
Linear Algebra/Matrix Calculus Recitation

Suraj Nair

Caltech CS155

Winter 2017

Linear Algebra Outline

We will review some basic linear algebra concepts and cover how
they can be applied using numpy and python. We will skip some
concepts which are not relevant such as Dependence
/Independence, Rank, and Linear Maps

I Basic Linear Algebra + Numpy Tools
I Linear Space
I Matrix and Vectors
I Matrix Multiplication
I Operators and Properties
I Special Matrices
I Vector Norms
I Inverse of Matrix

Linear Space

I A vector space over a field F is a set V with operations
addition, subtraction, and scalar multiplication.

I Also satisfies number of axioms such as zero vector, additive
inverse, associative law, commutative law, identity element,
distributivity.

Matrix and Vectors
I A matrix Amxn is a rectangular array of numbers, a column

vector xC ∈ Rm, and a row vector xR ∈ Rn

A =

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 xC =

x1
x2
...
xm

 xR =
[
x1 x2 . . . xn

]
I In Numpy:

Matrix:

A = np.array([[1, 2], [3, 4]])

Vector:

>>> np.array([1,2,3]).reshape((3,1)) # Column Vector

array([[1],

[2],

[3]])

>>> np.array([1,2,3]).reshape((1,3)) # Row Vector

array([[1, 2, 3]])

Matrix Multiplication

I With Amxn, Bnxp, then Cmxp = AB with

Cij =
n∑

k=1

AikBkj

Properties:

I Associativity:(AB)C = A(BC)

I Distributive: A(B + C) = AB + AC

I Non-commutative generally AB 6= BA

Matrix Multiplication (Code)
For matrix multiplication np.dot is the best option. Note,
np.multiply is not matrix multiplication it is pairwise. np.matrix
does not work as well for > 2 dimensions, so we recommend using
np.array.

>>> A = np.array([[1,2,3],[4,5,6]])

>>> A.shape

(2, 3)

>>> B = np.array([[1,2,3,4,5],[6,7,8,9,10],

[11,12,13,14,15]])

>>> B.shape

(3, 5)

>>> np.dot(A,B).shape

(2, 5)

>>> np.dot(A,B)

array([[46, 52, 58, 64, 70],

[100, 115, 130, 145, 160]])

Operators and Properties

I Transpose: if A ∈ Rmxn, then AT ∈ Rnxm : (AT)ij = Aji

I (AT)T = A
I (AB)T = BTAT

I (A + B)T = AT + BT

I In Numpy:

>>> A = np.array([[1,2,3],[4,5,6]])

>>> A

array([[1, 2, 3],

[4, 5, 6]])

>>> A.T

array([[1, 4],

[2, 5],

[3, 6]])

I Trace - sum along diagonal.

np.trace()

Special Matrices

I Identity Matrix: I = In ∈ Rnxn, ∀A ∈ Rnxn : AIn = InA = A

np.identity(n)

I Diagonal Matrix: Only nonzero along diagonal

I Symmetric Matrix: Square matrix where A = AT

I Orthogonal Matrix: Square matrix where AAT = ATA = I

Vector Norm

A norm of a vector space V is a function ||.|| : V → R+ such that

I ||x || = 0 iff x = 0

I ||αx || = |α| ∗ ||x ||
I ||x + y || ≤ ||x ||+ ||y ||
I In Numpy:

np.linalg.norm(x, ord=None)

ord parameter allows you to select what type of norm (l1, l2,
etc), default Frobenius

Norm of a vector is a measure of its magnitude. Formally:

I lp norm: ||x ||p = (
∑n

i=1 x
p
i)1/p

Most common are the l2 and l1 norms, used in Ridge and Lasso
regularization respectively.

Inverse of Matrix

A matrix A ∈ Rnxn is invertible ∃B ∈ Rnxn such that
AB = I = BA. If invertible: B is the inverse of A, written as
B = A−1

I (A−1)−1 = A

I (AB)−1 = B−1A−1

I (A−1)T = (AT)−1

Easiest way to check if matrix is invertible is to see if determinant
is not 0, where determinant is defined as:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai ,σi

There are other ways (Look up Invertible Matrix Theorem), but we
will not cover them here.

Matrix Calculus Outline

1. Matrix Calculus
I Useful Resources
I Gradient
I The Hessian
I Gradient for Vector-Valued Functions
I Note About Layouts
I Hand Matrix Differentiation Rules
I Examples
I Numpy Examples

Useful Resources

I All of the matrix calculus rules you need to know for this class
can be found in ”The Matrix Cookbook”
(matrixcookbook.com).

I Also the Wikipedia to matrix calculus is a very good
introduction to this material.

The Gradient
Consider a differentiable real function f : Rmxn → R
Then, for x ∈ Rmxn, the gradient O : Rmxn → Rmxn of f is by
definition

Ox f (x) =

∂f (x)
∂x11

∂f (x)
∂x12

. . . ∂f (x)
∂x1n

∂f (x)
∂x21

∂f (x)
∂x22

. . . ∂f (x)
∂x2n

...
...

. . .
...

∂f (x)
∂xm1

∂f (x)
∂xm2

. . . ∂f (x)
∂xmn

In most cases in this course, x will be a vector x ∈ Rn and
f : Rn → R. In that case the gradient O : Rn → Rn of f is

Ox f (x) =

∂f (x)
∂x1
∂f (x)
∂x2
...

∂f (x)
∂xn

The Hessian

Let x be a vector x ∈ Rn and f : Rn → R Then the Hessian
O2 : Rn → Rn of f is

O2
x f (x) =

∂2f (x)
∂x21

∂2f (x)
∂x1∂x2

. . . ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x22

. . . ∂2f (x)
∂x2∂xn

...
...

. . .
...

∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

. . . ∂2f (x)
∂x2n

Gradient for Vector-Valued Functions

For x ∈ R and v : R→ RN Then the gradient O : R→ RN of v is

Oxv(x) =
[
∂v1(x)
∂x

∂v2(x)
∂x . . . ∂vN(x)

∂x

]
For x ∈ RK and h : RK → RN Then the gradient O : RK → RKxN

of h is

Oxh(x) =

∂h1(x)
∂x1

∂h2(x)
∂x1

. . . ∂hN(x)
∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

. . . ∂hN(x)
∂x2

...
...

. . .
...

∂h1(x)
∂xK

∂h2(x)
∂xK

. . . ∂hN(x)
∂xK

Note About Layouts
There are two main notational conventions for matrix calculus
For x ∈ RK and h : RK → RN Then the gradient of h is
Numerator Layout : O : RK → RNxK

Oxh(x) =

∂h1(x)
∂x1

∂h1(x)
∂x2

. . . ∂h1(x)
∂xK

∂h2(x)
∂x1

∂h2(x)
∂x2

. . . ∂h2(x)
∂xK

...
...

. . .
...

∂hN(x)
∂x1

∂hN(x)
∂x2

. . . ∂hN(x)
∂xK

Denominator Layout : O : RK → RKxN

Oxh(x) =

∂h1(x)
∂x1

∂h2(x)
∂x1

. . . ∂hN(x)
∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

. . . ∂hN(x)
∂x2

...
...

. . .
...

∂h1(x)
∂xK

∂h2(x)
∂xK

. . . ∂hN(x)
∂xK

You can use whichever you prefer, but be consistent.

Handy Matrix Differentiation Rules

I y = Ax where A does not depend on x .

∂y

∂x
= A

I α = yTAx where A does not depend on x or y .

∂α

∂x
= yTA,

∂α

∂y
= xTAT

I y = AT xB where A and B do not depend on x .

∂y

∂x
= ABT

Examples (Least Squares)

I Real valued function f : Rn → R where for x ∈ Rn,

f (x) = ||Ax − b||22 = (Ax − b)T (Ax − b)

= xTATAx − bTAx − xTATb + bTb

I To find the x that minimizes f , we need to compute the
gradient with respect to x .

Ox f (x) = Ox(xTATAx − bTAx − xTATb + bTb)

= Ox(xTATAx)− Ox(bTAx)− Ox(xTATb) + Ox(bTb)

= 2ATAx − 2ATb

Examples (Least Squares 2)

What exactly is happening here

= Ox(xTATAx)− Ox(bTAx)− Ox(xTATb) + Ox(bTb)

= 2ATAx − 2ATb

Ox(xTATAx) =

Ox

[
x1 x2 ... xn

]

a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

x1
x2
...
xn

The result of these matrix multiplications is a scalar c(x) of
x = [x1, x2, ..., xn]. The gradient then is as we saw earlier,
[∂c∂x1 ,

∂c
∂x2
, ..., ∂c∂xn]

Examples (Vector Valued Functions)

I Consider the vector valued function v : R→ RK where for
x ∈ R,

v(x) =< x , x2, . . . , xn >

Then,
Oxv(x) =< 1, 2x , . . . , nxn−1 >

I Consider the vector valued function h : RN → RK where for
x ∈ RN ,

h(x) = ABx + AT xB

Oxh(x) = AB + ABT

Generally, and for most problems in this class, the gradients of
matrix products will only require applying basic rules and rules
that can be found in any book on Matrix calculus. However,
you can always verify them by expanding the matrix product
and for each parameter in the output, taking the partials with
respect to x1, x2, .. as described in the previous slides.

Numpy Examples

I An IPython notebook will be available for download which
actually codes up the above examples and more using Numpy

I Will also demonstrate matrix broadcasting, addition,
multiplication, and other basic operations.

