[(h_{S}(x) - y)^{2}] = E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$

$$E_{S}[(h_{S}(x) - y)^{2}] = E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Expected Error
On single (x,y)

$$Z = h_S(x) - y$$
$$\check{z} = E_S[Z]$$

Bagging

"Bootstrapping"

- Goal: reduce variance
- In practice: resample S' with replacement
 - Train model using each S'
 - Average predictions

Variance reduces sub-linearly (Because S' are correlated)
Bias often increases slightly

$$E_{S}[(h_{S}(x) - y)^{2}] = E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$

$$\downarrow \qquad \qquad \uparrow \qquad \uparrow$$
Expected Error
On single (x,y)

Variance Bias

$$Z = h_S(x) - y$$
$$\check{z} = E_S[Z]$$

Bagging = Bootstrap Aggregation

Recap: Bagging for DTs

- Given: Training Set S
- Bagging: Generate Many Bootstrap Samples S'
 - Sampled with replacement from S
 - |S'| = |S|
 - Train Minimally Regularized DT on S'
 - High Variance, Low Bias
- Final Predictor: Average of all DTs
 - Averaging reduces variance

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999) http://ai.stanford.edu/~ronnyk/vote.pdf

Why Bagging Works

- Define Ideal Aggregation Predictor h_A(x):
 - Each S' drawn from true distribution P

$$h_A(x) = E_{S \sim P(x,y)} [h_S(x)]$$

Decision Tree Trained on S

We will first compare the error of h_A(x) vs h_S(x)

Then show how to adapt comparison to Bagging

Analysis of Ideal Aggregate Predictor (Squared Loss)

$$h_A(x) = E_{S \sim P(x,y)} [h_S(x)]$$

Decision Tree Trained on S

$$E_{S}\left[L(y,h_{S}(x))\right] = E_{S}\left[\left(y-h_{S}(x)\right)^{2}\right]$$

Linearity of Expectation

Expected Loss of h_s on single (x,y)

$$E[Z^2] \ge E[Z]^2$$

($Z=h_{S'}(x)$)

Key Insight

Ideal Aggregate Predictor Improves if:

$$E_S[h_S(x)^2] > E_S[h_S(x)]^2 = h_A(x)^2$$

Large improvement if $h_s(x)$ is "unstable" (high variance) $h_A(x)$ is guranteed to be at least as good as $h_s(x)$.

Bagging Predictor Improves if:

$$E_{S}[h_{S}(x)^{2}] > E_{S}[E_{S'\sim S}[h_{S'}(x)]^{2}] = E_{S}[h_{B}(x)^{2}]$$

Improves if $h_B(x)$ is much more stable than $h_S(x)$

 $h_B(x)$ can sometimes be more unstable than $h_S(x)$ Bias of $h_B(x)$ can be worse than $h_S(x)$.

Random Forests

Random Forests

- Goal: reduce variance
 - Bagging can only do so much
 - Resampling training data asymptotes
- Random Forests: sample data & features!

Further de-correlates trees

- Sample S'
- Train DT
 - At each node, sample features
- Average predictions

"Random Forests – Random Features" [Leo Breiman, 1997] http://oz.berkeley.edu/~breiman/random-forests.pdf

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Step 1:

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	\ \ \

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Step 1:

Step 2:

1 0

Randomly decide only look at age, Not gender.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	У

[&]quot;Random Forests – Random Features" [Leo Breiman, 1997] http://oz.berkeley.edu/~breiman/random-forests.pdf

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Step 1: Age>9?
Try
Step 2: Mole?

Step 2:

Step 3:

Randomly decide only look at gender.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	y

[&]quot;Random Forests – Random Features" [Leo Breiman, 1997] http://oz.berkeley.edu/~breiman/random-forests.pdf

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Randomly decide only look at age.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	y

[&]quot;Random Forests – Random Features" [Leo Breiman, 1997] http://oz.berkeley.edu/~breiman/random-forests.pdf

Recap: Random Forests

Extension of Bagging to sampling Features

- Generate Bootstrap S' from S
 - Train DT Top-Down on S'
 - Each node, sample subset of features for splitting
 - Can also sample a subset of splits as well
- Average Predictions of all DTs

Average performance over many datasets Random Forests perform the best

"An Empirical Evaluation of Supervised Learning in High Dimensions" Caruana, Karampatziakis & Yessenalina, ICML 2008

Next Lecture

- Boosting
 - Method for reducing bias
- Ensemble Selection
 - Very general method for combining classifiers
 - Multiple-time winner of ML competitions
- Recitation Next Week:
 - Deep Learning Tutorial (Keras)