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Lecture	2:
Perceptron	&	Stochastic	Gradient	

Descent



Recap: Basic	Recipe	(supervised)

• Training	Data:

• Model	Class:

• Loss	Function:

• Learning	Objective:	

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models

Squared	Loss

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Optimization Problem
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Recap:	Bias-Variance	Trade-off
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Recap:	Complete	Pipeline

S = (xi, yi ){ }i=1
N

Training	Data

f (x |w,b) = wT x − b

Model	Class(es)

L(a,b) = (a− b)2

Loss	Function

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Cross	Validation	&	Model	Selection Profit!
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Today

• Two	Basic	Learning	Algorithms

• Perceptron	Algorithm

• (Stochastic)	Gradient	Descent
– Aka,	actually	solving	the	optimization	problem
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The	Perceptron

• One	of	the	earliest	learning	algorithms
– 1957	by	Frank	Rosenblatt

• Still	a	great	algorithm
– Fast
– Clean	analysis
– Precursor	to	Neural	Networks

6

Frank	Rosenblatt
with	the	Mark	1	
Perceptron	Machine



Perceptron	Learning	Algorithm
(Linear	Classification	Model)

• w1 =	0,	b1 =	0
• For	t	=	1	….
– Receive	example	(x,y)
– If	f(x|wt)	=	y
• [wt+1, bt+1]	=	[wt, bt]

– Else
• wt+1=	wt +	yx
• bt+1 =	bt - y
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S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:

Go	through	training	set	
in	arbitrary	order
(e.g.,	randomly)

f (x |w) = sign(wT x − b)



• Line	is	a	1D,	Plane	is	2D
• Hyperplane is	many	D
– Includes	Line	and	Plane

• Defined	by	(w,b)

• Distance:

• Signed	Distance:

Aside:	Hyperplane Distance	

wT x − b
w

wT x − b
w

w

un-normalized	
signed	distance!

Linear	Model	=	

b/|w|



9

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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All	Training	Examples	
Correctly	Classified!

Perceptron	Learning
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Perceptron	LearningStart	Again
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Correct!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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Misclassified!

Perceptron	Learning
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Update!

Perceptron	Learning
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Update!

Perceptron	Learning
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All	Training	Examples	
Correctly	Classified!

Perceptron	Learning



Recap:	Perceptron	Learning	Algorithm
(Linear	Classification	Model)

• w1 =	0,	b1 =	0
• For	t	=	1	….
– Receive	example	(x,y)
– If	f(x|wt)	=	y
• [wt+1, bt+1]	=	[wt, bt]

– Else
• wt+1=	wt +	yx
• bt+1 =	bt - y
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S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:

Go	through	training	set	
in	arbitrary	order
(e.g.,	randomly)

f (x |w) = sign(wT x − b)
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Comparing	the	Two	Models
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Convergence	to	Mistake	Free
=	Linearly	Separable!
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Margin

γ =max
w
min
(x,y)

y(wT x)
w



Linear	Separability

• A	classification	problem	is	Linearly	Separable:
– Exists	w	with	perfect	classification	accuracy

• Separable	with	Margin	γ:

• Linearly	Separable:	γ >	0
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γ =max
w
min
(x,y)

y(wT x)
w



Perceptron	Mistake	Bound
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#Mistakes	Bounded	By: R2

γ 2

Margin

R =max
x

x

**If	Linearly	Separable

More	Details:	http://www.cs.nyu.edu/~mohri/pub/pmb.pdf

Holds	for	any	ordering	
of	training	examples!

“Radius”	of	Feature	Space



In	the	Real	World…

• Most	problems	are	NOT	linearly	separable!

• May	never	converge…

• So	what	to	do?

• Use	validation	set!
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Early	Stopping	via	Validation

• Run	Perceptron	Learning	on	Training	Set

• Evaluate	current	model	on	Validation	Set

• Terminate	when	validation	accuracy	stops	
improving
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https://en.wikipedia.org/wiki/Early_stopping



Online	Learning	vs Batch	Learning

• Online	Learning:
– Receive	a	stream	of	data	(x,y)
– Make	incremental	updates	(typically)
– Perceptron	Learning	is	an	instance	of	Online	Learning

• Batch	Learning
– Given	all	the	data	up	front
– Can	use	online	learning	algorithms	for	batch	learning
– E.g.,	stream	the	data	to	the	learning	algorithm
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https://en.wikipedia.org/wiki/Online_machine_learning



Recap: Perceptron

• One	of	the	first	machine	learning	algorithms

• Benefits:
– Simple	and	fast
– Clean	analysis	

• Drawbacks:
–Might	not	converge	to	a	very	good	model
–What	is	the	objective	function?
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(Stochastic)	Gradient	Descent
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Back	to	Optimizing	Objective	Functions

• Training	Data:

• Model	Class:

• Loss	Function:

• Learning	Objective:	

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	Models

Squared	Loss

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Optimization	Problem
56



Back	to	Optimizing	Objective	Functions

• Typically,	requires	optimization	algorithm.

• Simplest:	Gradient	Descent	

• This	Lecture:	stick	with	squared	loss
– Talk	about	various	loss	functions	next	lecture

argmin
w,b

L(w,b) ≡ L yi, f (xi |w,b)( )
i=1

N

∑



Gradient	Review	for	Squared	Loss

∂wL(w,b) = ∂w L yi, f (xi |w,b)( )
i=1

N

∑

L(a,b) = (a− b)2

= ∂wL yi, f (xi |w,b)( )
i=1

N

∑

= −2(yi − f (xi |w,b))∂w f (xi |w,b)
i=1

N

∑

f (x |w,b) = wT x − b= −2(yi − f (xi |w,b))xi
i=1

N

∑

Linearity	of	Differentiation

Chain	Rule



Gradient	Descent

• Initialize:	w1 =	0,	b1 =	0

• For	t	=	1…
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wt+1 = wt −η t+1∂wL(w
t,bt )

bt+1 = bt −η t+1∂bL(w
t,bt )

“Step	Size”
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w

L

η =1 ∂wL(w) = −2(1−w)
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L

η =1 ∂wL(w) = −2(1−w)
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L

η =1 ∂wL(w) = −2(1−w)
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w

L

η =1 ∂wL(w) = −2(1−w)

Oscillate	Infinitely!
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L

η = 0.0001 ∂wL(w) = −2(1−w)
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η = 0.0001 ∂wL(w) = −2(1−w)
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L

η = 0.0001 ∂wL(w) = −2(1−w)
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L

η = 0.0001 ∂wL(w) = −2(1−w)

Takes	Really	Long	Time!



How	to	Choose	Step	Size?
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How	to	Choose	Step	Size?
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Being	Scale	Invariant

• Consider	the	following	two	gradient	updates:

• Suppose:
– How	are	the	two	step	sizes	related?
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wt+1 = wt −η t+1∂wL(w
t,bt )

wt+1 = wt −η̂ t+1∂wL̂(w
t,bt )

L̂ =1000L

η̂ t+1 =η /1000



Practical	Rules	of	Thumb

• Divide	Loss	Function	by	Number	of	Examples:

• Start	with	large	step	size
– If	loss	plateaus,	divide	step	size	by	2
– (Can	also	use advanced	optimization	methods)
– (Step	size	must	decrease	over	time	to	guarantee	
convergence	to	global	optimum)

71

wt+1 = wt −
η t+1

N
"

#
$

%

&
'∂wL(w

t,bt )



Aside: Convexity

72

1/15/2015 ConvexFunction.svg

file:///Users/yyue/Downloads/ConvexFunction.svg 1/2

Image	Source:	http://en.wikipedia.org/wiki/Convex_function

Easy	to	find	
global	optima!

Strict	convex	if	
diff	always	>0

Not	Convex



Aside: Convexity
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Aside:	Convexity

• All	local	optima	are	global	optima:

• Strictly	convex:	unique	global	optimum:

• Almost	all	standard	objectives	are	(strictly)	convex:
– Squared	Loss,	SVMs,	LR,	Ridge,	Lasso
– We	will	see	non-convex	objectives	later	(e.g.,	deep	learning)

74

Gradient	Descent	
will	find	optimum

Assuming	step
size	chosen	safely



Convergence

• Assume	L	is	convex	
• How	many	iterations	to	achieve:

• If:
– Then	O(1/ε2)	iterations

• If:
– Then	O(1/ε)	iterations

• If:
– Then	O(log(1/ε))	iterations

75
More	Details:	Bubeck Textbook	Chapter	3	

L(a)− L(b) ≤ ρ a− b L	is	“ρ-Lipschitz”

L(w)− L(w*) ≤ ε

∇L(a)−∇L(b) ≤ ρ a− b
L	is	“ρ-smooth”

L(a) ≥ L(b)+∇L(b)T (a− b)+ ρ
2
a− b 2

L	is	“ρ-strongly	convex”



Convergence

• In	general,	takes	infinite	time	to	reach	global	optimum.
• But	in	general,	we	don’t	care!

– As	long	as	we’re	close	enough	to	the	global	optimum
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When	to	Stop?

• Convergence	analyses	=	worst-case	upper	bounds
– What	to	do	in	practice?

• Stop	when	progress	is	sufficiently	small
– E.g.,	relative	reduction	less	than	0.001

• Stop	after	pre-specified	#iterations
– E.g.,	100000

• Stop	when	validation	error	stops	going	down

77

Yisong	prefers	
this	option



Limitation	of	Gradient	Descent

• Requires	full	pass	over	training	set	per	
iteration

• Very	expensive	if	training	set	is	huge

• Do	we	need	to	do	a	full	pass	over	the	data?
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∂wL(w,b | S) = ∂w L yi, f (xi |w,b)( )
i=1

N

∑



Stochastic	Gradient	Descent

• Suppose	Loss	Function	Decomposes	Additively

• Gradient	=	expected	gradient	of	sub-functions

79

L(w,b) = 1
N

Li (w,b)
i=1

N

∑ = Ei Li (w,b)[ ]

Each	Li corresponds	to	a	single	data	point

∂wL(w,b) = ∂w Ei Li (w,b)[ ] = Ei ∂wLi (w,b)[ ]

Li (w,b) ≡ yi − f (xi |w,b( )2



Stochastic	Gradient	Descent

• Suffices	to	take	random	gradient	update
– So	long	as	it	matches	the	true	gradient	in	expectation

• Each	iteration	t:
– Choose	i at	random

• SGD	is	an	online	learning	algorithm!

80

wt+1 = wt −η t+1∂wLi (w,b)

bt+1 = bt −η t+1∂bLi (w,b)

Expected	Value	is: ∂wL(w,b)



Mini-Batch	SGD

• Each	Li is	a	small	batch	of	training	examples
– E.g,.	500-1000	examples
– Can	leverage	vector	operations
– Decrease	volatility	of	gradient	updates

• Industry	state-of-the-art
– Everyone	uses	mini-batch	SGD
– Often	parallelized	
• (e.g.,	different	cores	work	on	different	mini-batches)
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Checking	for	Convergence

• How	to	check	for	convergence?
– Evaluating	loss	on	entire	training	set	seems	expensive…
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Checking	for	Convergence

• How	to	check	for	convergence?
– Evaluating	loss	on	entire	training	set	seems	expensive…

• Don’t	check	after	every	iteration
– E.g.,	check	every	1000	iterations

• Evaluate	loss	on	a	subset	of	training	data
– E.g.,	the	previous	5000	examples.
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Recap:	Stochastic	Gradient	Descent

• Conceptually:
– Decompose	Loss	Function	Additively
– Choose	a	Component	Randomly
– Gradient	Update

• Benefits:
– Avoid	iterating	entire	dataset	for	every	update
– Gradient	update	is	consistent	(in	expectation)

• Industry	Standard
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Perceptron	Revisited
(What	is	the	Objective	Function?)

• w1 =	0,	b1 =	0
• For	t	=	1	….
– Receive	example	(x,y)
– If	f(x|wt)	=	y
• [wt+1, bt+1]	=	[wt, bt]

– Else
• wt+1=	wt +	yx
• bt+1 =	bt - y

85

S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	Set:

Go	through	training	set	
in	arbitrary	order
(e.g.,	randomly)

f (x |w) = sign(wT x − b)



Perceptron	(Implicit)	Objective
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Li (w,b) =max 0,−yi f (xi |w,b){ }
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Recap:	Complete	Pipeline

S = (xi, yi ){ }i=1
N

Training	Data

f (x |w,b) = wT x − b

Model	Class(es)

L(a,b) = (a− b)2

Loss	Function

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

Cross	Validation	&	Model	Selection Profit!
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Use	SGD!



Next	Week

• Different	Loss	Functions
– Hinge	Loss	(SVM)
– Log	Loss	(Logistic	Regression)

• Non-linear	model	classes
– Neural	Nets

• Regularization

• Thursday	Recitation:	Linear	Algebra	&	Calculus
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