
Machine	 Learning	 &	 Data	 Mining	
CS/CNS/EE	 155	

Lecture	 17:	
Survey	 of	 Advanced	 Topics	

What	 We	 Covered	

Linear	 Models	

Non-‐Linear	 Models	

OverfiDng	 Loss	 FuncFons	

Learning	 Algorithms	 	
&	 OpFmizaFon	

Supervised	 Learning	

Unsupervised	 Learning	

ProbabilisFc	 Modeling	

Topic	 Overview	

Basic	 Supervised	 Learning	

•  Training	 Data:	

•  Model	 Class:	

•  Loss	 FuncFon:	

•  Learning	 ObjecFve:	 	

S = (xi, yi){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	 Models	

Squared	 Loss	

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)()
i=1

N

∑

OpFmizaFon	 Problem	

Basic	 Unsupervised	 Learning	

=	 X’	 U’	

V’T	

Deep	 Learning	

Lecture'16:'Deep'Learning' 40'

h4p://www.image9net.org/'

Input'
Image'Input'
Image'Input'
Image'

h4p://www.cs.toronto.edu/~fritz/absps/imagenet.pdf'
h4p://Bp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf'

96'
filters'

RGB'Input'Image'
224'x'224'x'3'

7x7x3'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
55'x'55'x'96'

256'
filters'

5x5x96'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
13'x'13'x'256'

354'
filters'

3x3x256'ConvoluRon'
13'x'13'x'354'

354'
filters'

3x3x354'ConvoluRon'
13'x'13'x'354'

256'
filters'

3x3x354'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'2x'

6'x'6'x'256'

Standard'
4096'Units'

Standard'
4096'Units'

LogisRc'
Regression'

≈1000'Classes'

Sequence	 PredicFon	

Y1	

X1	

Y2	

X2	

YM	

XM	

…	

…	

Y0	 YEnd	

Simple	 OpFmizaFon	 Algorithms	

•  StochasFc	 Gradient	 Descent	

•  EM	 algorithm	 (for	 HMMs)	

Other	 Basic	 Concepts	 	

•  Cross	 ValidaFon	

•  OverfiDng	

•  Bias-‐Variance	 Tradeoff	

Learning	 Theory	 	

GeneralizaFon	 Bounds	

•  Formal	 characterizaFon	 of	 overfiDng	

•  Example	 result:	

Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
"

#
$

%

&
'

Trained	 Model	 Training	 Size	

Training	 Error	 Test	 Error	
With	 Prob.	 ≥	 1-‐δ	 :	

Make	 rigorous!	

Sha\ering	

•  DefiniNon:	 A	 set	 of	 points	 is	 shaOered	 by	 H	 if	
for	 all	 possible	 binary	 labelings	 of	 points,	
there	 exists	 some	 h	 that	 classifies	 perfectly.	

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide	 Material	 Borrowed	 From	 Piyush	 Rai:	 	
h\ps://www.cs.utah.edu/~piyush/teaching/27-‐9-‐print.pdf	

In	 2D,	 any	 3	 points	 can	 always	 be	 shaOered	 by	 linear	 models!	

Sha\ering	

•  DefiniNon:	 A	 set	 of	 points	 is	 shaOered	 by	 H	 if	
for	 all	 possible	 binary	 labelings	 of	 points,	
there	 exists	 some	 h	 that	 classifies	 perfectly.	

Slide	 Material	 Borrowed	 From	 Piyush	 Rai:	 	
h\ps://www.cs.utah.edu/~piyush/teaching/27-‐9-‐print.pdf	

In	 2D,	 linear	 models	 cannot	 shaOer	 4	 points!	

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

VC	 Dimension	

•  VC(H)	 =	 most	 #	 points	 that	 can	 be	 sha\ered	
–  If	 H	 is	 linear	 models	 in	 2D	 feature	 space:	

•  VC(H)	 =	 3	

Eout (h) ≤ Ein (h)+O
VC(H)log 2N

VC(H)
+1

"

#
$

%

&
'+ log

1
δ

"

#
$
%

&
'

N

"

#

$
$
$
$$

%

&

'
'
'
''

With	 Prob.	 ≥	 1-‐δ	 :	

Structured	 PredicFon	

Topic	 of	 CS159	

•  Part-‐of-‐Speech	 Tagging	
–  Given	 a	 sequence	 of	 words	 x,	 predict	 sequence	 of	 tags	 y.	

–  Dependencies	 from	 tag-‐tag	 transiFons	 in	 Markov	 model.	

	

à	 Similarly	 for	 other	 sequence	 labeling	 problems,	 e.g.,	 RNA	 Intron/
Exon	 Tagging.	

The rain wet the cat x Det N V Det N
y

Examples of Complex Output Spaces

Examples of Complex Output Spaces

•  Natural Language Parsing
–  Given a sequence of words x, predict the parse tree y.
–  Dependencies from structural constraints, since y has to be a

tree.

The dog chased the cat
x

S

VP NP

Det N V

NP

Det N

y

Examples of Complex Output Spaces

•  Information Retrieval
–  Given a query x, predict a ranking y.
–  Dependencies between results (e.g. avoid redundant hits)
–  Loss function over rankings (e.g. Average Precision)

SVM
x 1.  Kernel-Machines

2.  SVM-Light
3.  Learning with Kernels
4.  SV Meppen Fan Club
5.  Service Master & Co.
6.  School of Volunteer Management
7.  SV Mattersburg Online
…

y

Conservation Reservoir

Corridors
Building outward from sources

!"#$%&'()*'+,'-.%'

!"#$%&'/)*'+,'-.%'

!"#$0'

12+30'

4' 5'

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

stereo vision

✦ binocular fusion of features observed by
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) argmax f (x, y) (1)
y Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 w 2, s.t. f (xi, yi) f (xi, y
–) ≥ 1 (i, y– yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) f (xi, y

–) = (wyi

 wy–) (xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map (x, y) instead of (x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) w (x, y), the number of parameters
will simply equal the number of features extracted via ,
which may not depend on Y . One can then use the formu-
lation in (2) with the more flexible definition of f via to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) wy (x). Here (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) argmax f (x, y) (1)
y Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 w 2, s.t. f (xi, yi) f (xi, y
–) ≥ 1 (i, y– yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) f (xi, y

–) = (wyi

 wy–) (xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map (x, y) instead of (x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) w (x, y), the number of parameters
will simply equal the number of features extracted via ,
which may not depend on Y . One can then use the formu-
lation in (2) with the more flexible definition of f via to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) wy (x). Here (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) argmax f (x, y) (1)
y Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 w 2, s.t. f (xi, yi) f (xi, y
–) ≥ 1 (i, y– yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) f (xi, y

–) = (wyi

 wy–) (xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map (x, y) instead of (x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) w (x, y), the number of parameters
will simply equal the number of features extracted via ,
which may not depend on Y . One can then use the formu-
lation in (2) with the more flexible definition of f via to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) wy (x). Here (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

Structured	 PredicNon	
X	 Y	 X	 Y	 X	 Y	

X	 X	 Y	

General Formula
(Linear Models)

•  Assume scoring function F

•  Assume F is linear:

h(x;w) = argmax
y∈Y (x)

F(x, y;w)

F(x, y;w) = wTΨ(x, y)

Example	 1	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Ψ(x, y) = yxBinary	 ClassificaNon:	
Y (x) = −1,+1{ }

F(x, y;w) = y(wTx)

h(x;w) = argmax
y∈ −1,+1{ }

y wTx()

Examples	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

1st	 Order	 Sequences:	 Ψ(x, y) = φ(y j, y j−1 | x)
j
∑

Y (x) = all	 possible	 output	 sequences	

F(x, y;w) = wT φ(y j, y j−1 | x)
j
∑

Solve	 using	 Viterbi!	

Examples	

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Integer	 Linear	 Program:	 Ψ(x, y) = y jφ j x()
j
∑

Y (x) = Feasible	 seDngs	 of	 y	

F(x, y;w) = yTc c =
wTφ1(x)
wTφ 2 (x)
!

!

"

#
#
#
#

$

%

&
&
&
&

h(x;w) = argmax
y∈Y (x)

yTc

Each	 yj	 	 	 	 	 {0,1}	 ∈

Structured Prediction Learning Problem

•  Efficient Inference/Prediction

–  Viterbi in sequence labeling
–  CKY Parser for parse trees
–  Sorting for ranking

•  Efficient Learning/Training
–  Learn parameters w from training data {xi,yi}i=1..N

–  Structural SVM: Hinge Loss Minimization
–  Conditional Random Fields: Log Loss Minimization
–  Structured Perceptron, etc…

h(x;w) = argmax
y

wTΨ(y,x)

Perceptron	 Learning	 Algorithm	

•  w1	 =	 0,	 b1	 =	 0	
•  For	 t	 =	 1	 ….	

– Receive	 example	 (x,y)	
–  If	 h(x|wt)	 =	 y	

•  [wt+1,	 bt+1]	 =	 [wt,	 bt]	
– Else	

• wt+1=	 wt	 +	 yx	
• bt+1	 =	 bt	 +	 y	

S = (xi, yi){ }i=1
N

y ∈ +1,−1{ }

Training	 Set:	

Go	 through	 training	 set	 	
in	 arbitrary	 order	
(e.g.,	 randomly)	

h(x |w) = sign(wT x − b)

Structured	 Perceptron	

•  w1	 =	 0	
•  For	 t	 =	 1	 ….	

– Receive	 example	 (x,y)	
–  If	 h(x|wt)	 =	 y	

• wt+1	 =	 wt	
– Else	

• wt+1=	 wt	 +	 Ψ(x,y)	

S = (xi, yi){ }i=1
N

Training	 Set:	

Go	 through	 training	 set	 	
in	 arbitrary	 order	
(e.g.,	 randomly)	

h(x |w) = argmax
y '

wTΨ(x, y ')

Conventional SVMs
•  Input: x (high dimensional point)
•  Target: y (either +1 or -1)
•  Prediction: sign(wTx)

•  Training:

 subject to:

•  The sum of slacks upper bounds the 0/1 loss!

∑
=

+
N

i
i

w N
Cw

1

2

, 2
1minarg ξ

ξ

ii
T xwi ξ−≥⋅∀ 1)(y : i

∑
i

iξ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

f(x)	

Lo
ss
	

0/1	 Loss	

Hinge	 Loss	

Target	 y	

L(yi, f (xi)) =max(0,1− yi f (xi)) = ξi

argmin
w,b,ξ

1
2
wTw+ C

N
ξi

i
∑

∀i : yi w
T xi − b() ≥1−ξi

∀i :ξi ≥ 0

Structural SVM
•  Let x denote a structured input (sentence)
•  Let y denote a structured output (POS tags)

•  Standard objective function:

•  Constraints are defined for each incorrect labeling y’
over each x.

∑+
i

iN
Cw ξ2

2
1

∀i,∀y ' ≠ y(i) : wTΨ(y(i),x(i)) ≥ wTΨ(y ',x(i))+Δi (y ')−ξi

Score(y(i))	 Score(y’)	 Loss(y’)	 Slack	

h\p://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html	 	

Interpreting Constraints

Suppose for incorrect y’:

Then:

∑+
i

iN
Cw ξ2

2
1

∀i,∀y ' ≠ y(i) : wTΨ(y(i),x(i)) ≥ wTΨ(y ',x(i))+Δi (y ')−ξi

)'(75.0 yΔ≥≥iξ

Score(y(i))	 Score(y’)	 Loss(y’)	 Slack	

h\p://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html	 	

Sample	 Research	 QuesFons	

•  Scale	
– PredicFng	 over	 millions	 of	 variables	

•  Structured	 RepresentaFon	 Learning	
– Deep	 learning	 for	 structured	 outputs?	

•  Cost	 of	 labeling	

Crowdsourcing	

Acquiring	 Labels	 from	 Annotators	 Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Y
mij

=

⇢

y
mij

if (i, j) 2 ¯Y
m

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Y
mij

⇡
D

X

d=1

�
d

u
md

x
id

x
jd

+ b,

where each x
i

and u
m

are unit vectors, and �
d

are positive weights.
Each x

i

corresponds to an item representation, and each u
m

corre-
sponds to the diagonal of a user transform U

m

. In our model, rather
than constraining x

i

and u
m

to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of x

i

and u
m

(or U
m

) via regularization penalties R
x

and R
u

.11 We also enforce
u
m

� 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms U

m

and V
m

is related
to (multi-task) metric learning problems under pairwise constraints

11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].

How	 Reliable	 are	 Annotators?	

•  If	 we	 knew	 what	 the	 labels	 were	
– Can	 judge	 workers	 on	 label	 quality	

•  If	 we	 knew	 who	 the	 good	 workers	 were	
– Can	 create	 labels	 from	 their	 annotaFons	

•  Chicken	 and	 egg	 problem!	

Worker	 Reliability	 as	 Latent	 Variable	

•  Let	 zm	 denote	 the	 reliability	 of	 worker	 m	

yi =
1
zm

m
∑

yimzm
m
∑

EsNmated	 label	

zm =
1
N

L(yi, yim)
i
∑

Differing	 AmbiguiFes	 Across	 Tasks	

•  Oven	 collecFng	 annotaFons	 for	 many	 tasks	

•  Some	 tasks	 are	 harder	 than	 others	

•  How	 many	 labels	 to	 collect	 for	 each	 task?	

Structured	 AnnotaFons	

h\p://arxiv.org/pdf/1506.02106v4.pdf	

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10

�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.

AcFve	 Learning	

Crowdsourcing	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	
IniFally	 Empty	

Repeat	

Passive	 Learning	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	
IniFally	 Empty	

Repeat	

Random	

AcFve	 Learning	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	
IniFally	 Empty	

Repeat	

Choose	

AcFve	 Learning	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

“Mushroom”	

Labeled and Unlabeled data

Human expert/
Special equipment/

Experiment

“Crystal” “Needle” “Empty”

Cheap and abundant ! Expensive and scarce !

“0” “1” “2” …

“Sports”
“News”
“Science”

…

Unlabeled	

Labeled	
IniFally	 Empty	

Goal:	 Maximize	 Accuracy	 with	 Minimal	 Cost	

Repeat	

Choose	

Comparison	 with	 Passive	 Learning	

•  ConvenFonal	 Supervised	 Learning	 is	 considered	
“Passive”	 Learning	

•  Unlabeled	 training	 set	 sampled	 according	 to	 test	
distribuFon	

•  So	 we	 label	 it	 at	 random	 	
–  Very	 Expensive!	

Simple	 Example	

•  1	 feature	
•  Learn	 threshold	 funcFon	

True	 Model	
Passive	 Learning	
Sample	 from	 distribuFon	

Learned	 Model	

Simple	 Example	

•  1	 feature	
•  Learn	 threshold	 funcFon	

True	 Model	
AcNve	 Learning	
Binary	 Search	

Comparison	 with	 Passive	 Learning	

•  #	 samples	 to	 be	 within	 ε	 of	 true	 model	

•  Passive	 Learning:	

•  AcFve	 Learning:	

O 1
ε

!

"
#
$

%
&

O log 1
ε

!

"
#

$

%
&

Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

39'

True'Model'
Passive'Learning'
Sample'from'distribu7on'

Learned'Model'Simple'Example'

•  1'feature'
•  Learn'threshold'func7on'

40'

True'Model'
Ac#ve&Learning&
Binary'Search'

MulF-‐Armed	 Bandits	

Problems	 with	 Crowdsourcing	

•  Assumes	 you	 can	 label	 by	 proxy	
– E.g.,	 have	 someone	 else	 label	 objects	 in	 images	

•  But	 someFmes	 you	 can’t!	
– Personalized	 recommender	 systems	

•  Need	 to	 ask	 the	 user	 whether	 content	 is	 interesFng	
– Personalized	 medicine	

•  Need	 to	 try	 treatment	 on	 paFent	

– Requires	 actual	 target	 domain	

Personalized	 Labels	

	 	 	 	 	 	 	 	 	 	 Sports	
Unlabeled	

Labeled	
IniFally	 Empty	

Choose	

Repeat	

What	 is	 Cost?	
Real	 System	

End	 User	

Formal	 DefiniFon	
•  K	 acFons/classes	
•  Each	 acFon	 has	 an	 average	 reward:	 μk	

–  Unknown	 to	 us	
–  Assume	 WLOG	 that	 u1	 is	 largest	

•  For	 t	 =	 1…T	
–  Algorithm	 chooses	 acFon	 a(t)	
–  Receives	 random	 reward	 y(t)	

•  ExpectaFon	 μa(t)	
	

•  Goal:	 minimize	 Tu1	 –	 (μa(1)	 +	 μa(2)	 +	 …	 +	 μa(T))	

Basic	 SeDng	
K	 classes	
No	 features	

Algorithm	 Simultaneously	
Predicts	 &	 Receives	 Labels	

If	 we	 had	 perfect	 informaFon	 to	 start	 Expected	 Reward	 of	 Algorithm	

	 	 	 	 	 	 	 	 	 	 Sports	

-- -- -- -- --

0 0 0 1 0 # Shown

Average Likes : 0

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

-- -- -- 0 --

0 0 0 1 0 # Shown

Average Likes : 0

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 	 	 	 Sports	

-- -- -- 0 --

0 0 1 1 0 # Shown

Average Likes : 0

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 	 	 PoliFcs	

-- -- 1 0 --

0 0 1 1 0 # Shown

Average Likes : 1

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 	 	 PoliFcs	

-- -- 1 0 --

0 0 1 1 1 # Shown

Average Likes : 1

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 	 	 	 	 World	

-- -- 1 0 0

0 0 1 1 1 # Shown

Average Likes : 1

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 	 	 	 	 World	

-- -- 1 0 0

0 1 1 1 1 # Shown

Average Likes : 1

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 Economy	

-- 1 1 0 0

0 1 1 1 1 # Shown

Average Likes : 2

InteracFve	 PersonalizaFon	
(5	 Classes,	 No	 features)	

	 	 	 	 	 	 	 Economy	 …	

-- 0.44 0.4 0.33 0.2

0 25 10 15 20 # Shown

Average Likes : 24

What	 should	 Algorithm	 Recommend?	

Exploit: Explore: Best:

	 	 	 	 	 	 	 	 	 PoliFcs	 	 	 	 	 	 	 	 Economy	 	 	 	 	 	 	 	 	 Celebrity	

How	 to	 OpNmally	 Balance	 Explore/Exploit	 Tradeoff?	
Characterized	 by	 the	 MulF-‐Armed	 Bandit	 Problem	 	

()

R(T) = OPT()− ALG()

•  Opportunity cost of not knowing preferences
•  “no-regret” if R(T)/T è 0

–  Efficiency measured by convergence rate

Regret:

Time Horizon

(OPT) = + () + () …

(ALG) = () () () ++ …

Recap:	 The	 MulF-‐Armed	 Bandit	 Problem	

•  K	 acFons/classes	
•  Each	 acFon	 has	 an	 average	 reward:	 μk	

–  All	 unknown	 to	 us	
–  Assume	 WLOG	 that	 u1	 is	 largest	

•  For	 t	 =	 1…T	
–  Algorithm	 chooses	 acFon	 a(t)	
–  Receives	 random	 reward	 y(t)	

•  ExpectaFon	 μa(t)	

•  Goal:	 minimize	 Tu1	 –	 (μa(1)	 +	 μa(2)	 +	 …	 +	 μa(T))	

Basic	 SeDng	
K	 classes	
No	 features	

Algorithm	 Simultaneously	
Predicts	 &	 Receives	 Labels	

Regret	

The	 MoFvaFng	 Problem	

•  Slot	 Machine	 =	 One-‐Armed	 Bandit	
	

	

•  Goal:	 Minimize	 regret	 From	 pulling	 subopFmal	 arms	
h\p://en.wikipedia.org/wiki/MulF-‐armed_bandit	

Each	 Arm	 Has	 	
Different	 Payoff	

ImplicaFons	 of	 Regret	

•  If	 R(T)	 grows	 linearly	 w.r.t.	 T:	
–  Then	 R(T)/T	 è	 constant	 >	 0	
–  I.e.,	 we	 converge	 to	 predicFng	 something	 subopFmal	

•  If	 R(T)	 is	 sub-‐linear	 w.r.t.	 T:	
–  Then	 R(T)/T	 è	 0	
–  I.e.,	 we	 converge	 to	 predicFng	 the	 opFmal	 acFon	

R(T) = OPT()− ALG()Regret:

Experimental	 Design	

•  How	 to	 split	 trials	 to	 collect	 informaFon	
•  StaNc	 Experimental	 Design	 	

–  Standard	 pracFce	
–  (pre-‐planned)	

h\p://en.wikipedia.org/wiki/Design_of_experiments	

Treatment	 Placebo	 Treatment	 Placebo	 Treatment	

…	

SequenFal	 Experimental	 Design	

•  Adapt	 experiments	 based	 on	 outcomes	

Treatment	 Placebo	 Treatment	 Treatment	

…	
Treatment	

SequenFal	 Experimental	 Design	 Ma\ers	

h\p://www.nyFmes.com/2010/09/19/health/research/19trial.html	

SequenFal	 Experimental	 Design	
•  MAB	 models	 sequenFal	 experimental	 design!	

•  Each	 treatment	 has	 hidden	 expected	 value	
– Need	 to	 run	 trials	 to	 gather	 informaFon	
–  “ExploraFon”	

•  In	 hindsight,	 should	 always	 have	 used	 treatment	
with	 highest	 expected	 value	

•  Regret	 =	 opportunity	 cost	 of	 exploraNon	

basic	

Online	 AdverFsing	

Largest	 Use-‐Case	
of	 MulF-‐Armed	
Bandit	 Problems	

Reinforcement	 Learning	

AcFons	 Impact	 State	

•  In	 MAB:	
– AcFons	 do	 not	 impact	 state	
– Constant	 reward	 funcFon	

•  Reinforcement	 Learning	
– AcFons	 effect	 state	 you’re	 in	
– Reward	 funcFon	 depends	 on	 state	

Video	 Demo	
(Deep	 Reinforcement	 Learning	 for	 Atari)	

h\ps://www.youtube.com/watch?v=iqXKQf2BOSE	 	

What	 is	 State?	

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

h\p://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf	

Reward	 of	 each	 acNon	 varies	 depending	 on	 state!	
	
AcNon	 at	 current	 state	 impacts	 future	 states!	
	
Much	 harder	 to	 do	 exploraNon!	

Non-‐Convex	 OpFmizaFon	

Anima	 	
Anandkumar	

Recall:	 Hidden	 Markov	 Models	

Y1	

X1	

Y2	

X2	

YM	

XM	

…	

…	

P x, y() = P(End | yM) P(yi | yi−1)
i=1

M

∏ P(xi | yi)
i=1

M

∏

OpFonal	

Y0	 YEnd	

Recall:	 EM	 Algorithm	 for	 HMMs	

•  If	 we	 had	 y’s	 è	 max	 likelihood.	
•  If	 we	 had	 (A,O)	 è	 predict	 y’s	
	

1.  IniFalize	 A	 and	 O	 arbitrarily	

2.  Predict 	 prob.	 of	 y’s	 for	 each	 training	 x	

3.  Use	 y’s	 to	 esFmate	 new	 (A,O)	

4.  Repeat	 back	 to	 Step	 1	 unFl	 convergence	

h\p://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	

ExpectaNon	 Step	

MaximizaNon	 Step	

Chicken	 vs	 Egg!	

Recall:	 EM	 Algorithm	 for	 HMMs	

•  If	 we	 had	 y’s	 è	 max	 likelihood.	
•  If	 we	 had	 (A,O)	 è	 predict	 y’s	
	

1.  IniFalize	 A	 and	 O	 arbitrarily	

2.  Predict 	 prob.	 of	 y’s	 for	 each	 training	 x	

3.  Use	 y’s	 to	 esFmate	 new	 (A,O)	

4.  Repeat	 back	 to	 Step	 1	 unFl	 convergence	

h\p://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	

ExpectaNon	 Step	

MaximizaNon	 Step	

Chicken	 vs	 Egg!	

Non-‐Convex	 OpNmizaNon	 Problem!	
Converges	 to	 local	 opFmum.	

Can	 We	 Train	 HMMs	 OpNmally?	

InspiraFon	 from	 Dimensionality	 ReducFon	

•  Find	 best	 rank	 K	 approximaFon	 to	 Y:	

•  Non-‐convex	 opFmizaFon	 problem!	
– Due	 to	 non-‐convex	 feasible	 region	

•  But	 opNmally	 solved	 via	 SVD!	

argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2

Spectral	 Learning	 of	 HMMs	

P(y j | y j−1) = A P(x j | y j) =OWant	 to	 	
EsNmate:	

∑t = E x j+t x j()
T"

#$
%
&'= E E x j+t x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E E x j+t y j"
#

%
&E x j()

T
y j"

#$
%
&'

"
#$

%
&'

 = E OAtky j() Oy j()
T"

#$
%
&'

 =OAtE y j y j()
T"

#$
%
&'O

T

 =OAtZOT

Treat	 each	 xj	 	 and	 yj	 	
as	 indicator	 vector	

h\p://www.cs.cmu.edu/~ggordon/spectral-‐learning/	

Spectral	 Learning	 of	 HMMs	

Σt	 O	

At	 Z	 OT	

=	

h\p://www.cs.cmu.edu/~ggordon/spectral-‐learning/	

A =UT ∑2 UT ∑1()
−1

OpNmal	 SoluNon:	

(requires	 a	 lot	 of	 data)	

Rank-‐K	 SVD	 of	 Σ1	 	 	

…and	 many	 more	 topics!	

•  ProbabilisFc	 Models	 &	 Bayesian	 Reasoning	
•  RepresentaFon	 Learning	

–  Deep	 learning	 is	 the	 most	 visible	 example	

•  Causal	 Reasoning	
•  ML	 +	 Game	 Theory	
•  ML	 +	 Systems	

–  Large	 Scale	 Machine	 Learning	

•  Etc	 …	

CS	 159	

•  Special	 Topics	 in	 Machine	 Learning	
–  Taught	 Every	 Spring	 Term	
–  Topics	 Rotate	

•  Next	 Term:	 	
–  “Structured	 PredicFon”	

•  Paper	 Reading	 &	 PresenFng	 +	 Final	 Project	
–  Graded	 on	 parFcipaFon	 and	 final	 project	

Taehwan	 Kim	

