
Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

Policies

• Due 9 PM, January 12th, via Moodle.

• You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

• If you have trouble with this homework, it may be an indication that you should drop the class.

• You should submit all code used in the homework. We ask that you use Python 3 and sklearn version
0.18 for your code, and that you comment your code such that the TAs can follow along and run it
without any issues.

Submission Instructions
Please submit your assignment as a .zip archive with filename LastnameFirstname.zip (replacing
Lastname with your last name and Firstname with your first name), containing a PDF of your assign-
ment writeup in the main directory and your code files in a directory named src/. Failure to do so will
result in a 2 point deduction.

1

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

1 Basics [16 Points]
Relevant materials: lecture 1

Answer each of the following problems with 1-2 short sentences.

Problem A [2 points]: What is a hypothesis set?

Problem B [2 points]: What is the hypothesis set of a linear model?

Problem C [2 points]: What is overfitting?

Problem D [2 points]: What are two ways to prevent overfitting?

Problem E [2 points]: What are training data and test data, and how are they used differently? Why
should you never change your model based on information from test data?

Problem F [2 points]: What are the two assumptions we make about how our dataset is sampled?

Problem G [2 points]: Consider the machine learning problem of deciding whether or not an email is
spam. What could X , the input space, be? What could Y , the output space, be?

Problem H [2 points]: What is the k-fold cross-validation procedure?

2

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

2 Bias-Variance Tradeoff [34 Points]
Relevant materials: lecture 1

Problem A [5 points]: Derive the bias-variance decomposition for the squared error loss function. That is,
show that for a model fS trained on a dataset S to predict a target y(x) for each x,

ES [Eout (fS)] = Ex[Bias(x) + Var(x)]

given the following definitions:

F (x) = ES [fS(x)]

Eout(fS) = Ex

[
(fS(x)− y(x))2

]
Bias(x) = (F (x)− y(x))2

Var(x) = ES

[
(fS(x)− F (x))2

]
In the following problems you will explore the bias-variance tradeoff by producing learning curves for
polynomial regression models.

A learning curve for a model is a plot showing both the training error and the cross-validation error as a
function of the number of points in the training set. These plots provide valuable information regarding
the bias and variance of a model and can help determine whether a model is over– or under–fitting.

Polynomial regression is a type of regression that models the target y as a degree–d polynomial function of
the input x. (The modeler chooses d.) You don’t need to know how it works for this problem, just know
that it produces a polynomial that attempts to fit the data.

Problem B [14 points]: Use the provided 2_notebook.ipynb Jupyter notebook to enter your code
for this question. This notebook contains examples of using NumPy’s polyfit and polyval methods, and
scikit-learn’s KFold method; you may find it helpful to read through and run this example code prior to
continuing with this problem. Additionally, you may find it helpful to look at the documentation for scikit-
learn’s learning curve method for some guidance.

The dataset bv_data.csv is provided and has a header denoting which columns correspond to which
values. Using this dataset, plot learning curves for 1st–, 2nd–, 6th–, and 12th–degree polynomial regression
(4 separate plots) by following these steps for each degree d ∈ {1, 2, 6, 12}:

1. For each N ∈ {20, 25, 30, 35, · · · , 100}:

i. Perform 5-fold cross-validation on the firstN points in the dataset (setting aside the other points),
computing the both the training and validation error for each fold.

• Use the mean squared error loss as the error function.
• Use NumPy’s polyfit method to perform the degree–d polynomial regression and NumPy’s

polyval method to help compute the errors. (See the example code and NumPy documenta-
tion for details.)

3

https://docs.scipy.org/doc/NumPy/reference/routines.polynomials.poly1d.html
https://docs.scipy.org/doc/NumPy/reference/routines.polynomials.poly1d.html

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

• When partitioning your data into folds, although in practice you should randomize your
partitions, for the purposes of this set, simply divide the data into K contiguous blocks.

ii. Compute the average of the training and validation errors from the 5 folds.

2. Create a learning curve by plotting both the average training and validation error as functions of N .

Problem C [3 points]: Based on the learning curves, which polynomial regression model (i.e. which degree
polynomial) has the highest bias? How can you tell?

Problem D [3 points]: Which model has the highest variance? How can you tell?

Problem E [3 points]: What does the learning curve of the quadratic model tell you about how much the
model will improve if we had additional training points?

Problem F [3 points]: Why is training error generally lower than validation error?

Problem G [3 points]: Based on the learning curves, which model would you expect to perform best on
some unseen data drawn from the same distribution as the training data, and why?

4

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

3 The Perceptron [14 Points]
Relevant materials: lecture 2

The perceptron is a simple linear model used for binary classification. For an input vector x ∈ Rd, weights
w ∈ Rd, and bias b ∈ R, a perceptron f : Rd → {−1, 1} takes the form

f(x) = sign

((
d∑

i=1

wixi

)
+ b

)

The weights and bias of a perceptron can be thought of as defining a hyperplane that divides Rd such that
each side represents an output class. For example, for a two dimensional dataset, a perceptron could be
drawn as a line that separates all points of class +1 from all points of class −1.

The PLA (or the Perceptron Learning Algorithm) is a simple method of training a perceptron. First, an
initial guess is made for the weight vector w. Then, one misclassified point is chosen arbitrarily and the w

vector is updated by

wt+1 = wt + y(t)x(t)

bt+1 = bt + y(t),

where x(t) and y(t) correspond to the misclassified point selected at the tth iteration. This process continues
until all points are classified correctly.

The following few problems ask you to work with the provided Jupyter notebook for this problem, titled
3_notebook.ipynb. This notebook utilizes the file perceptron_helper.py, but you should not need
to modify this file.

Problem A [8 points]: The graph below shows an example 2D dataset. The + points are in the +1 class
and the ◦ point is in the −1 class.

Figure 1: The green + are positive and the red ◦ is negative

5

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

Implement the update_perceptron and run_perceptron methods in the notebook, and perform the
perceptron algorithm with initial weights w1 = 0, w2 = 1, b = 0.

Give your solution in the form a table showing the weights and bias at each timestep and the misclassified
point ([x1, x2], y) that is chosen for the next iteration’s update. You can iterate through the three points in
any order. Your code should output the values in the table below; cross-check your answer with the table
to confirm that your perceptron code is operating correctly.

t b w1 w2 x1 x2 y

0 0 0 1 1 -2 +1
1 1 1 -1 0 3 +1
2 2 1 2 1 -2 +1
3 3 2 0

Problem B [4 points]: A dataset S = {(x1, y1), · · · , (xN , yN)} ⊂ Rd × R is linearly separable if there exists a
perceptron that correctly classifies all data points in the set. In other words, there exists a hyperplane that
separates positive data points and negative data points.

In a 2D dataset, how many data points are in the smallest dataset that is not linearly separable, such that no
three points are collinear? How about for a 3D dataset such that no four points are coplanar? Please limit
your solution to a few lines - you should justify but not prove your answer.

Finally, how does this generalize for an N -dimensional set, in which no <N -dimensional hyperplane con-
tains a non-linearly-separable subset? For the N -dimensional case, you may state your answer without
proof or justification.

Problem C [2 points]: Run the visualization code in the Jupyter notebook section corresponding to ques-
tion C. Assume a dataset is not linearly separable. Will the Perceptron Learning Algorithm ever converge?
Why or why not?

6

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

4 Stochastic Gradient Descent [36 Points]
Relevant materials: lecture 2

Stochastic gradient descent (SGD) is an important optimization method in machine learning, used every-
where from logistic regression to training neural networks. In this problem, you will be asked to first
implement SGD for linear regression using the squared loss function. Then, you will analyze how several
parameters affect the learning process.

Linear regression learns a model of the form:

f(x1, x2, · · · , xd) =

(
d∑

i=1

wixi

)
+ b

Problem A [2 points]: We can make our algebra and coding simpler by writing f(x1, x2, · · · , xd) = wTx

for vectors w and x. But at first glance, this formulation seems to be missing the bias term b from the
equation above. How should we define x and w such that the model includes the bias term?

Hint: Include an additional element in w and x.

Linear regression learns a model by minimizing the squared loss function L, which is the sum across all
training data {(x1, y1), · · · , (xN , yN)} of the squared difference between actual and predicted output values:

L(f) =

N∑
i=1

(yi −wTxi)
2

Problem B [2 points]: SGD uses the gradient of the loss function to make incremental adjustments to the
weight vector w. Derive the gradient of the squared loss function with respect to w for linear regression.

The following few problems ask you to work with the first of two provided Jupyter notebooks for this prob-
lem, 4_notebook_part1.ipynb, which includes tools for gradient descent visualization. This notebook
utilizes the files sgd_helper.py and multiopt.mp4, but you should not need to modify either of these
files. In addition, to run the animation code provided in this notebook, you may need to install FFmpeg,
which includes a library for handling multimedia data. For step-by-step instructions on installing FFmpeg,
please refer to the file installing_ffmpeg.pdf.

Problem C [8 points]: Implement the loss, gradient, and SGD functions, defined in the notebook, to
perform SGD, using the guildelines below:

• Use a squared loss function.

• Terminate the SGD process after a specified number of epochs, where each epoch performs one SGD
iteration for each point in the dataset.

• It is recommended, but not required, that you shuffle the order of the points before each epoch such
that you go through the points in a random order. You can use numpy.random.permutation.

7

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

• Measure the loss after each epoch. Your SGD function should output a vector with the loss after each
epoch, and a matrix of the weights after each epoch (one row per epoch). Note that the weights from
all epochs are stored in order to run subsequent visualization code to illustrate SGD.

Problem D [2 points]: Run the visualization code in the notebook corresponding to problem D. How
does the convergence behavior of SGD change as the starting point varies? How does this differ between
datasets 1 and 2? Please answer in 2-3 sentences.

Problem E [6 points]: Run the visualization code in the notebook corresponding to problem E. One of the
cells—titled ”Plotting SGD Convergence”—must be filled in as follows. Perform SGD on dataset 1 for each
of the learning rates η ∈ {1e-6, 5e-6, 1e-5, 3e-5, 1e-4}. On a single plot, show the training error vs. number
of epochs trained for each of these values of η. What happens as η changes?

The following problems consider SGD with the larger, higher-dimensional dataset, sgd_data.csv. The
file has a header denoting which columns correspond to which values. For these problems, use the Jupyter
notebook 4_notebook_part2.ipynb.

Problem F [6 points]: Use your SGD code with the given dataset, and report your final weights. Follow
the guidelines below for your implementation:

• Use η = e−15 as the step size.

• Use w = [0.001, 0.001, 0.001, 0.001] as the initial weight vector and b = 0.001 as the initial bias.

• Use at least 800 epochs.

• You should incorporate the bias term in your implementation of SGD and do so in the vector style of
problem A.

• Note that for these problems, it is no longer necessary for the SGD function to store the weights after
all epochs; you may change your code to only return the final weights.

Problem G [2 points]: Perform SGD as in the previous problem for each learning rate η in

{e−10, e−11, e−12, e−13, e−14, e−15},

and calculate the training error at the beginning of each epoch during training. On a single plot, show
training error vs. number of epochs trained for each of these values of η. Explain what is happening.

Problem H [2 points]: The closed form solution for linear regression with least squares is

w =

(
N∑
i=1

xixi
T

)−1(N∑
i=1

xiyi

)
.

Compute this analytical solution. Does the result match up with what you got from SGD?

8

Machine Learning & Data Mining Caltech CS/CNS/EE 155
Set 1 January 4th, 2018

Answer the remaining questions in 1-2 short sentences.

Problem I [2 points]: Is there any reason to use SGD when a closed form solution exists?

Problem J [2 points]: Based on the SGD convergence plots that you generated earlier, describe a stopping
condition that is more sophisticated than a pre-defined number of epochs.

Problem K [2 points]: How does the convergence behavior of the weight vector differ between the per-
ceptron and SGD algorithms?

9

	Basics [16 Points]
	Bias-Variance Tradeoff [34 Points]
	The Perceptron [14 Points]
	Stochastic Gradient Descent [36 Points]

