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Deep Generative Models



Recap: Generative Models

- Generative models vs. discriminative models

- Generative models: learn P(X,Y) close to Pgi(X,Y)
- HMM, naive Bayes, latent Dirichlet allocation, ...

- Discriminative models: directly learn P(YIX)
-> Neural networks, random forests, logistic regression, SVM, ...

- Why generative models?

- Understanding data by generating them:
What | cannot create, | do not understand. —Richard Feynman

-> Underlying causal relationship.
-> Better predictions for future situations.
- Deep generative models have shown great potentials.



Interactive Image Generation
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(Zhu et al 2016)



Ground truth

Input

output

Labels to Street Scene

Image To Image Translation

input

eiI to Map

output

np ut

(Isola et al 2016)



Single Image Super-Resolution

bicubic SRResNet

(Ledig et al 2016)



Deep Generative Models
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(adapted from Goodfellow’s slide)

- Restricted Boltzmann Machine (RBM) (Smolensky 1986)
- Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton 2009)

- Variational Autoencoder (VAE) (Kingma & Welling 2013)
- Generative Adversarial Networks (GAN) (Goodfellow et al 2014)

- Generative Stochastic Networks (GSN) (Bengio et al 2014)
- Pixel RNN (van den Oord et al 2016)



Restricted Boltzmann Machines

hidden variables

_\/‘
/)

SN

P(v=v,h=h) exp (—E(v,h))

W
Atk

A

Image visible variables

\\b E(w,h)=—-b v—c h—v Wh

Z = ZZexp{—E(v,h)}
v h

(from R. Salakhutdinov’s slide)

- Undirected model, only bipartite connections between v and h.

- Given N i.i.d. training examples, we want to learn model parameter

6 ={W, b, c}. N

. Training is done by maximizing log-likelihood: () = % S log Py(v(™)
n=1

- Partition function is intractable so use Markov chain methods.



Restricted Boltzmann Machines (cont.)

Learned features (out of 10,000)

4 million unlabelled images
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Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones
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(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)

(from R. Salakhutdinov’s slide)
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Recurrent Neural Networks (RNN)
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(from Denny Britz’s tutorial)

 Recurrent Neural Networks use sequential information by having
recurrent connections.

- Input x ={x1,X2,...,XT }, output o0 = {01,02,...,07 }, hidden state s =
{s1,S2,...,ST }.
- We compute: = h(Wst.1 + Uxt + bs), 0t = Vst + bo

- We want to learn 0 ={W, U, V, b} and training is similar to traditional
Neural Networks, but with Backpropagation Through Time (BPTT).
- We can stack more layers as Deep RNN.

- Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,1997) IS poOpular to
solve gradient vanish/exploding issues.



RNN for Sequence Generation

Outputs

Input X = {X1,X2,...,XT }

output y ={y1,y2,...,y1 }
hidden state h = {h4,ho,...,h1 }

Hidden Layers
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(Graves, 2014) T
- Probability of input sequence x is:  Pr(x) = [[ Pr(ze+1lu)
t=1

- Training is done by maximizing: L(x) == logPr(zi1|y)

t=1

- In generation, it needs sampling from Pr(xilyt.1) and output is fed as
next input.

- For synthesis, it can condition on additional inputs (i.e., text sentence).

- It needs to be careful for the form of Pr(xtlyt.1).



RNN for Sequence Generation (cont.)
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Pixel RNN (van den Oord et al 2016)

+ Probability of an image x of nxn pixels:  p(x) = | [ p(xilz1,....zi1)

+ Image is generated sequentially.



Pixel RNN (van den Oord et al 2016)

occluded completions or1g1nal

Image completion Generated samples

-+ They achieved the best log-likelihood and training is simple.

- However, sampling is inefficient and do not provide simple low-
dimensional codes for images.



WaveNet (van den Oord et al 2016)
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- We model joint distribution of a wave form x = {Xi1,Xo,...,X7 }

T
p(X) — Hp(xt ‘ xla"’axt—l)
t=1

- Input: {X1,X2,...,Xt-1}, output: softmax unit for the next xi

- Network structure: stacks of convolutional layers.

- Training is done by maximizing log-likelihood.

- |t takes two minutes to synthesize one second of audio.
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Variational Autoencoder
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(from Jaan Altosaar’s tutorial)

* Proposed by (Kingma and Welling, 2013).
- Encoder (inference nets) takes data x as input and outputs parameters

to qo(zIX).

- Decoder (generative nets) takes latent variable z and outputs
parameters to p,(x|z).



Variational Autoencoder (cont.)

- We have joint distribution p(x,z)=p(xlz)p(z).

-+ Draw zi~ p(z) and draw datapoint x; ~ p(xl|z).

- For inference, p(zIx)=p(xlz)p(z)/p(x), and
p(X)=[p(xIz)p(z)dz but it is intractable.

N - We use @, (zlx) to approximate p(zlx).

- We want g, (zlx) = argmin, KL(q,(zIx)llp(zlx)).

- log p(x) = Ellog p(x,z)] - Ej[log q,(zlx)] + KL(q,(zIx)llp(zIx)).

- E,llog p(x,2)] - Ej[log q,(zlx)] is a lower bound and we want to maximize it.
-+ For each datapoint x;, it becomes

By (21 08 Py (i]2)] — K L(go(2|2:)||p(2)) = ~Li(0, ¢).
- Training is done by backpropagation.




Variational Autoencoder (cont.)
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(Gregor et al., 2015)

- But the generated images are blurry.



Generative Adversarial Networks (GAN)
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- Why do we need p(x)? Just learn to sample directly. 1

Generative

network

- Minimax game between two players.
X ~ pdata(x

1
-> Discriminative model D: distinguishes between real Oolo@ Oolocj]

and fake samples generated from G.

Discriminative Discriminative
-> Generative model G: try to fool D by generating fake network network
samples. l 1
D tries to D tries to
output 0 output 1

(from Emily Denton’s slides)

- Optimize w.rt. D and G

minmax V (D, G) = By )08 D(@)] + Exvp, (2 log(1 — D(G(2))))



Image Generation

(Radford et al 2016)



We have latent codes z

smiling neutral neutral
woman woman man

smiling man

(Radford et al 2016)



Other Extensions to GAN
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Conditional GAN Video generation
(Denton et al 2015) (Vondrick et al 2016)



GAN for Spatio-temporal data
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GAN (cont.)

We do not need Markov chains.
We may use latent codes z to control generated samples.
Generates most crisp images.

Training Is done by backpropagation but difficult and usually

unstable.

There is no log-likelihood to measure.



Evaluating Generative Models

* How to measure model qualities?

* Log-likelihood, Parzen window estimates, and visual fidelity of
generated samples.

* But they are largely independent of each other when the data is
high-dimensional (Theis et al 2016).



Conclusion

* There are great potentials for deep generative models.
* Learning to generate data may be best way to understand them.

* GAN seems to generate best image samples.



