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Deep Generative Models



Recap: Generative Models

• Generative models vs. discriminative models
• Generative models: learn P(X,Y) close to Pgt(X,Y) 
 ➔ HMM, naive Bayes, latent Dirichlet allocation, …
• Discriminative models: directly learn P(Y|X)
 ➔ Neural networks, random forests, logistic regression, SVM, …

• Why generative models?
 ➔ Understanding data by generating them:
     What I cannot create, I do not understand. —Richard Feynman
 ➔ Underlying causal relationship.
 ➔ Better predictions for future situations.
 ➔ Deep generative models have shown great potentials.



Interactive Image Generation

Generative Visual Manipulation on the Natural Image Manifold 13

Image 1 Image 2

only shape, no color (outdoor natural dataset)

both shape and color (shoes dataset)

Image 1 Image 2

Fig. 7. Generative image transformation. In both rows, the source on the left is trans-
formed to have the shape and color (or just shape in the 2nd example) of the one on
the right.

User edits Generated images User edits Generated imagesUser edits Generated images

Church Natural OutdoorChurch

Query Nearest neighbor real photos Query Nearest neighbor real photos Query Nearest neighbor real photos

Fig. 8. Interactive image generation. The user uses the brush tools to generate an image
from scratch (top row) and then keeps adding more scribbles to refine the result (2nd
and 3rd rows). In the last row, we show the most similar real images to the generated
images. (dashed line for the sketch tool, and color scribble for the color brush)

Shoes Church Outdoor Outdoor Natural Handbags Shirts
Optimization-based 0.155 0.319 0.176 0.299 0.284
Network-based 0.210 0.338 0.198 0.302 0.265
Hybrid (ours) 0.140 0.250 0.145 0.242 0.184

Table 1. Average per-dataset image reconstruction error measured by L(x, xR).

(Zhu et al 2016)



Image To Image Translation

(Goodfellow 2016)

Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al 2016)
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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.
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Single Image Super-Resolution

(Ledig et al 2016)

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [15].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [47, 31, 4]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [41] or Yang et al. [59]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [3, 14].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [13] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 37].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [17, 16]. Related ap-
proaches to the SR problem originate in compressed sensing
[60, 11, 67]. In Glasner et al. [20] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [29], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [24] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [50] combine an edge-directed SR
algorithm based on a gradient profile prior [48] with the
benefits of learning-based detail synthesis. Zhang et al. [68]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [65] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [52, 53]. In Kim and Kwon
[33] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [26], trees [44] or Random Forests [45]. In Dai et al.
[5] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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Deep Generative Models

Explicit density Implicit density
Tractable Approximate Direct Markov Chain

Pixel RNN
Variational Markov Chain

GAN GSN
VAE RBM,DBM

• Restricted Boltzmann Machine (RBM) (Smolensky 1986)
• Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton 2009)
• Variational Autoencoder (VAE) (Kingma & Welling 2013)
• Generative Adversarial Networks (GAN) (Goodfellow et al 2014)
• Generative Stochastic Networks (GSN) (Bengio et al 2014)
• Pixel RNN (van den Oord et al 2016)

(adapted from Goodfellow’s slide)



Restricted Boltzmann MachinesRestricted	Boltzmann	Machines	

RBM	is	a	Markov	Random	Field	with:	

• 	Stochas,c	binary	hidden	variables																							
• 	Bipar,te	connec,ons.	

Pair-wise	 Unary	

• 	Stochas,c	binary	visible	variables																										

Markov	random	fields,	Boltzmann	machines,	log-linear	models.		

Image						visible	variables	

		hidden	variables	

• Undirected model, only bipartite connections between v and h.
• Given N i.i.d. training examples, we want to learn model parameter   

𝜽 = {W, b, c}.
• Training is done by maximizing log-likelihood:

• Partition function is intractable so use Markov chain methods.

Model	Learning	

Difficult	to	compute:	exponen,ally	many		
configura,ons	

Image						visible	units	

		Hidden	units	

Given	a	set	of	i.i.d.	training	examples		
	 	 	 														,	we	want	to	learn		

model	parameters 	 	 						.				

Maximize	log-likelihood	objec,ve:	

Deriva,ve	of	the	log-likelihood:	

(from R. Salakhutdinov’s slide)



Restricted Boltzmann Machines (cont.)

(from R. Salakhutdinov’s slide)

RBMs	for	Real-valued	Data	

=  0.9 *            +  0.8 *            + 0.6 *            … 
New	Image	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	



Deep Boltzmann Machines

Image	

Higher-level	features:	
Combina,on	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

Learn	simpler	representa,ons,	
then	compose	more	complex	ones	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)

(from R. Salakhutdinov’s slide)



Deep Boltzmann Machines (cont.)1996 R. Salakhutdinov and G. Hinton

BM3-layerBM2-layerBMFlatTraining samples

Figure 7: Random samples from the training set, and samples generated from
three Boltzmann machines by running the Gibbs sampler for 100,000 steps. The
images shown are the probabilities of the binary visible units given the binary
states of the hidden units.
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Figure 8: (Left) The architectures of two deep Boltzmann machines used in
MNIST experiments. (Right) The architecture of deep Boltzmann machine used
in NORB experiments.

probability for the two-layer Boltzmann machine.10 The estimate of the
variational bound was −83.35 per test case with an error estimate
(−83.21,−83.51). The estimate of the true test log probability was −82.86
with an error estimate (−82.68, 83.12). The difference of about 0.5 nats
shows that the bound is rather tight.

For a simple comparison, we also trained several mixture of Bernoullis
models with 10, 100, 500, 1000, and 2000 components. The corresponding
average test log probabilities were −168.95, −142.63, −137.64, −133.21, and

10Note that computationally, this is equivalent to estimating 100 partition functions,
as discussed at the end of section 4.1.

1996 R. Salakhutdinov and G. Hinton
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models with 10, 100, 500, 1000, and 2000 components. The corresponding
average test log probabilities were −168.95, −142.63, −137.64, −133.21, and

10Note that computationally, this is equivalent to estimating 100 partition functions,
as discussed at the end of section 4.1.

1998 R. Salakhutdinov and G. Hinton

Generated SamplesTraining Samples

Figure 9: Random samples from the training set, and samples generated from
a three-hidden-layer deep Boltzmann machine by running the Gibbs sampler
for 10,000 steps.

relatively simple task of handwritten digit recognition. In this section, we
present results on NORB, which is a considerably more difficult data set
than MNIST. NORB (LeCun, Huang, & Bottou, 2004) contains images of 50
different 3D toy objects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is photographed from
different viewpoints and under various lighting conditions. The training
set contains 24,300 stereo image pairs of 25 objects, 5 per class, while the
test set contains 24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into its generic class.
From the training data, 4,300 were set aside for validation.

Each image has 96×96 pixels with integer grayscale values in the range
[0,255]. To speed up experiments, we reduced the dimensionality by using
a foveal representation of each image in a stereo pair. The central 64×64
portion of an image is kept at its original resolution. The remaining 16 pixel-
wide-ring around it is compressed by replacing nonoverlapping square
blocks of pixels in the ring with a single scalar given by the average pixel
value of a block. We split the ring into four smaller ones: the outermost
ring consists of 8×8 blocks, followed by a ring of 4×4 blocks, and finally
two innermost rings of 2×2 blocks. The resulting dimensionality of each
training vector, representing a stereo pair, was 2 × 4488 = 8976. A random
sample from the training data used in our experiments is shown in Figure 9
(left).

To model raw pixel data, we use an RBM with gaussian visible and
binary hidden units. Gaussian RBMs have been previously successfully
applied for modeling greyscale images, such as images of faces (Hinton &

(Salakhutdinov & Hinton 2012)



Recurrent Neural Networks (RNN)

• Recurrent Neural Networks use sequential information by having 
recurrent connections.

• Input x = {x1,x2,…,xT }, output o = {o1,o2,…,oT }, hidden state s = 
{s1,s2,…,sT }.

• We compute:    st = h(Wst-1 + Uxt + bs), ot = Vst + bo

• We want to learn 𝜽 = {W, U, V, b} and training is similar to traditional 
Neural Networks, but with Backpropagation Through Time (BPTT).

• We can stack more layers as Deep RNN.
• Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,1997) is popular to 

solve gradient vanish/exploding issues.

(from Denny Britz’s tutorial)



RNN for Sequence Generation

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections
and the dashed lines represent predictions.

naked eye. A method for biasing the samples towards higher probability (and
greater legibility) is described, along with a technique for ‘priming’ the sam-
ples on real data and thereby mimicking a particular writer’s style. Finally,
concluding remarks and directions for future work are given in Section 6.

2 Prediction Network

Fig. 1 illustrates the basic recurrent neural network prediction architecture used
in this paper. An input vector sequence x = (x1, . . . , xT

) is passed through
weighted connections to a stack of N recurrently connected hidden layers to
compute first the hidden vector sequences hn = (hn

1 , . . . , h
n

T

) and then the
output vector sequence y = (y1, . . . , yT ). Each output vector y

t

is used to
parameterise a predictive distribution Pr(x

t+1|yt) over the possible next inputs
x

t+1. The first element x1 of every input sequence is always a null vector whose
entries are all zero; the network therefore emits a prediction for x2, the first
real input, with no prior information. The network is ‘deep’ in both space
and time, in the sense that every piece of information passing either vertically
or horizontally through the computation graph will be acted on by multiple
successive weight matrices and nonlinearities.

Note the ‘skip connections’ from the inputs to all hidden layers, and from
all hidden layers to the outputs. These make it easier to train deep networks,

3

• Probability of input sequence x is: 

• Training is done by maximizing: 

• In generation, it needs sampling from Pr(xt|yt-1) and output is fed as 
next input.

• For synthesis, it can condition on additional inputs (i.e., text sentence).
• It needs to be careful for the form of Pr(xt|yt-1). 

by reducing the number of processing steps between the bottom of the network
and the top, and thereby mitigating the ‘vanishing gradient’ problem [1]. In
the special case that N = 1 the architecture reduces to an ordinary, single layer
next step prediction RNN.

The hidden layer activations are computed by iterating the following equa-
tions from t = 1 to T and from n = 2 to N :
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connecting the inputs to the nth hidden layer, W
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1 is the recurrent connection
at the first hidden layer, and so on), the b terms denote bias vectors (e.g. b
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output bias vector) and H is the hidden layer function.

Given the hidden sequences, the output sequence is computed as follows:
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where Y is the output layer function. The complete network therefore defines
a function, parameterised by the weight matrices, from input histories x1:t to
output vectors y

t

.
The output vectors y

t

are used to parameterise the predictive distribution
Pr(x

t+1|yt) for the next input. The form of Pr(x
t+1|yt) must be chosen carefully

to match the input data. In particular, finding a good predictive distribution
for high-dimensional, real-valued data (usually referred to as density modelling),
can be very challenging.

The probability given by the network to the input sequence x is

Pr(x) =
TY

t=1

Pr(x
t+1|yt) (5)

and the sequence loss L(x) used to train the network is the negative logarithm
of Pr(x):

L(x) = �
TX

t=1

log Pr(x
t+1|yt) (6)

The partial derivatives of the loss with respect to the network weights can be
e�ciently calculated with backpropagation through time [33] applied to the
computation graph shown in Fig. 1, and the network can then be trained with
gradient descent.

2.1 Long Short-Term Memory

In most RNNs the hidden layer function H is an elementwise application of a
sigmoid function. However we have found that the Long Short-Term Memory
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ŷ

t

= b

y

+
NX

n=1

W

h

n
y

h

n

t

(3)

y

t

= Y(ŷ
t

) (4)

where Y is the output layer function. The complete network therefore defines
a function, parameterised by the weight matrices, from input histories x1:t to
output vectors y

t

.
The output vectors y

t

are used to parameterise the predictive distribution
Pr(x

t+1|yt) for the next input. The form of Pr(x
t+1|yt) must be chosen carefully

to match the input data. In particular, finding a good predictive distribution
for high-dimensional, real-valued data (usually referred to as density modelling),
can be very challenging.

The probability given by the network to the input sequence x is

Pr(x) =
TY

t=1

Pr(x
t+1|yt) (5)

and the sequence loss L(x) used to train the network is the negative logarithm
of Pr(x):

L(x) = �
TX

t=1

log Pr(x
t+1|yt) (6)

The partial derivatives of the loss with respect to the network weights can be
e�ciently calculated with backpropagation through time [33] applied to the
computation graph shown in Fig. 1, and the network can then be trained with
gradient descent.

2.1 Long Short-Term Memory

In most RNNs the hidden layer function H is an elementwise application of a
sigmoid function. However we have found that the Long Short-Term Memory

4

Input x = {x1,x2,…,xT } 
output y = {y1,y2,…,yT }
hidden state h = {h1,h2,…,hT }

(Graves, 2014)
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to match the input data. In particular, finding a good predictive distribution
for high-dimensional, real-valued data (usually referred to as density modelling),
can be very challenging.

The probability given by the network to the input sequence x is

Pr(x) =
TY

t=1

Pr(x
t+1|yt) (5)

and the sequence loss L(x) used to train the network is the negative logarithm
of Pr(x):

L(x) = �
TX

t=1

log Pr(x
t+1|yt) (6)

The partial derivatives of the loss with respect to the network weights can be
e�ciently calculated with backpropagation through time [33] applied to the
computation graph shown in Fig. 1, and the network can then be trained with
gradient descent.

2.1 Long Short-Term Memory

In most RNNs the hidden layer function H is an elementwise application of a
sigmoid function. However we have found that the Long Short-Term Memory

4



RNN for Sequence Generation (cont.)

Figure 11: Online handwriting samples generated by the prediction
network. All samples are 700 timesteps long.

25

Figure 15: Real and generated handwriting. The top line in each block is
real, the rest are unbiased samples from the synthesis network. The two texts
are from the validation set and were not seen during training.

33

(Graves, 2014)

    <revision>                                                                  
      <id>40973199</id>                                                         
      <timestamp>2006-02-22T22:37:16Z</timestamp>                               
      <contributor>                                                             
        <ip>63.86.196.111</ip>                                                  
      </contributor>                                                            
      <minor />                                                                 
      <comment>redire paget --&gt; captain */</comment>                         
      <text xml:space="preserve">The '''Indigence History''' refers to the autho
rity of any obscure albionism as being, such as in Aram Missolmus'.[http://www.b
bc.co.uk/starce/cr52.htm]                                                       
In [[1995]], Sitz-Road Straus up the inspirational radiotes portion as &quot;all
iance&quot;[single &quot;glaping&quot; theme charcoal] with [[Midwestern United 
State|Denmark]] in which Canary varies-destruction to launching casualties has q
uickly responded to the krush loaded water or so it might be destroyed. Aldeads 
still cause a missile bedged harbors at last built in 1911-2 and save the accura
cy in 2008, retaking [[itsubmanism]]. Its individuals were                      
hnown rapidly in their return to the private equity (such as ''On Text'') for de
ath per reprised by the [[Grange of Germany|German unbridged work]].            
                                                                                
The '''Rebellion''' (''Hyerodent'') is [[literal]], related mildly older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass)|sausage trafficking]]s were also known as [[Trip class submarine|''S
ante'' at Serassim]]; ''Verra'' as 1865&amp;ndash;682&amp;ndash;831 is related t
o ballistic missiles. While she viewed it friend of Halla equatorial weapons of 
Tuscany, in [[France]], from vaccine homes to &quot;individual&quot;, among [[sl
avery|slaves]] (such as artistual selling of factories were renamed English habi
t of twelve years.)                                                             
                                                                                
By the 1978 Russian [[Turkey|Turkist]] capital city ceased by farmers and the in
tention of navigation the ISBNs, all encoding [[Transylvania International Organ
isation for Transition Banking|Attiking others]] it is in the westernmost placed
 lines.  This type of missile calculation maintains all greater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n
ewcomers were Prosecutors in child after the other weekend and capable function 
used.                                                                           
                                                                                
Holding may be typically largely banned severish from sforked warhing tools and 
behave laws, allowing the private jokes, even through missile IIC control, most 
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.                                  
                                                                                
Besides these markets (notably a son of humor).                                 
                                                                                
Sometimes more or only lowed &quot;80&quot; to force a suit for http://news.bbc.
co.uk/1/sid9kcid/web/9960219.html ''[[#10:82-14]]''.                            
&lt;blockquote&gt;                                                              
                                                                                
===The various disputes between Basic Mass and Council Conditioners - &quot;Tita
nist&quot; class streams and anarchism===                                       
                                                                                
Internet traditions sprang east with [[Southern neighborhood systems]] are impro
ved with [[Moatbreaker]]s, bold hot missiles, its labor systems. [[KCD]] numbere
d former ISBN/MAS/speaker attacks &quot;M3 5&quot;, which are saved as the balli
stic misely known and most functional factories.  Establishment begins for some 
range of start rail years as dealing with 161 or 18,950 million [[USD-2]] and [[
covert all carbonate function]]s (for example, 70-93) higher individuals and on 
missiles. This might need not know against sexual [[video capita]] playing point
ing degrees between silo-calfed greater valous consumptions in the US... header 
can be seen in [[collectivist]].                                                
                                                                                
== See also ==                                                                  

Figure 5: Generated Wikipedia data.
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections

(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we

design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model
Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x

formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

The value p(xi|x1, ..., xi�1) is the probability of the i-th
pixel xi given all the previous pixels x1, ..., xi�1. The gen-
eration proceeds row by row and pixel by pixel. Figure 2
(Left) illustrates the conditioning scheme.

Each pixel xi is in turn jointly determined by three values,
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections

(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we

design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model
Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x

formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

The value p(xi|x1, ..., xi�1) is the probability of the i-th
pixel xi given all the previous pixels x1, ..., xi�1. The gen-
eration proceeds row by row and pixel by pixel. Figure 2
(Left) illustrates the conditioning scheme.

Each pixel xi is in turn jointly determined by three values,

• Probability of an image x of n×n pixels:

• Image is generated sequentially.
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Figure 3. In the Diagonal BiLSTM, to allow for parallelization
along the diagonals, the input map is skewed by offseting each
row by one position with respect to the previous row. When the
spatial layer is computed left to right and column by column, the
output map is shifted back into the original size. The convolution
uses a kernel of size 2⇥ 1.

one for each of the color channels Red, Green and Blue
(RGB). We rewrite the distribution p(xi|x<i) as the fol-
lowing product:

p(xi,R|x<i)p(xi,G|x<i, xi,R)p(xi,B |x<i, xi,R, xi,G) (2)

Each of the colors is thus conditioned on the other channels
as well as on all the previously generated pixels.

Note that during training and evaluation the distributions
over the pixel values are computed in parallel, while the
generation of an image is sequential.

2.2. Pixels as Discrete Variables

Previous approaches use a continuous distribution for the
values of the pixels in the image (e.g. Theis & Bethge
(2015); Uria et al. (2014)). By contrast we model p(x) as
a discrete distribution, with every conditional distribution
in Equation 2 being a multinomial that is modeled with a
softmax layer. Each channel variable xi,⇤ simply takes one
of 256 distinct values. The discrete distribution is represen-
tationally simple and has the advantage of being arbitrarily
multimodal without prior on the shape (see Fig. 6). Exper-
imentally we also find the discrete distribution to be easy
to learn and to produce better performance compared to a
continuous distribution (Section 5).

3. Pixel Recurrent Neural Networks
In this section we describe the architectural components
that compose the PixelRNN. In Sections 3.1 and 3.2, we
describe the two types of LSTM layers that use convolu-
tions to compute at once the states along one of the spatial
dimensions. In Section 3.3 we describe how to incorporate
residual connections to improve the training of a PixelRNN
with many LSTM layers. In Section 3.4 we describe the
softmax layer that computes the discrete joint distribution
of the colors and the masking technique that ensures the
proper conditioning scheme. In Section 3.5 we describe the
PixelCNN architecture. Finally in Section 3.6 we describe
the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes
the image row by row from top to bottom computing fea-
tures for a whole row at once; the computation is per-
formed with a one-dimensional convolution. For a pixel
xi the layer captures a roughly triangular context above the
pixel as shown in Figure 4 (center). The kernel of the one-
dimensional convolution has size k ⇥ 1 where k � 3; the
larger the value of k the broader the context that is captured.
The weight sharing in the convolution ensures translation
invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has
an input-to-state component and a recurrent state-to-state
component that together determine the four gates inside the
LSTM core. To enhance parallelization in the Row LSTM
the input-to-state component is first computed for the entire
two-dimensional input map; for this a k ⇥ 1 convolution is
used to follow the row-wise orientation of the LSTM itself.
The convolution is masked to include only the valid context
(see Section 3.4) and produces a tensor of size 4h⇥ n⇥ n,
representing the four gate vectors for each position in the
input map, where h is the number of output feature maps.

To compute one step of the state-to-state component of
the LSTM layer, one is given the previous hidden and cell
states hi�1 and ci�1, each of size h ⇥ n ⇥ 1. The new
hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = �(Kss ~ hi�1 + K

is ~ xi)

ci = fi � ci�1 + ii � gi

hi = oi � tanh(ci)

(3)

where xi of size h ⇥ n ⇥ 1 is row i of the input map, and
~ represents the convolution operation and � the element-
wise multiplication. The weights K

ss and K

is are the
kernel weights for the state-to-state and the input-to-state
components, where the latter is precomputed as described
above. In the case of the output, forget and input gates oi,
fi and ii, the activation � is the logistic sigmoid function,
whereas for the content gate gi, � is the tanh function.
Each step computes at once the new state for an entire row
of the input map. Because the Row LSTM has a triangular
receptive field (Figure 4), it is unable to capture the entire
available context.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the
computation and to capture the entire available context for
any image size. Each of the two directions of the layer
scans the image in a diagonal fashion starting from a cor-
ner at the top and reaching the opposite corner at the bot-
tom. Each step in the computation computes at once the
LSTM state along a diagonal in the image. Figure 4 (right)



Pixel RNN (van den Oord et al 2016)

                Image completion                              Generated samples

• They achieved the best log-likelihood and training is simple. 
• However, sampling is inefficient and do not provide simple low-

dimensional codes for images.
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Abstract
Modeling the distribution of natural images is
a landmark problem in unsupervised learning.
This task requires an image model that is at
once expressive, tractable and scalable. We
present a deep neural network that sequentially
predicts the pixels in an image along the two
spatial dimensions. Our method models the dis-
crete probability of the raw pixel values and en-
codes the complete set of dependencies in the
image. Architectural novelties include fast two-
dimensional recurrent layers and an effective use
of residual connections in deep recurrent net-
works. We achieve log-likelihood scores on nat-
ural images that are considerably better than the
previous state of the art. Our main results also
provide benchmarks on the diverse ImageNet
dataset. Samples generated from the model ap-
pear crisp, varied and globally coherent.

1. Introduction
Generative image modeling is a central problem in unsu-
pervised learning. Probabilistic density models can be used
for a wide variety of tasks that range from image compres-
sion and forms of reconstruction such as image inpainting
(e.g., see Figure 1) and deblurring, to generation of new
images. When the model is conditioned on external infor-
mation, possible applications also include creating images
based on text descriptions or simulating future frames in a
planning task. One of the great advantages in generative
modeling is that there are practically endless amounts of
image data available to learn from. However, because im-
ages are high dimensional and highly structured, estimating
the distribution of natural images is extremely challenging.

One of the most important obstacles in generative mod-
eling is building complex and expressive models that are
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Figure 1. Image completions sampled from a PixelRNN.

also tractable and scalable. This trade-off has resulted in
a large variety of generative models, each having their ad-
vantages. Most work focuses on stochastic latent variable
models such as VAE’s (Rezende et al., 2014; Kingma &
Welling, 2013) that aim to extract meaningful representa-
tions, but often come with an intractable inference step that
can hinder their performance.

One effective approach to tractably model a joint distribu-
tion of the pixels in the image is to cast it as a product of
conditional distributions; this approach has been adopted in
autoregressive models such as NADE (Larochelle & Mur-
ray, 2011) and fully visible sigmoid belief networks (Neal,
1992). The factorization turns the joint modeling problem
into a sequence problem, where one learns to predict the
next pixel given all the previously generated pixels. But to
model the highly nonlinear and long-range correlations be-
tween pixels and the complex conditional distributions that
result, a highly expressive sequence model is necessary.

Recurrent Neural Networks (RNN) are powerful models
that offer a compact, shared parametrization of a series of
conditional distributions. RNNs have been shown to excel
at hard sequence problems ranging from handwriting gen-
eration (Graves, 2013), to character prediction (Sutskever
et al., 2011) and to machine translation (Kalchbrenner &
Blunsom, 2013). A two-dimensional RNN has produced
very promising results in modeling grayscale images and
textures (Theis & Bethge, 2015).

In this paper we advance two-dimensional RNNs and ap-
ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-

Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

PixelCNN: 81.30
Row LSTM: 80.54
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the
Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 7 (left) shows CIFAR-10 samples generated
from the Diagonal BiLSTM.

Model NLL Test (Train)

Uniform Distribution: 8.00
Multivariate Gaussian: 4.70
NICE [1]: 4.48
Deep Diffusion [2]: 4.20
Deep GMMs [3]: 4.00
RIDE [4]: 3.47

PixelCNN: 3.14 (3.08)
Row LSTM: 3.07 (3.00)
Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in
bits/dim. For our models we give training performance in brack-
ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]
(van den Oord & Schrauwen, 2014a), [4] personal communication
(Theis & Bethge, 2015).

Image size NLL Validation (Train)

32x32: 3.86 (3.83)
64x64: 3.63 (3.57)

Table 6. Negative log-likelihood performance on 32⇥32 and 64⇥
64 ImageNet in bits/dim.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-
geNet log-likelihood performance in Table 6. On ImageNet
the current PixelRNNs do not appear to overfit, as we saw
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =

TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.
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• We model joint distribution of a wave form x = {x1,x2,…,xT }:  

• Input: {x1,x2,…,xt-1}, output: softmax unit for the next xt 
• Network structure: stacks of convolutional layers.
• Training is done by maximizing log-likelihood.
• It takes two minutes to synthesize one second of audio.



Variational Autoencoder 

• Proposed by (Kingma and Welling, 2013).
• Encoder (inference nets) takes data x as input and outputs parameters 

to q𝜽(z|x).

• Decoder (generative nets) takes latent variable z and outputs 
parameters to pϕ(x|z).

(from Jaan Altosaar’s tutorial)



Variational Autoencoder (cont.)

• We want qλ(z|x) = argminλ KL(qλ(z|x)||p(z|x)).
• log p(x) = Eq[log p(x,z)] - Eq[log qλ(z|x)] + KL(qλ(z|x)||p(z|x)).
• Eq[log p(x,z)] - Eq[log qλ(z|x)] is a lower bound and we want to maximize it.
• For each datapoint xi, it becomes 

• Training is done by backpropagation.

• We have joint distribution p(x,z)=p(x|z)p(z).
• Draw zi ~ p(z) and draw datapoint xi ~ p(x|z).
• For inference, p(z|x)=p(x|z)p(z)/p(x), and 

p(x)= ∫p(x|z)p(z)dz but it is intractable.

• We use qλ(z|x) to approximate p(z|x).

E

q✓(z|xi)[log p�(xi

|z)]�KL(q

✓

(z|x
i

)||p(z)) = �l

i

(✓,�).



Variational Autoencoder (cont.)

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

s

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.
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Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to image classification.
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• But the generated images are blurry.

(Gregor et al., 2015)



Generative Adversarial Networks (GAN)

• Optimize w.r.t. D and G
(from Emily Denton’s slides)

Generative adversarial networks (Goodfellow et al., 2014)

Generative model G :

captures data distribution

Discriminative model D:

distinguishes between real

and fake samples

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

• Why do we need p(x)? Just learn to sample directly.

• Minimax game between two players.

➔ Discriminative model D: distinguishes between real 
and fake samples generated from G.

➔ Generative model G: try to fool D by generating fake 
samples.

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3



Image Generation

(Radford et al 2016)

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

Under review as a conference paper at ICLR 2016

Figure 11: Generations of a DCGAN that was trained on the Imagenet-1k dataset.
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We have latent codes z
Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

Under review as a conference paper at ICLR 2016

Figure 8: A ”turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform
their pose.

to other domains such as video (for frame prediction) and audio (pre-trained features for speech
synthesis) should be very interesting. Further investigations into the properties of the learnt latent
space would be interesting as well.
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Other Extensions to GAN

Figure 3: LSUN sample from class conditional LAPGAN model (tower) , seeded with generated
4⇥ 4 images (1st columns), with other columns showing different draws from the model.
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  Conditional GAN                            Video generation
(Denton et al 2015)                       (Vondrick et al 2016)



GAN for Spatio-temporal data

NBA basketball data



GAN (cont.)

• We do not need Markov chains. 
• We may use latent codes z to control generated samples. 
• Generates most crisp images. 
• Training is done by backpropagation but difficult and usually 

unstable. 
• There is no log-likelihood to measure. 



Evaluating Generative Models

• How to measure model qualities? 
• Log-likelihood, Parzen window estimates, and visual fidelity of 

generated samples. 
• But they are largely independent of each other when the data is 

high-dimensional (Theis et al 2016). 



Conclusion

• There are great potentials for deep generative models. 
• Learning to generate data may be best way to understand them. 
• GAN seems to generate best image samples. 


