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What	  We	  Covered	  



Linear	  Models	  

Non-‐Linear	  Models	  

OverfiDng	   Loss	  FuncFons	  

Learning	  Algorithms	  	  
&	  OpFmizaFon	  

Supervised	  Learning	  

Unsupervised	  Learning	  

ProbabilisFc	  Modeling	  

Topic	  Overview	  



Basic	  Supervised	  Learning	  

•  Training	  Data:	  

•  Model	  Class:	  

•  Loss	  FuncFon:	  

•  Learning	  ObjecFve:	  	  

S = (xi, yi ){ }i=1
N

f (x |w,b) = wT x − b

L(a,b) = (a− b)2

Linear	  Models	  

Squared	  Loss	  

x ∈ RD

y ∈ −1,+1{ }

argmin
w,b

L yi, f (xi |w,b)( )
i=1

N

∑

OpFmizaFon	  Problem	  



Basic	  Unsupervised	  Learning	  

=	  X’	   U’	  

V’T	  



Deep	  Learning	  

Lecture'16:'Deep'Learning' 40'

h4p://www.image9net.org/'

Input'
Image'Input'
Image'Input'
Image'

h4p://www.cs.toronto.edu/~fritz/absps/imagenet.pdf'
h4p://Bp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf'

96'
filters'

RGB'Input'Image'
224'x'224'x'3'

7x7x3'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
55'x'55'x'96'

256'
filters'

5x5x96'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'4x'
13'x'13'x'256'

354'
filters'

3x3x256'ConvoluRon'
13'x'13'x'354'

354'
filters'

3x3x354'ConvoluRon'
13'x'13'x'354'

256'
filters'

3x3x354'ConvoluRon'
3x3'Max'Pooling'
Down'Sample'2x'

6'x'6'x'256'

Standard'
4096'Units'

Standard'
4096'Units'

LogisRc'
Regression'

≈1000'Classes'



Sequence	  PredicFon	  

Y1	  

X1	  

Y2	  

X2	  

YM	  

XM	  

…	  

…	  

Y0	   YEnd	  



Simple	  OpFmizaFon	  Algorithms	  

•  StochasFc	  Gradient	  Descent	  

•  EM	  algorithm	  (for	  HMMs)	  



Other	  Basic	  Concepts	  	  

•  Cross	  ValidaFon	  

•  OverfiDng	  

•  Bias-‐Variance	  Tradeoff	  



Learning	  Theory	  	  



GeneralizaFon	  Bounds	  

•  Formal	  characterizaFon	  of	  overfiDng	  

•  Example	  result:	  

Eout (h) ≤ Ein (h)+O
log(1 /δ)

N
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&
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Trained	  Model	   Training	  Size	  

Training	  Error	  Test	  Error	  
With	  Prob.	  ≥	  1-‐δ	  :	  

Make	  rigorous!	  



Sha\ering	  

•  DefiniNon:	  A	  set	  of	  points	  is	  shaOered	  by	  H	  if	  
for	  all	  possible	  binary	  labelings	  of	  points,	  
there	  exists	  some	  h	  that	  classifies	  perfectly.	  

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings

In 2D, 3 points can always be shattered by linear separators
.. no matter how they are positioned

Now how about 4 points in 2D?

For some labelings of 4 points in 2D, a linear separator doesn’t exist

The hypothesis class of linear separator can shatter maximum 3 points in 2D

(CS5350/6350) Learning Theory September 27, 2011 9 / 14

Slide	  Material	  Borrowed	  From	  Piyush	  Rai:	  	  
h\ps://www.cs.utah.edu/~piyush/teaching/27-‐9-‐print.pdf	  

In	  2D,	  any	  3	  points	  can	  always	  be	  shaOered	  by	  linear	  models!	  



Sha\ering	  
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In	  2D,	  linear	  models	  cannot	  shaOer	  4	  points!	  

Shattering

Definition: A set of points is shattered by a hypothesis class H if for all
possible binary labelings of the points, there exists some h ∈ H that can
represent the corresponding labeling function

Consider 3 points (in any positions) in 2D and some possible labelings
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.. no matter how they are positioned

Now how about 4 points in 2D?
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VC	  Dimension	  

•  VC(H)	  =	  most	  #	  points	  that	  can	  be	  sha\ered	  
–  If	  H	  is	  linear	  models	  in	  2D	  feature	  space:	  

•  VC(H)	  =	  3	  

Eout (h) ≤ Ein (h)+O
VC(H )log 2N
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With	  Prob.	  ≥	  1-‐δ	  :	  



Structured	  PredicFon	  

Topic	  of	  CS159	  



•  Part-‐of-‐Speech	  Tagging	  
–  Given	  a	  sequence	  of	  words	  x,	  predict	  sequence	  of	  tags	  y.	  

–  Dependencies	  from	  tag-‐tag	  transiFons	  in	  Markov	  model.	  

	  

à	  Similarly	  for	  other	  sequence	  labeling	  problems,	  e.g.,	  RNA	  Intron/
Exon	  Tagging.	  

The rain wet the cat x Det N V Det N 
y 

Examples of Complex Output Spaces 



Examples of Complex Output Spaces 

•  Natural Language Parsing 
–  Given a sequence of words x, predict the parse tree y. 
–  Dependencies from structural constraints, since y has to be a 

tree. 

The dog chased the cat 
x 

S 

VP NP 

Det N V 

NP 

Det N 

y 



Examples of Complex Output Spaces 

•  Information Retrieval 
–  Given a query x, predict a ranking y. 
–  Dependencies between results (e.g. avoid redundant hits) 
–  Loss function over rankings (e.g. Average Precision) 

SVM 
x 1.  Kernel-Machines 

2.  SVM-Light 
3.  Learning with Kernels 
4.  SV Meppen Fan Club 
5.  Service Master & Co. 
6.  School of Volunteer Management 
7.  SV Mattersburg Online 
… 

y 



Conservation Reservoir 

Corridors 
Building outward from sources 

!"#$%&'()*'+,'-.%'

!"#$%&'/)*'+,'-.%'

!"#$0'

12+30'

4' 5'

stereo vision

✦ binocular fusion of features observed by 
the eyes

✦ reconstruction of their 3D preimage

left right perceived depth

[Tsukuba]
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the modeled compatibility between inputs x and classes y. 
To classify x, the prediction rule h(x) then simply chooses the 
highest-scoring class

 h(x)  argmax  f (x, y) (1)
y  Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have 
been chosen such that the inequalities f (x, y–) < f (x, y) hold for 
all incorrect outputs y–  y.

For a given training sample (x1, y1), …, (xn, yn), this leads 
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n 
1_
2

 w 2, s.t.  f (xi, yi) f (xi, y
–) ≥ 1  ( i, y–  yi) (2)

For a k-class problem, the optimization problem has a 
total of n(k − 1) inequalities that are all linear in w, since one 
can expand f (xi, yi) f (xi, y

–) = (wyi 

 wy–) (xi). Hence, it is a 
convex quadratic program.

The first challenge in using (2) for structured outputs is 
that, while there is generalization across inputs x, there is 
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since 
the number of possible outputs can become very large (or 
infinite), naively reducing structured output prediction to 
multiclass classification leads to an undesirable blowup in 
the overall number of parameters.

The key idea in overcoming these problems is to extract 
features from input–output pairs using a so-called joint fea-
ture map (x, y) instead of (x). This yields compatibility 
functions with contributions from combined properties of 
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even 
for outputs that were never actually observed in the training 
data. At the same time, since we will define compatibility 
functions via f (x, y)  w (x, y), the number of parameters 
will simply equal the number of features extracted via , 
which may not depend on Y . One can then use the formu-
lation in (2) with the more flexible definition of f via  to 
arrive at the following (hard-margin) optimization problem 
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just 
one parameter for each class, we would already have more 
parameters than we could ever hope to have enough training 
data for. Second, just making a single prediction on a new 
example is a computationally challenging problem, since 
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that 
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least, 
we need efficient training algorithms that have a run-time 
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by 
one, starting with the formulation of the structural SVM 
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural 
SVM from the multiclass SVM.6 These multiclass SVMs use 
one weight vector wy for each class y. Each input x now has 
a score for each class y via f (x, y)  wy (x). Here  (x) is a 
vector of binary or numeric features extracted from x. Thus, 
every feature will have an additively weighted influence in 

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of 
 proteins (middle), and predicting an equivalence relation over noun phrases (right).
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General Formula  
(Linear Models) 

•  Assume scoring function F 
 
 
•  Assume F is linear: 
 

h(x;w) = argmax
y∈Y (x)

F(x, y;w)

F(x, y;w) = wTΨ(x, y)



Example	  1	  

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Ψ(x, y) = yxBinary	  ClassificaNon:	  
Y (x) = −1,+1{ }

F(x, y;w) = y(wTx)

h(x;w) = argmax
y∈ −1,+1{ }

y wTx( )



Examples	  

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

1st	  Order	  Sequences:	   Ψ(x, y) = φ(y j, y j−1 | x)
j
∑

Y (x) = all	  possible	  output	  sequences	  

F(x, y;w) = wT φ(y j, y j−1 | x)
j
∑

Solve	  using	  Viterbi!	  



Examples	  

h(x;w) = argmax
y∈Y (x)

F(x, y;w) F(x, y;w) = wTΨ(x, y)

Integer	  Linear	  Program:	   Ψ(x, y) = y jφ j x( )
j
∑

Y (x) = Feasible	  seDngs	  of	  y	  

F(x, y;w) = yTc c =
wTφ1(x)
wTφ 2 (x)
!

!

"

#
#
#
#

$

%

&
&
&
&

h(x;w) = argmax
y∈Y (x)

yTc

Each	  yj	  	  	  	  	  {0,1}	  ∈



Structured Prediction Learning Problem 

•  Efficient Inference/Prediction  

–  Viterbi in sequence labeling 
–  CKY Parser for parse trees 
–  Sorting for ranking 

•  Efficient Learning/Training   
–  Learn parameters w from training data {xi,yi}i=1..N  

–  Structural SVM: Hinge Loss Minimization 
–  Conditional Random Fields: Log Loss Minimization 
–  Structured Perceptron, etc… 

h(x;w) = argmax
y

wTΨ(y,x)



Perceptron	  Learning	  Algorithm	  

•  w1	  =	  0,	  b1	  =	  0	  
•  For	  t	  =	  1	  ….	  

– Receive	  example	  (x,y)	  
–  If	  h(x|wt)	  =	  y	  

•  [wt+1,	  bt+1]	  =	  [wt,	  bt]	  
– Else	  

• wt+1=	  wt	  +	  yx	  
• bt+1	  =	  bt	  +	  y	  

S = (xi, yi ){ }i=1
N

y ∈ +1,−1{ }

Training	  Set:	  

Go	  through	  training	  set	  	  
in	  arbitrary	  order	  
(e.g.,	  randomly)	  

h(x |w) = sign(wT x − b)



Structured	  Perceptron	  

•  w1	  =	  0	  
•  For	  t	  =	  1	  ….	  

– Receive	  example	  (x,y)	  
–  If	  h(x|wt)	  =	  y	  

• wt+1	  =	  wt	  
– Else	  

• wt+1=	  wt	  +	  Ψ(x,y)	  

S = (xi, yi ){ }i=1
N

Training	  Set:	  

Go	  through	  training	  set	  	  
in	  arbitrary	  order	  
(e.g.,	  randomly)	  

h(x |w) = argmax
y '

wTΨ(x, y ')



Conventional SVMs 
•  Input: x (high dimensional point) 
•  Target: y (either +1 or -1) 
•  Prediction: sign(wTx) 
 
 

•  Training:  

 

  subject to: 
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Structural SVM 
•  Let x denote a structured input (sentence) 
•  Let y denote a structured output (POS tags) 

•  Standard objective function: 

•  Constraints are defined for each incorrect labeling y’ 
over each x. 
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Score(y(i))	   Score(y’)	   Loss(y’)	   Slack	  

h\p://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html	  	  



Interpreting Constraints 
 
 
 
 
 
 
 

 
Suppose for incorrect y’: 

 
Then: 
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Sample	  Research	  QuesFons	  

•  Scale	  
– PredicFng	  over	  millions	  of	  variables	  

•  Structured	  RepresentaFon	  Learning	  
– Deep	  learning	  for	  structured	  outputs?	  

•  Cost	  of	  labeling	  



Crowdsourcing	  



Acquiring	  Labels	  from	  Annotators	  Figure 5: Showing the questionnaire given to users after they
completed the clustering task.

Figure 6: Showing the tagging task for generating the second
feature representation described in Section 4.1.2.

Paris. Figure 5 shows our closing questionnaire. Since our goal is
to collect high-quality usage data from engaged users, we discarded
any results if the user reported that the instructions were unclear or
that the clusterings were useless. Overall, we retained approximately
80% of the user-generated clusterings for a total of 218.

5.2 Feature Tagging
We developed a tagging task to construct the second feature rep-

resentation described in Section 4.1.2. Figure 6 shows our tagging
interface. For each of the 250 attractions, we asked five human
annotators to select which of 39 pre-specified tags (shown in Figure
6) should be associated with that attraction. Annotators were asked
to select all tags that apply. We considered allowing users to spec-
ify their own tags, but that setup would dramatically increase the
complexity of the data processing due to matching tags with similar
meanings or spelling deviations.

We used this tagging data to construct a 39-dimensional binary
feature representation of the 250 attractions (with each dimension
corresponding to a tag). For each attraction, any tag that was se-
lected by at least 3/5 annotators received a positive value in the
corresponding binary feature, or otherwise a zero value.

6. RELATED WORK
Our work is motivated by recent advancements in the HCI com-

munity studying how to incorporate machine learning with rich user

interactions. In particular, we focused on learning from clustering
interactions [9, 2, 5]. In contrast to previous work, we aim to de-
velop a systematic approach to model the variability of similarity
functions contained within a user population.

The modeling approach most similar to LCC is Bayesian “crowd-
clustering” [13]. One key difference is that [13] assumes there is a
global (or consensus) set of atomic clusters (which different users
may merge into varying higher-level clusters). As such, [13] focuses
on recovering these atomic clusters from many higher-level partial
clusterings. In contrast, we focus on more subjective user tasks,
which are unlikely to yield agreed-upon atomic clusterings (e.g.,
organizing attractions in Paris based on personal interests).

Another related modeling approach is Bayesian clustered tensor
factorization (BCTF) [27]. One key difference is that, for BCTF,
pairwise relationships are not modeled symmetrically, which results
in non-metric per-task transform matrices. In contrast, our collab-
orative clustering problem is naturally modeled using symmetric
pairwise interactions that can be personalized to individual users
using a metric transform.

The actual term “collaborative clustering” is not new, and has
been used to refer to other clustering problems. For instance [14]
studied the problem where the input data is distributed across many
machines, and the machines must “collaborate” to arrive at a con-
sensus clustering. Another example is [12], who studied how to
combine ensembles of clusterings to make more robust predictions.
In contrast, we use the term as an analogue to collaborative filter-
ing. Another related work is [19], which uses latent representations
to predict multiple non-redundant clusterings (for one task). In
contrast, we focus on learning latent representations to capture the
clustering variability of a user population.

6.1 Connection to Tensor Factorization
Our approach (6) can be viewed as a tensor factorization problem

with missing values [1]. We can represent our training data Y (1) as
a 3-tensor Y ,

Y
mij

=

⇢

y
mij

if (i, j) 2 ¯Y
m

? otherwise , (17)

where ? denotes a missing value (i.e., user m did not cluster item i
and/or item j).

Analogous to low-rank matrix (2-tensor) factorization approaches
for collaborative filtering, our problem can be viewed as finding a
low-rank 3-tensor factorization for collaborative clustering that has
minimal reconstruction error on Y . In particular, our model can be
viewed as a restricted form of the PARAFAC decomposition [1]:

Y
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⇡
D

X

d=1

�
d

u
md

x
id

x
jd

+ b,

where each x
i

and u
m

are unit vectors, and �
d

are positive weights.
Each x

i

corresponds to an item representation, and each u
m

corre-
sponds to the diagonal of a user transform U

m

. In our model, rather
than constraining x

i

and u
m

to be unit vectors and controlling for
magnitude via �, we instead control the magnitudes of x

i

and u
m

(or U
m

) via regularization penalties R
x

and R
u

.11 We also enforce
u
m

� 0 to enforce each user model to be a metric transform.

6.2 Connection to Metric Learning
The problem of estimating user transforms U

m

and V
m

is related
to (multi-task) metric learning problems under pairwise constraints

11The relationship between our latent factor model and the
PARAFAC decomposition is analogous to that of bi-Gaussian latent
factor models and the SVD in collaborative filtering [26, 22].



How	  Reliable	  are	  Annotators?	  

•  If	  we	  knew	  what	  the	  labels	  were	  
– Can	  judge	  workers	  on	  label	  quality	  

•  If	  we	  knew	  who	  the	  good	  workers	  were	  
– Can	  create	  labels	  from	  their	  annotaFons	  

•  Chicken	  and	  egg	  problem!	  



Worker	  Reliability	  as	  Latent	  Variable	  

•  Let	  zm	  denote	  the	  reliability	  of	  worker	  m	  

yi =
1
zm

m
∑

yimzm
m
∑

EsNmated	  label	  

zm =
1
N

L(yi, yim )
i
∑



Differing	  AmbiguiFes	  Across	  Tasks	  

•  Oven	  collecFng	  annotaFons	  for	  many	  tasks	  

•  Some	  tasks	  are	  harder	  than	  others	  

•  How	  many	  labels	  to	  collect	  for	  each	  task?	  



Structured	  AnnotaFons	  

h\p://arxiv.org/pdf/1506.02106v4.pdf	  

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
ic

)/
P

N

k=1 exp(sik) be the softmax probability
of class c at pixel i. Given a ground truth map G indicating
that pixel i belongs to class G

i

, the loss on a single training
image is:

L
pix

(S,G) = �
X

i2I
log(S

iGi) (1)

The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:

L
img

(S,L, L0
) = � 1

|L|
X

c2L

log(S
tcc)�

1

|L0|
X

c2L

0

log(1�S
tcc)

with t
c

= argmax

i2I
S
ic

(2)

The first part of Eqn. (2), corresponding to c 2 L, is used
in [28]. It encourages each class in L to have high proba-
bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I

s

, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:

L
point

(S,G,L, L0
) = L

img

(S,L, L0
)�

X

i2Is

↵
i

log(S
iGi) (3)

Here, ↵
i

determines the relative importance of each super-
vised pixel. We experiment with several formulations for
↵
i

. (1), for each class we ask the user to either determine
that the class is not present in the image or to point to one
object instance. In this case, |I

s

| = |L| and ↵
i

is uniform
for every point; (2), we ask multiple annotators to do the
same task as (1), and we set ↵

i

to be the confidence of the
accuracy of the annotator that provided the point; (3), we
ask the annotator(s) to point to every instance of the classes
in the image, and ↵

i

corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵

i

.

Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Original image FCN Segmentation

Levels of supervision

Full
supervision

Image-level
supervision

Point-level
supervision

Objectness
prior

Figure 2: (a) Overview of our semantic segmentation train-
ing framework. (b) Different levels of training supervision
for semantic segmentation models. For full supervision, the
class label of every pixel is provided. For image-level su-
pervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class
label is only associated with one or a few pixel(s), corre-
sponding to humans pointing to objects of that class. We in-
clude an objectness prior in our training loss function along-
side point-level supervision to accurately infer the object
extent.

trained by optimizing the sum of per-pixel cross-entropy
terms [5, 22]. Let I be the set of pixels in the image.
Let s

ic

be the CNN score for pixel i and class c. Let
S
ic

= exp(s
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The loss is simply zero for pixels where the ground truth
label is not defined (for example, in the case of pixels de-
fined as “difficult” on the boundary of objects in PASCAL
VOC [8]).

Image-level supervision. In this case, the only informa-
tion available during training are the sets L ✓ {1, . . . N} of
classes present in the image and L0 ✓ {1, . . . N} of classes
not present in the image (Fig. 2). The CNN model can be
trained with a different cross-entropy loss:
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bility on at least one pixel in the image. We extend this loss

to include the second summation over c 2 L0. This corre-
sponds to the fact that no pixels should have high probabil-
ity for classes that are not present in the image. We found
this simple extension to be very effective in practice.

Point-level supervision. We study the intermediate case
where the object classes are known for a small set of super-
vised pixels I
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, whereas other pixels are just known to be-
long to some class in L. In this case, we generalize Eqn. (1)
and Eqn. (2) to:
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ask the annotator(s) to point to every instance of the classes
in the image, and ↵
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corresponds to the order of the points:
the first point is more likely to correspond to the largest ob-
ject instance and thus deserves a higher weight ↵
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Objectness prior. One issue with training models with
very few or no supervised pixels is correctly inferring the
spatial extent of the objects. In general, weakly supervised
methods are prone to local minima: they focus on only a
small part of the target object, or predict all pixels as belong-
ing to the background class [28]. To alleviate this problem,
we introduce an additional term in our training objective
based on an objectness prior (Fig. 2). Objectness provides
a probability for whether each pixel belongs to any object
class [2] (e.g., bird, car, sheep), as opposed to background
(e.g., sky, water, grass). These probabilities have been pre-
viously used in the weakly supervised semantic segmenta-
tion before as unary potentials in graphical models [37] or
during inference following a CNN segmentation [29]. To
the best of our knowledge, we are the first to incorporate
them directly into CNN training.

We calculate the per-pixel objectness prior by assign-
ing each pixel the average objectness score of all windows
containing it. These scores are obtained by using the pre-
trained objectness model from the released code of [2].
The objectness model is pre-trained on 50 images randomly
sampled from a variety of different datasets (e.g., INRIA
Person, Caltech 101) that do not overlap with PASCAL
VOC 2007-2012.

Let P
i

be the probability that pixel i belongs to an object.
Let O be the classes corresponding to objects, with the other
classes corresponding to backgrounds. In PASCAL VOC,
O are the 20 object classes, and there is a single generic

Figure 4: Example squiggles collected.

compare this supervision setting to human points, we need
to collect both actual human squiggles and annotation times.
We extend the user interface shown in Fig. 3 by asking an-
notators to draw one squiggle on the extent of the target
class. Fig. 4 shows some collected data.

Error rates. Workers incorrectly labeled an object class
as absent only 0.11% of the time. 6.3% of the clicks were
on the wrong object class, and an additional 1.4% were on
“difficult” pixels.

Annotation times. As before, it takes 18.5 seconds to an-
notate the classes not present in the image. For every class
that is present, it takes 10.9 seconds to draw a free-form
squiggle on the target class. Therefore, the labeling cost of
the squiggles task is 18.5 + 1.5 ⇥ 10.9 = 34.9 seconds
per image. This is 1.58⇥ more expensive than obtaining
1Point point-level supervision and 1.75⇥ more expensive
than image-level labels.

Box-level supervision. A common intermediate between
image-level labels and pixel-wise segmentations is to obtain
bounding box annotations around each object instance. We
use the bounding boxes provided with the PASCAL VOC
dataset, and estimate the annotation times from literature.

Timing greatly depends on the setup. [18] reports 7 sec-
onds to draw a bounding box. However, they do not exam-
ine their quality, and carry out their study on rather easy
datasets with mainly large centered objects (MSRC, IIS,
iCoSeg). [32] reports 10.2 seconds with high AMT er-
ror rates. [36] reports 25.5 seconds for drawing and 42.4
seconds with quality verification. The protocol of [36]
has been used for producing the official annotations of the
ILSVRC [31], which is currently the most popular dataset
for object class detection and is of comparable difficulty to
PASCAL VOC. Its bounding boxes are high quality and pre-
cisely match the object extent. Hence, in this paper we as-
sume it takes 26 seconds to draw a precise bounding box
without quality verification. On average, there are a total of
2.8 instances per image over all classes. Therefore, anno-
tating them takes 18.5 + 2.8⇥ 26 = 91.3 seconds. This is
4.1⇥ more expensive than point-level supervision.

Full supervision. For segmentation annotation, the au-
thors of the COCO dataset report 22 worker hours per 1000
segmentations, so 79 seconds per segmentation [21]. Thus
to segment all instances it takes 18.5 + 2.8 ⇥ 79 = 239.7
seconds, more than 10⇥ the cost of point supervision.

In Section 5 we compare the accuracy of the models
trained with different levels of supervision.

5. Experiments

We empirically demonstrate the effectiveness of our
point-level supervision and objectness prior.

5.1. Setup

CNN architecture. We use the state-of-the-art fully con-
volutional network model as in [22]. Briefly, the architec-
ture is based on the VGG 16-layer net [34], with all fully
connected layers converted to convolutional layers. The last
classifier layer is discarded and replaced with a 1x1 convo-
lution layer with channel dimension N = 21 equal to the
number of object classes. The final modification is the ad-
dition of a deconvolution layer to bilinearly upsample the
output to pixel-level dense predictions.2

CNN training. We train following a procedure similar
to [22]. We use stochastic gradient descent with a fixed
learning rate of 10

�5, doubling the learning rate for bi-
ases, and with a minibatch of 20 images, momentum of 0.9
and weight decay 0.0005. The network is initialized with
weights pre-trained for a 1000-way classification task of the
ILSVRC 2012 dataset [34, 31, 22].3 In the fully supervised
case, we zero-initialize the classifier weights [22], and for
all the weakly supervised cases we follow [28] to initialize
them with weights learned by the original VGG network for
classes common to both PASCAL and ILSVRC. We back-
propagate through all layers to fine-tune the network, and
train for 50,000 iterations. We build directly upon the pub-
licly available implementation of [22, 19].

Dataset. We train and evaluate on the PASCAL VOC
2012 segmentation dataset [8] augmented with extra anno-
tations from [14]. There are 10,582 training images, 1,449
validation images and 1,456 test images. We report the
mean intersection over union (mIOU), averaged over 21
classes. Table 5a gives the performances of our models on
the validation set of PASCAL VOC 2012.

5.2. Point-level supervision

Baseline. We begin by establishing a baseline segmenta-
tion model trained from image-level labels with no addi-
tional information. We base our model on [28], which trains
a similar fully convolutional network and obtains 25.1%

2[22] introduces additional refinement by decreasing the stride of the
output layers from 32 pixels to 8 pixels, which improves their results from
59.7% to 62.7% mIOU on the PASCAL VOC 2011 validation set. We use
the original model with stride of 32 for simplicity.

3This is standard in the literature [5, 22, 28, 26, 29, 11]. We do not
consider the cost of collecting those annotations; including them would
not change our overall conclusions.
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Comparison	  with	  Passive	  Learning	  

•  ConvenFonal	  Supervised	  Learning	  is	  considered	  
“Passive”	  Learning	  

•  Unlabeled	  training	  set	  sampled	  according	  to	  test	  
distribuFon	  

•  So	  we	  label	  it	  at	  random	  	  
–  Very	  Expensive!	  



Simple	  Example	  

•  1	  feature	  
•  Learn	  threshold	  funcFon	  

True	  Model	  
Passive	  Learning	  
Sample	  from	  distribuFon	  

Learned	  Model	  



Simple	  Example	  

•  1	  feature	  
•  Learn	  threshold	  funcFon	  

True	  Model	  
AcNve	  Learning	  
Binary	  Search	  



Comparison	  with	  Passive	  Learning	  

•  #	  samples	  to	  be	  within	  ε	  of	  true	  model	  

•  Passive	  Learning:	  

•  AcFve	  Learning:	  
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Ac#ve&Learning&
Binary'Search'



MulF-‐Armed	  Bandits	  



Problems	  with	  Crowdsourcing	  

•  Assumes	  you	  can	  label	  by	  proxy	  
– E.g.,	  have	  someone	  else	  label	  objects	  in	  images	  

•  But	  someFmes	  you	  can’t!	  
– Personalized	  recommender	  systems	  

•  Need	  to	  ask	  the	  user	  whether	  content	  is	  interesFng	  
– Personalized	  medicine	  

•  Need	  to	  try	  treatment	  on	  paFent	  

– Requires	  actual	  target	  domain	  



Personalized	  Labels	  

	  	  	  	  	  	  	  	  	  	  Sports	  
Unlabeled	  

Labeled	  
IniFally	  Empty	  

Choose	  

Repeat	  

What	  is	  Cost?	  
Real	  System	  

End	  User	  



Formal	  DefiniFon	  
•  K	  acFons/classes	  
•  Each	  acFon	  has	  an	  average	  reward:	  μk	  

–  Unknown	  to	  us	  
–  Assume	  WLOG	  that	  u1	  is	  largest	  

•  For	  t	  =	  1…T	  
–  Algorithm	  chooses	  acFon	  a(t)	  
–  Receives	  random	  reward	  y(t)	  

•  ExpectaFon	  μa(t)	  
	  

•  Goal:	  minimize	  Tu1	  –	  (μa(1)	  +	  μa(2)	  +	  …	  +	  μa(T))	  

Basic	  SeDng	  
K	  classes	  
No	  features	  

Algorithm	  Simultaneously	  
Predicts	  &	  Receives	  Labels	  

If	  we	  had	  perfect	  informaFon	  to	  start	   Expected	  Reward	  of	  Algorithm	  



	  	  	  	  	  	  	  	  	  	  Sports	  

-- -- -- -- -- 

0 0 0 1 0 # Shown 

Average Likes : 0 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  



-- -- -- 0 -- 

0 0 0 1 0 # Shown 

Average Likes : 0 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  	  	  	  Sports	  



-- -- -- 0 -- 

0 0 1 1 0 # Shown 

Average Likes : 0 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  	  	  PoliFcs	  



-- -- 1 0 -- 

0 0 1 1 0 # Shown 

Average Likes : 1 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  	  	  PoliFcs	  



-- -- 1 0 -- 

0 0 1 1 1 # Shown 

Average Likes : 1 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  	  	  	  	  World	  



-- -- 1 0 0 

0 0 1 1 1 # Shown 

Average Likes : 1 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  	  	  	  	  World	  



-- -- 1 0 0 

0 1 1 1 1 # Shown 

Average Likes : 1 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  Economy	  



-- 1 1 0 0 

0 1 1 1 1 # Shown 

Average Likes : 2 

InteracFve	  PersonalizaFon	  
(5	  Classes,	  No	  features)	  

	  	  	  	  	  	  	  Economy	   …	  



-- 0.44 0.4 0.33 0.2 

0 25 10 15 20 # Shown 

Average Likes : 24 

What	  should	  Algorithm	  Recommend?	  

Exploit:  Explore: Best: 

	  	  	  	  	  	  	  	  	  PoliFcs	  	  	  	  	  	  	  	  Economy	   	  	  	  	  	  	  	  	  Celebrity	  

How	  to	  OpNmally	  Balance	  Explore/Exploit	  Tradeoff?	  
Characterized	  by	  the	  MulF-‐Armed	  Bandit	  Problem	  	  



(    ) 

R(T ) =      OPT( )−      ALG( )

•  Opportunity cost of not knowing preferences 
•   “no-regret”  if R(T)/T è 0 

–  Efficiency measured by convergence rate 

Regret: 

Time Horizon 

(OPT ) = + (    ) + (    ) … 

(ALG) = (    ) (    ) (    ) ++ … 



Recap:	  The	  MulF-‐Armed	  Bandit	  Problem	  

•  K	  acFons/classes	  
•  Each	  acFon	  has	  an	  average	  reward:	  μk	  

–  All	  unknown	  to	  us	  
–  Assume	  WLOG	  that	  u1	  is	  largest	  

•  For	  t	  =	  1…T	  
–  Algorithm	  chooses	  acFon	  a(t)	  
–  Receives	  random	  reward	  y(t)	  

•  ExpectaFon	  μa(t)	  

•  Goal:	  minimize	  Tu1	  –	  (μa(1)	  +	  μa(2)	  +	  …	  +	  μa(T))	  

Basic	  SeDng	  
K	  classes	  
No	  features	  

Algorithm	  Simultaneously	  
Predicts	  &	  Receives	  Labels	  

Regret	  



The	  MoFvaFng	  Problem	  

•  Slot	  Machine	  =	  One-‐Armed	  Bandit	  
	  

	  

•  Goal:	  Minimize	  regret	  From	  pulling	  subopFmal	  arms	  
h\p://en.wikipedia.org/wiki/MulF-‐armed_bandit	  

Each	  Arm	  Has	  	  
Different	  Payoff	  



ImplicaFons	  of	  Regret	  

•  If	  R(T)	  grows	  linearly	  w.r.t.	  T:	  
–  Then	  R(T)/T	  è	  constant	  >	  0	  
–  I.e.,	  we	  converge	  to	  predicFng	  something	  subopFmal	  

•  If	  R(T)	  is	  sub-‐linear	  w.r.t.	  T:	  
–  Then	  R(T)/T	  è	  0	  
–  I.e.,	  we	  converge	  to	  predicFng	  the	  opFmal	  acFon	  

R(T ) =      OPT( )−      ALG( )Regret: 



Experimental	  Design	  

•  How	  to	  split	  trials	  to	  collect	  informaFon	  
•  StaNc	  Experimental	  Design	  	  

–  Standard	  pracFce	  
–  (pre-‐planned)	  

h\p://en.wikipedia.org/wiki/Design_of_experiments	  

Treatment	   Placebo	   Treatment	   Placebo	   Treatment	  

…	  



SequenFal	  Experimental	  Design	  

•  Adapt	  experiments	  based	  on	  outcomes	  

Treatment	   Placebo	   Treatment	   Treatment	  

…	  
Treatment	  



SequenFal	  Experimental	  Design	  Ma\ers	  

h\p://www.nyFmes.com/2010/09/19/health/research/19trial.html	  



SequenFal	  Experimental	  Design	  
•  MAB	  models	  sequenFal	  experimental	  design!	  

•  Each	  treatment	  has	  hidden	  expected	  value	  
– Need	  to	  run	  trials	  to	  gather	  informaFon	  
–  “ExploraFon”	  

•  In	  hindsight,	  should	  always	  have	  used	  treatment	  
with	  highest	  expected	  value	  

•  Regret	  =	  opportunity	  cost	  of	  exploraNon	  

basic	  



Online	  AdverFsing	  

Largest	  Use-‐Case	  
of	  MulF-‐Armed	  
Bandit	  Problems	  



Reinforcement	  Learning	  



AcFons	  Impact	  State	  

•  In	  MAB:	  
– AcFons	  do	  not	  impact	  state	  
– Constant	  reward	  funcFon	  

•  Reinforcement	  Learning	  
– AcFons	  effect	  state	  you’re	  in	  
– Reward	  funcFon	  depends	  on	  state	  



Video	  Demo	  
(Deep	  Reinforcement	  Learning	  for	  Atari)	  

h\ps://www.youtube.com/watch?v=iqXKQf2BOSE	  	  



What	  is	  State?	  

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

h\p://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf	  

Reward	  of	  each	  acNon	  varies	  depending	  on	  state!	  
	  
AcNon	  at	  current	  state	  impacts	  future	  states!	  
	  
Much	  harder	  to	  do	  exploraNon!	  



Non-‐Convex	  OpFmizaFon	  

Anima	  	  
Anandkumar	  



Recall:	  Hidden	  Markov	  Models	  

Y1	  

X1	  

Y2	  

X2	  

YM	  

XM	  

…	  

…	  

P x, y( ) = P(End | yM ) P(yi | yi−1)
i=1

M

∏ P(xi | yi )
i=1

M

∏

OpFonal	  

Y0	   YEnd	  



Recall:	  EM	  Algorithm	  for	  HMMs	  

•  If	  we	  had	  y’s	  è	  max	  likelihood.	  
•  If	  we	  had	  (A,O)	  è	  predict	  y’s	  
	  

1.  IniFalize	  A	  and	  O	  arbitrarily	  

2.  Predict 	  prob.	  of	  y’s	  for	  each	  training	  x	  

3.  Use	  y’s	  to	  esFmate	  new	  (A,O)	  

4.  Repeat	  back	  to	  Step	  1	  unFl	  convergence	  

h\p://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	  

ExpectaNon	  Step	  

MaximizaNon	  Step	  

Chicken	  vs	  Egg!	  



Recall:	  EM	  Algorithm	  for	  HMMs	  

•  If	  we	  had	  y’s	  è	  max	  likelihood.	  
•  If	  we	  had	  (A,O)	  è	  predict	  y’s	  
	  

1.  IniFalize	  A	  and	  O	  arbitrarily	  

2.  Predict 	  prob.	  of	  y’s	  for	  each	  training	  x	  

3.  Use	  y’s	  to	  esFmate	  new	  (A,O)	  

4.  Repeat	  back	  to	  Step	  1	  unFl	  convergence	  

h\p://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm	  

ExpectaNon	  Step	  

MaximizaNon	  Step	  

Chicken	  vs	  Egg!	  

Non-‐Convex	  OpNmizaNon	  Problem!	  
Converges	  to	  local	  opFmum.	  

Can	  We	  Train	  HMMs	  OpNmally?	  



InspiraFon	  from	  Dimensionality	  ReducFon	  

•  Find	  best	  rank	  K	  approximaFon	  to	  Y:	  

•  Non-‐convex	  opFmizaFon	  problem!	  
– Due	  to	  non-‐convex	  feasible	  region	  

•  But	  opNmally	  solved	  via	  SVD!	  

argmin
U∈RNxK ,V∈RMxK

Y −UVT

2

2



Spectral	  Learning	  of	  HMMs	  

P(y j | y j−1) = A P(x j | y j ) =OWant	  to	  	  
EsNmate:	  

∑t = E x j+t x j( )
T"

#$
%
&'= E E x j+t x j( )

T
y j"

#$
%
&'

"
#$

%
&'

                             = E E x j+t y j"
#

%
&E x j( )

T
y j"

#$
%
&'

"
#$

%
&'

                             = E OAtky j( ) Oy j( )
T"

#$
%
&'

                             =OAtE y j y j( )
T"

#$
%
&'O

T

                             =OAtZOT

Treat	  each	  xj	  	  and	  yj	  	  
as	  indicator	  vector	  

h\p://www.cs.cmu.edu/~ggordon/spectral-‐learning/	  



Spectral	  Learning	  of	  HMMs	  

Σt	   O	  

At	   Z	   OT	  

=	  

h\p://www.cs.cmu.edu/~ggordon/spectral-‐learning/	  

A =UT ∑2 UT ∑1( )
−1

OpNmal	  SoluNon:	  

(requires	  a	  lot	  of	  data)	  

Rank-‐K	  SVD	  of	  Σ1	  	  	  



…and	  many	  more	  topics!	  

•  ProbabilisFc	  Models	  &	  Bayesian	  Reasoning	  
•  RepresentaFon	  Learning	  

–  Deep	  learning	  is	  the	  most	  visible	  example	  

•  Causal	  Reasoning	  
•  ML	  +	  Game	  Theory	  
•  ML	  +	  Systems	  

–  Large	  Scale	  Machine	  Learning	  

•  Etc	  …	  



CS	  159	  

•  Special	  Topics	  in	  Machine	  Learning	  
–  Taught	  Every	  Spring	  Term	  
–  Topics	  Rotate	  

•  Next	  Term:	  	  
–  “Structured	  PredicFon”	  

•  Paper	  Reading	  &	  PresenFng	  +	  Final	  Project	  
–  Graded	  on	  parFcipaFon	  and	  final	  project	  

Taehwan	  Kim	  


