Caltech

Machine Learning & Data Mining CMS/CS/CNS/EE 155

Lecture 1:

Administrivia & Basics

Course Info

- Lecture (Tu/Th)
 - 2:30pm 3:55pm in 105 Annenberg Ramo

(at least for now)

- Recitation (Th)
 - 7:30pm 9:00pm in 105 Annenberg
 - As needed
 - Usually 45-60 minutes
 - First one tonight! (Introduction to Python)

Staff

Ellen Feldman

Nishanth Bhaskara

Rohan Choudhury

Julia Deacon

Katherine Guo

Michael Hashe

Joey Hong

Andrew Kang

Cathy Ma

Ruoqi Shen

Richard Zhu

Vincent Zhuang

Course Breakdown

- 6 Homeworks, ~60% of final grade
 - Due on Friday nights via Moodle
 - Homework 1 will be released tonight.
 - Due next Friday

Plan accordingly w/ CS144!

• 3 Mini-projects, ~30% of final grade

Final, ~10% of final grade

Regarding Homework 1

- If you have prior experience with CS 156
 - Should be pretty straightforward (4-5 hours)

- If you do not...
 - Might take a while (8-12 hours?)
 - But this will mostly catch you up if you survive
 - Should consider dropping class if too hard

Late Submission Policy

Up to 48 free late hours

Specify # late hours used when submitting

Course Etiquette

- Please ask questions during lecture!
 - I might defer some in interest of time

 If you arrive late, or need to leave early, please do so quietly.

- Adhere to the Academic Integrity
 - Do not copy each other's solutions

Course Website

http://www.yisongyue.com/courses/cs155

- Linked to from my website:
 - http://www.yisongyue.com

- Up-to-date office hours
- Lecture notes, additional reading, homework, etc.

Moodle & Piazza

Moodle:

- https://courses.caltech.edu/course/view.php?id=2904
- Submission, Solutions, Grades

Piazza

- https://piazza.com/class/jbo5tg8wkozs5
- Course announcements
- Q&A Forum (use it!)

Lecture Videos

On YouTube (linked from course website)

Machine Learning & Data Mining

Computer Algorithm

Computer Model

Machine Learning vs Data Mining

ML focuses more on algorithms

- Typically more rigorous
- Also on analysis (learning theory)

DM focuses more on knowledge extraction

- Typically uses ML algorithms
- Knowledge should be human-understandable

Huge overlap

Course Outline

- Supervised Learning
 - 5 weeks

- Unsupervised Learning
 - 2 weeks

- Probabilistic Models
 - 2 weeks

Swapped from Last Year!

Supervised Learning

Find function from input space X to output space Y

$$f: X \longrightarrow Y$$
 (sometimes use h)

such that the prediction error is low.

Supervised Learning

(function class or hypothesis class)

Etc...

Aside: Unsupervised Learning

Data: X

No supervised target!

Learning goal is usually to find low-dimensional "summary" or reconstruction.

More on this later in course.

Example: Spam Filtering

• Goal: write a program to filter spam.

Viagra, Cialis, Levitra	Reminder: homework due tomorrow.	Nigerian Prince in Need of Help
SPAM!	NOT SPAM	SPAM!

Example: Spam Filtering

Why is Spam Filtering Hard?

Easy for humans to recognize

Hard for humans to write down algorithm

Lots of IF statements!

Machine Learning to the Rescue!

Training Set

Labeled by Humans ("Supervision")

Bag of Words Representation

Training Set

Bag of Words

SPAM!

(0,0,0,1,1,1)

SPAM!

(1,0,0,1,0,0)

"Feature Vector"

NOT SPAM

(1,0,1,0,1,0)

One feature for each word in the

NOT SPAM

(0,1,1,0,1,0)

vocabulary

SPAM!

(1,0,1,1,0,1)

In practice 10k-1M

SPAM!

(1,0,0,0,0,1)

•

Linear Models

Let x denote the bag-of-words for an email

E.g.,
$$x = (1,1,0,0,1,1)$$

"dot product" (linear algebra recitation)

Linear Classifier:

$$f(x|w,b) = sign(w^Tx - b)$$

= $sign(w_1^*x_1 + ... w_6^*x_6 - b)$

$$f(x|w,b) = sign(w^Tx - b)$$

= $sign(w_1^*x_1 + ... w_6^*x_6 - b)$

Training Set

Bag of Words

Linear Models

Workhorse of Machine Learning

 By end of this lecture, you'll learn 75% how to build basic linear model.

Why Does Machine Learning Work?

- Repeated patterns in the data
 - Typically in the features
 - E.g., "Nigerian Prince" is indicative of spam

- Machine learning will find those patterns
 - Linear model over features
 - E.g., high weight on the words "Nigerian Prince"

Two Basic Supervised ML Problems

Classification

$$f(x \mid w, b) = \operatorname{sign}(w^T x - b)$$

- Predict which class an example belongs to
- E.g., spam filtering example

Regression

$$f(x \mid w, b) = w^T x - b$$

- Predict a real value or a probability
- E.g., probability of being spam

Highly inter-related

– Train on Regression => Use for Classification

$$f(x|w,b) = w^{T}x - b$$

= $w_{1}^{*}x_{1} + ... w_{6}^{*}x_{6} - b$

Training Set

Bag of Words

f(x|w,b) = +0.5

Formal Definitions

Training set:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

Model class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

aka hypothesis class

- Goal: find (w,b) that predicts well on S.
 - How to quantify "well"?

Basic Supervised Learning Recipe

Training Data:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

Model Class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

• Loss Function:

$$L(a,b) = (a-b)^2$$

Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Loss Function

Measures penalty of mis-prediction:

• 0/1 Loss:

$$L(a,b) = 1_{[a \neq b]}$$

$$L(a,b) = 1_{\left[\operatorname{sign}(a) \neq \operatorname{sign}(b)\right]}$$

Classification

• Squared loss: $L(a,b) = (a-b)^2$

$$L(a,b) = (a-b)^2$$

Regression

Substitute: a=y, b=f(x)

$$f(x|w,b) = w^{T}x - b$$

= $w_{1}^{*}x_{1}^{2} + ... w_{6}^{*}x_{6}^{2} - b$

Training Set

Bag of Words

Train using Squared Loss

Learning Algorithm

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

- Typically, requires optimization algorithm.
- Simplest: Gradient Descent

$$w_{t+1} \leftarrow w_t - \partial_w \sum_{i=1}^N L \left(y_i, f(x_i \mid w_t, b_t) \right)$$
 Loop for T iterations
$$b_{t+1} \leftarrow b_t - \partial_b \sum_{i=1}^N L \left(y_i, f(x_i \mid w_t, b_t) \right)$$

Gradient Review

$$\partial_w \sum_{i=1}^N L(y_i, f(x_i \mid w, b))$$

$$= \sum_{i=1}^{N} \partial_{w} L(y_{i}, f(x_{i} \mid w, b))$$

$$= \sum_{i=1}^{N} -2(y_i - f(x_i | w, b)) \partial_w f(x_i | w, b)$$

$$= \sum_{i=1}^{N} -2(y_i - w^T x + b)x$$

More Details Next Lecture

Linearity of Differentiation

$$L(a,b) = (a-b)^2$$
Chain Rule

$$f(x \mid w, b) = w^T x - b$$

0/1 Loss is Intractable

0/1 Loss is flat or discontinuous everywhere

VERY difficult to optimize

- Solution: Optimize smooth surrogate Loss
 - E.g., Squared Loss

Recap: Two Basic ML Problems

Classification

$$f(x \mid w, b) = \operatorname{sign}(w^T x - b)$$

- Predict which class an example belongs to
- E.g., spam filtering example

Regression

$$f(x \mid w, b) = w^T x - b$$

- Predict a real value or a probability
- E.g., probability of being spam

Highly inter-related

– Train on Regression => Use for Classification

Recap: Supervised Learning Recipe

Training Data:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \in R^D$$
$$y \in \{-1, +1\}$$

Model Class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

Loss Function:

$$L(a,b) = (a-b)^2$$

Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Recap: Supervised Learning Recipe

- Loss F But is your model any good? quared Loss
- Learning Objective: $\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$

Optimization Problem

Example: Self-Driving Cars

Basic Setup

- Mounted cameras
- Use image features

Human demonstrations

- f(x|w) = steering angle
- Learn on training set

Overfitting

Very accurate model

But crashed on live test!

 Model w only cared about staying between two green patches

Test Error

"True" distribution: P(x,y)

"All possible emails"

- Unknown to us
- Train: f(x) = y
 - Using training data: $S = \{(x_i, y_i)\}_{i=1}^N$
 - Sampled identically and independently from P(x,y)
- Test Error:

$$L_P(f) = E_{(x,y) \sim P(x,y)} \left[L(y, f(x)) \right]$$

Prediction Loss on all possible emails

Overfitting: Test Error >> Training Error

Test Error

Test Error:

$$L_P(f) = E_{(x,y) \sim P(x,y)} \left[L(y, f(x)) \right]$$

Treat f_s as random variable:

(randomness over S)

$$f_S = \underset{w,b}{\operatorname{argmin}} \sum_{(x_i, y_i) \in S} L(y_i, f(x_i \mid w, b))$$

Expected Test Error:

$$E_{S}[L_{P}(f_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,f_{S}(x))]]$$

Bias-Variance Decomposition

$$E_{S}[L_{P}(f_{S})] = E_{S}[E_{(x,y)\sim P(x,y)}[L(y,f_{S}(x))]]$$

For squared error:

$$E_{S}\big[L_{P}(f_{S})\big] = E_{(x,y)\sim P(x,y)} \Big[E_{S}\Big[\big(f_{S}(x)-F(x)\big)^{2}\Big] + \big(F(x)-y\big)^{2}\Big]$$

$$F(x) = E_{S}\Big[f_{S}(x)\Big] \qquad \text{Variance Term} \qquad \text{Bias Term}$$

"Average prediction"

Example P(x,y)

f_S(x) Linear

f_S(x) Quadratic

f_S(x) Cubic

Bias-Variance Trade-off

Overfitting vs Underfitting

High variance implies overfitting

- Model class unstable
- Variance increases with model complexity
- Variance reduces with more training data.

High bias implies underfitting

- Even with no variance, model class has high error
- Bias decreases with model complexity
- Independent of training data size

Model Selection

- Finite training data
- Complex model classes overfit
- Simple model classes underfit
- Goal: choose model class with the best generalization error

Model Selection

- Fir But we can't measure generalization error directly!
 Co (We don't have access to the whole distribution.)
- Goal: choose model class with the best generalization error

Use a Validation Set!

- Split data to Training Set and Validation Set
- Train model on Training Set
- Evaluate on Validation Set

- What's wrong with this?
 - If dataset small, validation set small!

5-Fold Cross Validation

- Split data into 5 equal partitions
- Train on 4 partitions
- Evaluate on 1 partition
- Allows re-using training data as test data
- Allows using all data as validation

Complete Pipeline

(Supervised Learning)

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^N$$

Training Data

$$\int f(x \mid w, b) = w^T x - b$$

Model Class(es)

$$L(a,b) = (a-b)^2$$

Loss Function

$$\underset{w,b}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i \mid w, b))$$

Cross Validation & Model Selection

Profit!

Next Lecture

- Perceptron
- Stochastic Gradient Descent
- Recitation on Tonight
 - Introduction to Python
 - 7:30pm Annenberg 105