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Linear Algebra Outline

We will review some basic linear algebra concepts and cover how
they can be applied using numpy and python. We will skip some
concepts which are not relevant such as Dependence
/Independence, Rank, and Linear Maps

» Basic Linear Algebra + Numpy Tools
» Linear Space

Matrix and Vectors

Matrix Multiplication

Operators and Properties

Special Matrices

Vector Norms

Inverse of Matrix
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Linear Space

» A vector space over a field F is a set V' with operations
addition, subtraction, and scalar multiplication.

» Also satisfies number of axioms such as zero vector, additive
inverse, associative law, commutative law, identity element,
distributivity.



Matrix and Vectors

» A matrix A™" is a rectangular array of numbers, a column
vector xc € R™, and a row vector xg € R”

alil ai? e dln X1
ani ano e aon X2
A= : : . S xe= . XR:[Xl X2 ... X,,]
dml adm2 - -- dmn Xm
> In Numpy:
Matrix:
A = np.array([[1, 2], [3, 411)
Vector:
>>> np.array([1,2,3]) .reshape((3,1)) # Column Vector
array([[1],
(21,
[311)

>>> np.array([1,2,3]) .reshape((1,3)) # Row Vector
array([[1, 2, 3]11)



Matrix Multiplication

> With A™7 B™P then C™P = AB with
n
Cj =Y _ AiBi
k=1

Properties:

Associativity:(AB)C = A(BC)
Distributive: A(B+ C) = AB + AC
» Non-commutative generally AB # BA

v

v



Matrix Multiplication (Code)

For matrix multiplication np.dot is the best option. Note,
np.multiply is not matrix multiplication it is pairwise. np.matrix
does not work as well for > 2 dimensions, so we recommend using
np.array.

>>> A = np.array([[1,2,3],[4,5,6]])
>>> A.shape

(2, 3)

>>> B = np.array([[1,2,3,4,5],[6,7,8,9,10],
[11,12,13,14,15]])

>>> B.shape

(3, 5)

>>> np.dot(A,B) .shape

(2, 5)

>>> np.dot(A,B)
array([[ 46, 52, 58, 64, 70],
[100, 115, 130, 145, 160]1)



Operators and Properties

» Transpose: if A€ R™" then AT € R™™ : (AT); = A;
> (AT)T:A
> (AB)T = BTAT
» (A+B)T =AT + BT
> In Numpy:
>>> A = np.array([[1,2,3],[4,5,6]1])
>>> A
array([[1, 2, 3],
[4, 5, 611)
>>> AT
array([[1, 4],
[2, 5],
[3, 611)

» Trace - sum along diagonal.

np.trace()



Special Matrices

v

Identity Matrix: [ =1, e R™ VA R™ A, =1LA=A
np.identity(n)

v

Diagonal Matrix: Only nonzero along diagonal
» Symmetric Matrix: Square matrix where A = AT
Orthogonal Matrix: Square matrix where AAT = ATA=|

v



Vector Norm

A norm of a vector space V is a function ||.|| : V — R™ such that
> ||x|]=0iff x=0
> lex]| = [ * ||x]]

> x + yll < lxIf =+ [lyll

> In Numpy:
np.linalg.norm(x, ord=None)
ord parameter allows you to select what type of norm (1, k,
etc), default Frobenius

Norm of a vector is a measure of its magnitude. Formally:

> Ip norm: ||x||, = (D07, X,'p)l/p

Most common are the / and & norms, used in Ridge and Lasso
regularization respectively.



Inverse of Matrix

A matrix A € R™" is invertible 3B € R™" such that
AB = | = BA. If invertible: B is the inverse of A, written as
B=A"1

> (A—l)—l = A

> (AB)_1 = B 1A71

> (A—l)T — (AT)—l
Easiest way to check if matrix is invertible is to see if determinant
is not 0, where determinant is defined as:

det(A) = ) _ sgn(o H 3i0;
g€S,

There are other ways (Look up Invertible Matrix Theorem), but we
will not cover them here.



Matrix Calculus Outline

1. Matrix Calculus
» Useful Resources
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Gradient

The Hessian

Gradient for Vector-Valued Functions
Note About Layouts

Hand Matrix Differentiation Rules
Examples

Numpy Examples



Useful Resources

> All of the matrix calculus rules you need to know for this class
can be found in " The Matrix Cookbook”
(matrixcookbook.com).

> Also the Wikipedia to matrix calculus is a very good
introduction to this material.



The Gradient

Consider a differentiable real function f : R™" — R
Then, for x € R™", the gradient vV : R™" — R™" of f is by

definition
of(x)  Of(x) Of (x)
Ox11 Ox12 e Ox1n
of(x)  Of(x) Of (x)
T = [T PO
Of(x) Of(x) 9f (x)
8Xml 8Xm2 e 8an

In most cases in this course, x will be a vector x € R" and
f :R" — R. In that case the gradient V : R” — R" of f is

Of (x)
Ox1
Of (x)

Vif(x) = | 72

Bf.(x)

OXn



The Hessian

Let x be a vector x € R” and f : R” — R Then the Hessian
vV2:R" - R" of fis

ro%f(x)  8%f(x) 2f(x) 7
8)(12 Ox10x2 e Ox10xn
f(x)  0%f(x) 9f(x)
V)Q( f(X) — Oxp0x1 6)(22 e Ox20xn
0’f(x)  9%f(x) 9%f(x)
LOxnOx1  OxpOxa " ox2




Gradient for Vector-Valued Functions

For x ¢ R and v : R — RN Then the gradient V : R — RN of v is

Vev(x) = [—‘”’gy) 9ula) . —avgx(x)}

For x € RX and h: RX — RN Then the gradient v : RK — RN
of his

Ohi(x)  Oha(x) Ohy(x)

2% 2% T 2%
o) () Ohn(x)

Vih(x)= | P= e T 0a
o) o) Ohw(x)

Oxk Oxk e Oxk



Note About Layouts

There are two main notational conventions for matrix calculus
For x € RK and h: RX — RN Then the gradient of h is
Numerator Layout : v : RX — RMK

Ohi(x)  Ohi(x) Ohy1(x)
Ox1 x> OxK
Oha(x)  Oha(x) Oha(x)
G = | ST P o
Ohu(x)  Ohy(x) Ohu(x)
2% Oxp OxK

Denominator Layout : v : RK — RN

Ohi(x)  Oha(x) Ohp(x)

0x 0x; T 0x;
Ohi(x)  Oha(x) 8hN8X)

Veh() = | T2 e T oE
Ohi(x)  9Oha(x) Ahn(x)

OxK OxK T OxK

You can use whichever you prefer, but be consistent.



Handy Matrix Differentiation Rules

» vy = Ax where A does not depend on x.
dy
Z_A
Ox
» a =y Ax where A does not depend on x or y.

a =Yy 7@ -
» y = AT xB where A and B do not depend on x.

8)/_ T
a_AB



Examples (Least Squares)

» Real valued function f : R” — R where for x € R”",
f(x) = ||Ax — b||3 = (Ax — b) T (Ax — b)
=xTATAx—bTAx—xTATb+bTb

» To find the x that minimizes f, we need to compute the
gradient with respect to x.

Vif(x) = Vyi(xTATAx — bT Ax — xTATb+ b7 b)

= Vu(xTATAx) — V(b7 Ax) — V,(x "TAT b) 4+ V(b b)
=2ATAx —2A"b



Examples (Least Squares 2)

What exactly is happening here

= Vx(xTAT Ax) — v (bT Ax) — V,(xTATb) 4+ v, (b" b)

=2ATAx —2ATh
Vx(xTAT Ax) =
a1 a1 ... ami| |41 a2 ... Qdin
dip 422 ... am?2 ani dno e aon
Vx [Xl Xo ... X,,] .
din ad2n ... amn dml a4m2 - -- amn

The result of these matrix multiplications is a scalar ¢(x) of

x = [x1, X2, ..., Xn]. The gradient then is as we saw earlier,

Oc  Oc Oc
Ox1? Oxp? """ Oxp

X1
X2



Examples (Vector Valued Functions)

» Consider the vector valued function v : R — RX where for
x € R,
v(x) =< x,x%,...,x" >

Then,

n—1

Vxv(x) =< 1,2x,...,nx""" >

» Consider the vector valued function h: RV — RX where for
x € RN,
h(x) = ABx + AT xB

Vxh(x) = AB+ ABT

Generally, and for most problems in this class, the gradients of
matrix products will only require applying basic rules and rules
that can be found in any book on Matrix calculus. However,
you can always verify them by expanding the matrix product
and for each parameter in the output, taking the partials with
respect to xi, x2, .. as described in the previous slides.



Numpy Examples

» An IPython notebook will be available for download which
actually codes up the above examples and more using Numpy

» Will also demonstrate matrix broadcasting, addition,
multiplication, and other basic operations.



