
Dynamic Programming

Avishek Dutta

CS155 Machine Learning and Data Mining

February 14, 2017

Avishek Dutta Dynamic Programming

Motivation

Much of machine learning is heavily dependent on computational
power

Many libraries exist that aim to reduce computational time

TensorFlow

Spark

Well-designed algorithms also speed up computation

Avishek Dutta Dynamic Programming

Dynamic Programming

Dynamic Programming is a programming technique that leverages
previous computations

Can be applied when a problem has the following properties:

optimal sub-structure

overlapping sub-problems

Examples include:

Fibonacci Numbers

Viterbi Algorithm

Forward/Backward Algorithm

Avishek Dutta Dynamic Programming

Optimal Substructure

What does it mean for a problem to exhibit the optimal
substructure property?

Solution to optimization problem can be solved by combining
optimal solutions to subproblems

Example

Mergesort and Quicksort both display the optimal substructure
property

Avishek Dutta Dynamic Programming

Overlapping Subproblem

What does it mean for a problem to exhibit the overlapping
subproblem property?

Subproblems are solved repeatedly to obtain the optimal solution
to the main optimization problem

Example

Mergesort and Quicksort do not display the overlapping
subproblems property

Avishek Dutta Dynamic Programming

Fibonacci Numbers

Write a function to find the n-th Fibonacci number.

Fn = Fn−1 + Fn−2

where F2 = 1 and F1 = 1

This is easy right?

Example

def naive_fib(n):

if n == 1 or n == 2:

return 1

else:

return naive_fib(n-1) + naive_fib(n-2)

Avishek Dutta Dynamic Programming

Fibonacci Numbers

How does the computation break down?

Avishek Dutta Dynamic Programming

Fibonacci Numbers

Overlapping subproblems? Optimal substructure?

Avishek Dutta Dynamic Programming

Fibonacci Numbers

So we can use Dynamic Programming. But how?

Two main approaches:

Top-down

Bottom-up

Top-down: solve recursively, storing previous computations for
later use

Bottom-up: build a table of subproblem results that grows until we
reach solution

Avishek Dutta Dynamic Programming

Top-down Fibonacci Numbers

Recursively solve, storing results of subproblems as we go

Example

table = {}

def top_down_fib(n):

if n in table:

return table[n]

else:

if n == 1 or n == 2:

table[n] = 1

else:

table[n] = top_down_fib(n-1) + top_down_fib(n-2)

return table[n]

Avishek Dutta Dynamic Programming

Top-down Fibonacci Numbers

What’s the computation path?

Avishek Dutta Dynamic Programming

Bottom-up Fibonacci Numbers

Build a table of subproblem results, starting from the base cases

Example

def bottom_up_fib(n):

if n == 1 or n == 2:

return 1

else:

table = [0, 1, 1]

for i in range(3, n+1):

table.append(table[i-1] + table[i-2])

return table[n]

Avishek Dutta Dynamic Programming

Bottom-up Fibonacci Numbers

What’s the computation path?

fib(1) fib(2) fib(3) fib(4) fib(5) fib(6)

1 1 2 3 5 8

Avishek Dutta Dynamic Programming

Fibonacci Numbers

What does this accomplish?

Reduces the number of computations and overall time complexity

O(2n)→ O(n)

Dramatic speedup, especially for large n

Avishek Dutta Dynamic Programming

Viterbi Algorithm

Fibonacci numbers are easy - what about a harder problem? Let’s
shift gears and talk about HMMs

Recall that with a 1st order HMM

P(x , y) = P(End | yM)
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i)

P(x i | y i)→ probability of state y i generating emission x i

P(y i | y i−1)→ probability of state y i−1 transitioning to y i

P(y1 | y0)→ probability of the start state

P(End | yM)→ optional

Avishek Dutta Dynamic Programming

Viterbi Algorithm

P(x , y) = P(End | yM)
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i)

Suppose we have a length M sequence of emissions, x . How can
we find the length M sequence of states, y , for which P(x , y) is
maximized?

Consider the naive solution: generate all possible sequences y .

How many sequences are there? LM if there are L possible states.

This is too slow. Can we do better? Of course!

Avishek Dutta Dynamic Programming

Dynamic Programming for Viterbi Algorithm

We know that Dynamic Programming can be applied here, but
why and how?

The problem has the optimal substructure and overlapping
subproblem properties.

To understand this, lets move to a more concrete example

Suppose that x is a sentence and y is the corresponding
part-of-speech (POS) tag sequence.

y i ∈ L = {N = Noun,V = Verb,D = Adverb}

Avishek Dutta Dynamic Programming

Dynamic Programming for Viterbi Algorithm

L = {N = Noun,V = Verb,D = Adverb}

Original Problem: Given sentence, x1:M , find the sequence, ŷM ,
of POS tags that maximizes P(x , ŷM)

Equivalent Problem: Given sentence, x1:M , find L sequences, ŷM ,
of POS tags that maximize P(x , ŷM), one of each ending in
{N,V ,D}

ŷM(N) = y1y2 . . . yM−1N

ŷM(V) = y1y2 . . . yM−1V

ŷM(D) = y1y2 . . . yM−1D

Avishek Dutta Dynamic Programming

Optimal Substructure in Viterbi Algorithm

Subproblem: Given length M − 1 sentence, x1:M−1, find L
sequences, ŷM−1, of POS tags that maximize P(x1:M−1, ŷM−1),
one of each ending in {N,V ,D}

ŷM−1(N) = y1y2 . . . yM−2N

ŷM−1(V) = y1y2 . . . yM−2V

ŷM−1(D) = y1y2 . . . yM−2D

Can we use the optimal solution to this subproblem to solve the
overall problem? Yes!

Avishek Dutta Dynamic Programming

Optimal Substructure in Viterbi Algorithm

Optimal solutions to subproblems:

S =

{
ŷM−1(N), ŷM−1(V), ŷM−1(D)

}
Optimal solution to overall problem:

ŷM(N) =

{
arg max

y∈S
P(x1:M , y ⊕ N)

}
⊕ N

ŷM(V) =

{
arg max

y∈S
P(x1:M , y ⊕ V)

}
⊕ V

ŷM(D) =

{
arg max

y∈S
P(x1:M , y ⊕ D)

}
⊕ D

where ⊕ is concatenation

Avishek Dutta Dynamic Programming

Optimal Substructure in Viterbi Algorithm

Why does this give us the optimal solution?

ŷM(N) =

{
arg max

y∈S
P(x1:M , y ⊕ N)

}
⊕ N

Because of the structure of the model:

P(x1:M−1, y1:M−1) =
M−1∏
i=1

P(y i | y i−1)
M−1∏
i=1

P(x i | y i)

P(x1:M , y1:M) =
M∏
i=1

P(y i | y i−1)
M∏
i=1

P(x i | y i)

P(x1:M , y1:M) = P(x1:M−1, y1:M−1)P(yM | yM−1)P(xM | yM)

Avishek Dutta Dynamic Programming

Optimal Substructure in Viterbi Algorithm

More formally, suppose that ŷM(N) was formed using some y /∈ S

S =

{
ŷM−1(N), ŷM−1(V), ŷM−1(D)

}

This y must end in one of {N,V ,D}. Since the structure of the
model is:

P(x1:M , y1:M) = P(x1:M−1, y1:M−1)P(yM | yM−1)P(xM | yM)

We can replace y with the correct element from S to get better
ŷM(N).

Avishek Dutta Dynamic Programming

Overlapping Subproblems in Viterbi Algorithm

Equivalent Problem: Given sentence, x1:M , find L sequences, ŷM ,
of POS tags that maximize P(x , ŷM), one of each ending in
{N,V ,D}

Our problem has the optimal substructure property. What about
the overlapping subproblem property? Easy to see:

ŷM(N) =

{
arg max

y∈S
P(x1:M , y ⊕ N)

}
⊕ N

ŷM(V) =

{
arg max

y∈S
P(x1:M , y ⊕ V)

}
⊕ V

ŷM(D) =

{
arg max

y∈S
P(x1:M , y ⊕ D)

}
⊕ D

Avishek Dutta Dynamic Programming

Dynamic Programming in Viterbi Algorithm

Now we understand why we can use dynamic programming for this
problem. But how do we do it?

Use a bottom-up approach. Build a table of solutions to the
suproblems. Extend the table until we have ŷM(N), ŷM(V),
ŷM(D).

How do we start? Trivially:

ŷ1(N) = N

ŷ1(V) = V

ŷ1(D) = D

Avishek Dutta Dynamic Programming

Dynamic Programming in Viterbi Algorithm

ŷ i (t) =

{
arg max
ys∈Si

P(x1:i , ys ⊕ N)

}
⊕ t

=

{
arg max
ys∈Si

P(x1:i−1, ys)P(y i = t | y i−1 = s)P(x i | y i = t)

}
⊕ t

1 2 . . . M-1 M

N N VN N . . . VN

V V VV V . . . DV

D D ND D . . . DD

Si =
{
yn = ŷ i−1(N), yv = ŷ i−1(V), yd = ŷ i−1(D)

}
t ∈ {N,V ,D}

Avishek Dutta Dynamic Programming

Forward/Backward Algorithm

Now let’s shift gears and talk about the Forward/Backward
Algorithm

For unsupervised training of HMMs, we need to be able to
compute the terms

P(y i = z | x) and P(y i = b, y i−1 = a | x)

These expressions can be written in terms of αz(i) and βz(i)

αz(i) = P(x1:i , y i = z | A,O)

βz(i) = P(x i+1:M | y i = z)

Avishek Dutta Dynamic Programming

Forward Algorithm

Problem: Compute αz(i) = P(x1:i , y i = z | A,O) for all z , i .

Naive solution: sum over all possible sequences y1:i−1:

αz(i) =
∑
y1:i−1

P(x1:i , y i = z , y1:i−1 | A,O)

This is too slow. Can we apply dynamic programming here? Yes!

Let’s see how the αz(i) terms exhibit optimal substructure and
overlapping subproblems.

Avishek Dutta Dynamic Programming

Optimal Substructure in Forward Algorithm

Suppose that x is a sentence and y is the corresponding
part-of-speech (POS) tag sequence.

y i ∈ L = {N,V ,D}

’Optimal’ solutions for a given subproblem:

αi
n = P(x i | y i = n)

∑
j∈L

αi−1
j P(y i = n | y i−1 = j)

αi
v = P(x i | y i = v)

∑
j∈L

αi−1
j P(y i = v | y i−1 = j)

αi
d = P(x i | y i = d)

∑
j∈L

αi−1
j P(y i = d | y i−1 = j)

Remember: αi−1
j = P(x1:i−1, y i−1 = j | A, 0)

Avishek Dutta Dynamic Programming

Optimal Substructure in Forward Algorithm

Why are can we build αi
j from αi−1

j ?

The law of total probability!

αi
j = P(x1:i , y i = j | A, 0)

=
∑
k∈L

P(x1:i , y i = j , y i−1 = k | A, 0)

=
∑
K∈L

αi−1
k P(y i = j | y i−1 = k)P(x i | y i = j)

Avishek Dutta Dynamic Programming

Overlapping Subproblems in Forward Algorithm

As in the Viterbi Algorithm, the overlapping subproblems is easy to
see here as well

αi
n = P(x i | y i = n)

∑
j∈L

αi−1
j P(y i = n | y i−1 = j)

αi
v = P(x i | y i = v)

∑
j∈L

αi−1
j P(y i = v | y i−1 = j)

αi
d = P(x i | y i = d)

∑
j∈L

αi−1
j P(y i = d | y i−1 = j)

Remember: αi−1
j = P(x1:i−1, y i−1 = j | A, 0)

Avishek Dutta Dynamic Programming

Dynamic Programming in Forward Algorithm

Now we’ve confirmed that we can use dynamic programming for
this problem. But how do we do it?

Again, use a bottom-up approach. Build a table of solutions to
subproblems. In other words, build a table of αz(i) values for all
z , i

How do we start? Trivially:

α1
n = P(x1:1, y1 = n | A,O) = P(x1 | y1 = n)P(y1 = n | y0)

α1
v = P(x1:1, y1 = v | A,O) = P(x1 | y1 = v)P(y1 = v | y0)

α1
d = P(x1:1, y1 = d | A,O) = P(x1 | y1 = d)P(y1 = d | y0)

Proceed from here using the equations from the previous page

Avishek Dutta Dynamic Programming

Backward Algorithm

Problem: Compute βz(i) = P(x i+1:M | y i = z ,A,O) for all z , i .

Naive solution: sum over all possible sequences y i+1:M :

βz(i) =
∑
y i+1:M

P(x i+1:M , y i+1:M | y i = z ,A,O)

This is too slow. Can we apply dynamic programming here? Yes!

Let’s see how the βz(i) terms exhibit optimal substructure and
overlapping subproblems.

Avishek Dutta Dynamic Programming

Optimal Substructure in Backward Algorithm

Suppose that x is a sentence and y is the corresponding
part-of-speech (POS) tag sequence.

y i ∈ L = {N,V ,D}

’Optimal’ solutions for a given subproblem:

βin =
∑
j∈L

βi+1
j P(y i+1 = j | y i = n)P(x i+1 | y i+1 = j)

βiv =
∑
j∈L

βi+1
j P(y i+1 = j | y i = v)P(x i+1 | y i+1 = j)

βid =
∑
j∈L

βi+1
j P(y i+1 = j | y i = d)P(x i+1 | y i+1 = j)

Remember: βi+1
j = P(x i+2:M | y i+1 = j ,A,O)

Avishek Dutta Dynamic Programming

Overlapping Subproblems in Backward Algorithm

As in the Viterbi Algorithm, the overlapping subproblems is easy to
see here as well

βin =
∑
j∈L

βi+1
j P(y i+1 = j | y i = n)P(x i+1 | y i+1 = j)

βiv =
∑
j∈L

βi+1
j P(y i+1 = j | y i = v)P(x i+1 | y i+1 = j)

βid =
∑
j∈L

βi+1
j P(y i+1 = j | y i = d)P(x i+1 | y i+1 = j)

Remember: βi+1
j = P(x i+2:M | y i+1 = j ,A,O)

Avishek Dutta Dynamic Programming

Dynamic Programming in Backward Algorithm

Now we’ve confirmed that we can use dynamic programming for
this problem. But how do we do it?

Again, use a bottom-up approach (sort of). Build a table of
solutions to subproblems. In other words, build a table of βz(i)
values for all z , i

How do we start? Trivially:

βMn = P(xM+1:M | yM = n,A,O) = 1

βMv = P(xM+1:M | yM = v ,A,O) = 1

βMd = P(xM+1:M | yM = d ,A,O) = 1

Proceed backward using the equations from the previous slides

Avishek Dutta Dynamic Programming

