Machine Learning & Data Mining
CS/CNS/EE 155

Lecture 14:
Embeddings
Past Two Lectures

• Dimensionality Reduction
• Clustering

• Latent Factor Models
 – Learn low-dimensional representation of data
This Lecture

• Embeddings
 – Generalization of Latent-Factor Models

• Warm-up: Locally-Linear Embeddings

• Probabilistic Sequence Embeddings
 – Playlist embeddings
 – Word embeddings
Embedding

• Learn a representation U
 – Each column u corresponds to data point

• Semantics encoded via $d(u,u')$
 – Distance between points
 \[d(u,u') = \|u - u'\|^2 \]
 – Similarity between points
 \[d(u,u') = u^T u' \]

Generalizes Latent-Factor Models
Locally Linear Embedding

- Given: \(S = \{ x_i \}_{i=1}^{N} \)

- Learn \(U \) such that local linearity is preserved
 - Lower dimensional than \(x \)
 - “Manifold Learning”

Any neighborhood looks like a linear plane

https://www.cs.nyu.edu/~roweis/lle/
Approach

• Define relationship of each x to its neighbors

• Find a lower dimensional u that preserves relationship
Locally Linear Embedding

• Create $B(i)$

 – B nearest neighbors of x_i

 – **Assumption:** $B(i)$ is approximately linear

 – x_i can be written as a convex combination of x_j in $B(i)$

\[
S = \left\{ x_i \right\}_{i=1}^{N}
\]

\[
x_i \approx \sum_{j \in B(i)} W_{ij} x_j
\]

\[
\sum_{j \in B(i)} W_{ij} = 1
\]

https://www.cs.nyu.edu/~roweis/lle/
Locally Linear Embedding

Given Neighbors \(B(i) \), solve local linear approximation \(W \):

\[
\arg\min_W \sum_i \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2
\]

\[
\left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 = \left\| \sum_{j \in B(i)} W_{ij} (x_i - x_j) \right\|^2
\]

\[
= \left(\sum_{j \in B(i)} W_{ij} (x_i - x_j) \right)^T \left(\sum_{j \in B(i)} W_{ij} (x_i - x_j) \right)
\]

\[
= \sum_{j \in B(i)} \sum_{k \in B(i)} W_{ij} W_{ik} C_{jk}^i
\]

\[
= W_{i,*}^T C_i W_{i,*}
\]

https://www.cs.nyu.edu/~roweis/lle/
Locally Linear Embedding

Given Neighbors $B(i)$, solve local linear approximation W:

$$\arg\min_W \sum_i \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 = \arg\min_W \sum_i W_{i,*}^T C_i^* W_{i,*} \quad \sum_{j \in B(i)} W_{ij} = 1$$

$$C_{jk}^i = (x_i - x_j)^T (x_i - x_k)$$

- Every x_i is approximated as a convex combination of neighbors
 - How to solve?
Lagrange Multipliers

\[\text{argmin} \ L(w) \equiv w^T Cw \]

s.t. \(|w| = 1 \)

\[\nabla_{w_j} |w| \begin{cases}
-1 & \text{if } w_j < 0 \\
+1 & \text{if } w_j > 0 \\
[-1, +1] & \text{if } w_j = 0
\end{cases} \]

\[\exists \lambda \geq 0 : (\partial_w L(y, w) \in \lambda \nabla_w |w|) \land (|w| = 1) \]

Solutions tend to be at corners!

http://en.wikipedia.org/wiki/Lagrange_multiplier
Solving Locally Linear Approximation

Lagrangian:

\[L(W, \lambda) = \sum_i \left(W^T_i C_i W_i^* - \lambda_i \left(\mathbf{i}^T W_i^* - 1 \right) \right) \]

\[\sum_j W_{ij} = \mathbf{i}^T W_i^* \]

\[\partial_{W_{ij}} L(W, \lambda) = 2 C_i W_j^* - \lambda_i \mathbf{i} \]

\[W_{ij} = \frac{\lambda_i}{2} \left(C^i \right)^{-1} \mathbf{1} \propto \left(C^i \right)^{-1} \mathbf{1} \]

\[W_{ij} \propto \sum_{k \in B(i)} \left(C^i \right)^{-1}_{jk} \]

\[W_{ij} = \frac{\sum_{k \in B(i)} \left(C^i \right)^{-1}_{jk}}{\sum_{l \in B(i)} \sum_{m \in B(i)} \left(C^i \right)^{-1}_{lm}} \]
Locally Linear Approximation

- Invariant to:
 - Rotation: $Ax_i \approx \sum_{j \in B(i)} AW_{ij} x_j$
 - Scaling: $5x_i \approx \sum_{j \in B(i)} 5W_{ij} x_j$
 - Translation: $x_i + x' \approx \sum_{j \in B(i)} W_{ij} (x_j + x')$

$$x_i \approx \sum_{j \in B(i)} W_{ij} x_j$$

$$\sum_{j \in B(i)} W_{ij} = 1$$
Story So Far: Locally Linear Embeddings

Given Neighbors B(i), solve local linear approximation W:

\[
\min_{W} \sum_{i} \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2 = \min_{W} \sum_{i} W_{i,*}^T C^i W_{i,*} \quad \sum_{j \in B(i)} W_{ij} = 1
\]

Solution via Lagrange Multipliers:

\[
W_{ij} = \frac{\sum_{k \in B(i)} \left(C^i \right)_{jk}^{-1}}{\sum_{l \in B(i)} \sum_{m \in B(i)} \left(C^i \right)_{lm}^{-1}}
\]

\[
C^i_{jk} = (x_i - x_j)^T (x_i - x_k)
\]

• Locally Linear Approximation

https://www.cs.nyu.edu/~roweis/lle/
Recall: Locally Linear Embedding

- Given: \[S = \{ x_i \}_{i=1}^{N} \]

- Learn U such that local linearity is preserved
 - Lower dimensional than x
 - “Manifold Learning”

https://www.cs.nyu.edu/~roweis/lle/
Dimensionality Reduction
(Learning the Embedding)

Given local approximation W, learn lower dimensional representation:

$$\arg\min_U \sum_i \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2$$

- Find low dimensional U
 - Preserves approximate local linearity

https://www.cs.nyu.edu/~roweis/lle/
Given local approximation W, learn lower dimensional representation:

$$\arg\min_U \sum_i \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2$$

$$UU^T = I_K$$

$$\sum_i u_i = \hat{0}$$

• Rewrite as:

$$\arg\min_U \sum_{ij} M_{ij} (u_i^T u_j) \equiv \text{trace} \left(UMU^T \right)$$

$$M_{ij} = 1_{[i=j]} - W_{ij} - W_{ji} + \sum_k W_{ki} W_{kj}$$

$$M = (I_N - W)^T (I_N - W)$$

Symmetric positive semidefinite

https://www.cs.nyu.edu/~roweis/lle/
Given local approximation W, learn lower dimensional representation:

$$\arg\min_u \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(UMU^T)$$

- Suppose $K=1$

$$\arg\min_u \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(uMu^T)$$

$$= \arg\max_u \text{trace}(uM^+u^T)$$

- By min-max theorem
 - $u = \text{principal eigenvector of } M^+$

$$UU^T = I_K$$

$$\sum_i u_i = 0$$

$$uu^T = 1$$

http://en.wikipedia.org/wiki/Min-max_theorem
Recap: Principal Component Analysis

\[M = V \Lambda V^T \]

- Each column of \(V \) is an Eigenvector
- Each \(\lambda \) is an Eigenvalue (\(\lambda_1 \geq \lambda_2 \geq \ldots \))

\[M^+ = V \Lambda^+ V^T \]

\[M M^+ = V \Lambda \Lambda^+ V^T = V_{1:2} V_{1:2}^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \]
Given local approximation W, learn lower dimensional representation:

$$\arg\min_U \sum_{ij} M_{ij}(u_i^T u_j) \equiv \text{trace}(UMU^T)$$

$$UU^T = I_K$$

• $K=1$:
 - $u = \text{principal eigenvector of } M^+$
 - $u = \text{smallest non-trivial eigenvector of } M$
 - Corresponds to smallest non-zero eigenvalue

• General K
 - $U = \text{top } K \text{ principal eigenvectors of } M^+$
 - $U = \text{bottom } K \text{ non-trivial eigenvectors of } M$
 - Corresponds to bottom $K \text{ non-zero eigenvalues}$

https://www.cs.nyu.edu/~roweis/lle/
http://en.wikipedia.org/wiki/Min-max_theorem
Recap: Locally Linear Embedding

• Generate nearest neighbors of each x_i, $B(i)$

• Compute Local Linear Approximation:

$$\arg\min_w \sum_i \left\| x_i - \sum_{j \in B(i)} W_{ij} x_j \right\|^2$$

$$\sum_{j \in B(i)} W_{ij} = 1$$

• Compute low dimensional embedding

$$\arg\min_u \sum_i \left\| u_i - \sum_{j \in B(i)} W_{ij} u_j \right\|^2$$

$$UU^T = I_K$$

$$\sum_i u_i = \vec{0}$$
Results for Different Neighborhoods

(K=2)

https://www.cs.nyu.edu/~roweis/lle/gallery.html
Probabilistic Sequence Embeddings
Example 1: **Playlist Embedding**

- **Users generate song playlists**
 - Treat as training data

- **Can we learn a probabilistic model of playlists?**
Example 2: Word Embedding

- People write natural text all the time
 - Treat as training data

- Can we learn a probabilistic model of word sequences?
Probabilistic Sequence Modeling

• Training set:
 \[S = \{ s_1, \ldots, s_{|S|} \} \]
 \[D = \{ p_i \}_{i=1}^{N} \]
 \[p_i = \left< p_i^1, \ldots, p_i^{N_i} \right> \]

 Songs, Words \hspace{1cm} Playlists, Documents \hspace{1cm} Sequence Definition

• **Goal:** Learn a Markov model of sequences:
 \[P(p_i^j \mid p_i^{j-1}) \]

• What is the form of \(P \)?
First Try: Probability Tables

| P(s|s') | s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_start |
|--------|------|------|------|------|------|------|------|---------|
| s_1 | 0.01 | 0.03 | 0.01 | 0.11 | 0.04 | 0.04 | 0.01 | 0.05 |
| s_2 | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 |
| s_3 | 0.01 | 0.01 | 0.01 | 0.07 | 0.02 | 0.02 | 0.05 | 0.09 |
| s_4 | 0.02 | 0.11 | 0.07 | 0.01 | 0.07 | 0.04 | 0.01 | 0.01 |
| s_5 | 0.04 | 0.01 | 0.02 | 0.17 | 0.01 | 0.01 | 0.10 | 0.02 |
| s_6 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.08 |
| s_7 | 0.07 | 0.02 | 0.01 | 0.01 | 0.03 | 0.09 | 0.03 | 0.01 |
First Try: Probability Tables

| P(s|s') | s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | s_{start} |
|--------|------|------|------|------|------|------|------|-----------|
| s_1 | 0.01 | 0.03 | 0.01 | 0.11 | 0.04 | 0.04 | 0.01 | 0.05 |
| s_2 | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 |
| s_3 | 0.01 | 0.01 | 0.01 | 0.07 | 0.02 | 0.02 | 0.05 | 0.09 |
| s_4 | 0.02 | 0.11 | 0.07 | 0.01 | 0.07 | 0.04 | 0.01 | 0.01 |
| s_5 | | | | | | | | |
| s_6 | | | | | | | | |
| s_7 | | | | | | | | |

#Parameters = O(|S|^2) !!!
(worse for higher-order sequence models)
Second Try: Hidden Markov Models

\[P(p_i, z) = P(End | z^{N_i}) \prod_{j=1}^{N_i} P(z^j | z^{j-1}) \prod_{j=1}^{N_j} P(p_i^j | z^j) \]

- \(P(z^j | z^{j-1}) \) • #Parameters = \(O(K^2) \)

- \(P(p_i^j | z^j) \) • #Parameters = \(O(|S|K) \)

- Total = \(O(K^2) + O(|S|K) \)
Problem with Hidden Markov Models

\[P(p_i, z) = P(\text{End} \mid z^{N_i}) \prod_{j=1}^{N_i} P(z^j \mid z^{j-1}) \prod_{j=1}^{N_j} P(p_i^j \mid z^j) \]

- Need to reliably estimate \(P(s \mid z) \)

\[S = \{s_1, \ldots, s_{|S|}\} \quad D = \{p_i\}_{i=1}^N \quad p_i = \left\langle p_i^1, \ldots, p_i^{N_i} \right\rangle \]

- Hard to do!
Outline for Sequence Modeling

• Playlist Embedding
 – Distance-based embedding

• Word Embedding (word2vec)
 – Inner-product embedding
 – https://code.google.com/archive/p/word2vec/

• Compare the two approaches
Markov Embedding (Distance)

\[P(s | s') \propto \exp \left\{ -\| u_s - v_{s'} \|^2 \right\} \]

\[P(s | s') = \frac{\exp \left\{ -\| u_s - v_{s'} \|^2 \right\}}{\sum_{s''} \exp \left\{ -\| u_{s''} - v_{s'} \|^2 \right\}} \]

- “Log-Radial” function
 - (my own terminology)

\[u_s: \text{entry point of song } s \]
\[v_s: \text{exit point of song } s \]

Log-Radial Functions

Each ring defines an equivalence class of transition probabilities

\[P(s \mid s') = \frac{\exp\left\{-\left\|u_s - v_{s'}\right\|^2\right\}}{\sum_{s''} \exp\left\{-\left\|u_{s''} - v_{s'}\right\|^2\right\}} \]

2K parameters per song
2 |S|K parameters total
Learning Problem

\[S = \{s_1, \ldots, s_{|S|}\} \quad D = \{p_i\}_{i=1}^N \quad p_i = \langle p_i^1, \ldots, p_i^{N_i} \rangle \]

- **Songs**
- **Playlists**
- **Playlist Definition** (each \(p_j^i \) corresponds to a song)

Learning Goal:

\[
\text{argmax}_{U,V} \prod_i P(p_i) = \prod_i \prod_j P(p_i^j | p_i^{j-1})
\]

\[
P(s | s') = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{\sum_{s''} \exp\left\{ -\|u_{s''} - v_{s'}\|^2 \right\}} = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{Z(s')}
\]

Minimize Neg Log Likelihood

\[
\arg\max_{U,V} \prod_i \prod_j P(p^j_i \mid p^{j-1}_i) = \arg\min_{U,V} \sum_i \sum_j -\log P(p^j_i \mid p^{j-1}_i)
\]

• Solve using gradient descent
 – Random initialization

• Normalization constant hard to compute:
 – Approximation heuristics

 • See paper

 \[
P(s \mid s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{Z(s')}
\]

Story so Far: Playlist Embedding

• Training set of playlists
 – Sequences of songs

• Want to build probability tables \(P(s \mid s') \)
 – But a lot of missing values, hard to generalize directly
 – Assume low-dimensional embedding of songs

\[
P(s \mid s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{\sum_{s''} \exp\left\{-\|u_{s''} - v_{s'}\|^2\right\}} = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{Z(s')}
\]
Simpler Version

- Dual point model:
 \[P(s \mid s') = \frac{\exp\left\{ -\|u_s - v_{s'}\|^2 \right\}}{Z(s')} \]

- Single point model:
 \[P(s \mid s') = \frac{\exp\left\{ -\|u_s - u_{s'}\|^2 \right\}}{Z(s')} \]
 - Transitions are symmetric
 - (almost)
 - Exact same form of training problem
Visualization in 2D

Simpler version:
Single Point Model

\[
P(s | s') = \frac{\exp \left\{ -\| u_s - u_{s'} \|^2 \right\}}{Z(s')}
\]

Single point model is easier to visualize

Sampling New Playlists

• Given partial playlist:

\[p = \langle p^1, \ldots, p^j \rangle \]

• Generate next song for playlist \(p^{j+1} \)

 – Sample according to:

\[
P(s \mid p^j) = \frac{\exp\left\{ -\|u_s - v_{p^j}\|^2 \right\}}{Z(p^j)}
\]

Dual Point Model

\[
P(s \mid p^j) = \frac{\exp\left\{ -\|u_s - u_{p^j}\|^2 \right\}}{Z(p^j)}
\]

Single Point Model

Demo

http://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html
What About New Songs?

• Suppose we’ve trained U:

$$P(s | s') = \frac{\exp\left\{-\|u_s - u_{s'}\|^2\right\}}{Z(s')}$$

• What if we add a new song s'?
 – No playlists created by users yet...
 – Only options: $u_{s'} = 0$ or $u_{s'} = \text{random}$
 • Both are terrible!
 • “Cold-start” problem
Song & Tag Embedding

• Songs are usually added with tags
 – E.g., indie rock, country
 – Treat as features or attributes of songs

• How to leverage tags to generate a reasonable embedding of new songs?
 – Learn an embedding of tags as well!

\[S = \{s_1, \ldots, s_{|S|}\} \quad \text{Songs} \]
\[D = \{p_i\}_{i=1}^{N} \quad \text{Playlists} \]
\[p_i = \langle p_i^1, \ldots, p_i^{N_i} \rangle \quad \text{Playlist Definition} \]
\[T = \{T_1, \ldots, T_{|S|}\} \quad \text{Tags for Each Song} \]

\textbf{Learning Objective:}
\[
\arg\max_{U,A} P(D \mid U)P(U \mid A,T)
\]

\textbf{Same term as before:}
\[
P(D \mid U) = \prod_i P(p_i \mid U) = \prod_i \prod_j P(p_i^j \mid p_i^{j-1}, U)
\]

\textbf{Song embedding \(\approx\) average of tag embeddings:}
\[
P(U \mid A,T) = \prod_s P(u_s \mid A,T_s) \propto \prod_s \exp \left\{ -\lambda \left\| u_s - \frac{1}{|T_s|} \sum_{t \in T_s} A_t \right\|^2 \right\}
\]

\textbf{Solve using gradient descent:}

The simplest NLP model is the n-gram models from natural language processing (NLP).

To evaluate our method and the embeddings it produces, we use a common NLP benchmark dataset: the Million Song Dataset (MSD). For each song, we treat every tag as a word and a short 1-hot vector indicating whether the tag is present in the song. The representations found by these models are then visualized in figure 2.

...
Revisited: What About New Songs?

• No user has s' added to playlist
 – So no evidence from playlist training data:

$$s' \text{ does not appear in } D = \left\{ p_i \right\}_{i=1}^{N}$$

• Assume new song has been tagged T_s'
 – The $u_{s'} = \text{average of } A_t \text{ for tags } t \text{ in } T_{s'}$
 – Implication from objective:

$$\arg\max_{U,A} P(D|U)P(U|A,T)$$
Switching Gears: Word Embeddings

• Given a large corpus
 – Wikipedia
 – Google News

• Learn a word embedding to model sequences of words (e.g., sentences)

https://code.google.com/archive/p/word2vec/
Switching Gears: Inner Product Embeddings

• Previous: capture semantics via distance

\[P(s \mid s') = \frac{\exp\left\{-\|u_s - v_{s'}\|^2\right\}}{\sum_{s''} \exp\left\{-\|u_{s''} - v_{s'}\|^2\right\}} \]

• Can also capture semantics via inner product

\[P(s \mid s') = \frac{\exp\left\{u_s^T v_{s'}\right\}}{\sum_{s''} \exp\left\{u_{s''}^T v_{s'}\right\}} \]

Basically a latent-factor model!
Log-Linear Embeddings

\[P(s \mid s') = \frac{\exp\{u_s^T v_{s'}\}}{\sum_{s''} \exp\{u_{s''}^T v_{s'}\}} \]

2K parameters per song
2|S|K parameters total

Each projection level onto the green line defines an equivalence class
Learning Problem (Version 1)

\[S = \{s_1, \ldots, s_{|S|}\} \quad \text{Words} \]
\[D = \{p_i\}_{i=1}^N \quad \text{Sentences} \]
\[p_i = \left\langle p_i^1, \ldots, p_i^{N_i} \right\rangle \quad \text{Sentence Definition} \]
\[\text{(Each } p^j \text{ is a word)} \]

Learning Goal:

\[
\arg \max_{U,V} \prod_i P(p_i) = \prod_i \prod_j P(p_i^j \mid p_i^{j-1})
\]

\[
P(s \mid s') = \frac{\exp \left\{ u_s^T v_{s'} \right\}}{\sum_{s''} \exp \left\{ u_{s''}^T v_{s'} \right\} \ Z(s')}
\]
Skip-Gram Model (word2vec)

- Predict probability of any neighboring word

\[
\text{argmax}_{U,V} \prod_i \prod_j \prod_{k \in [-C,C] \setminus 0} P(p_{i+k}^j \mid p_i^j)
\]

\[
P(s \mid s') = \frac{\exp\{u_s^T v_{s'}\}}{\sum_{s''} \exp\{u_{s''}^T v_{s'}\}} = \frac{\exp\{u_s^T v_{s'}\}}{Z(s')}
\]

https://code.google.com/archive/p/word2vec/
Skip-Gram Model (word2vec)

- Predict probability of any neighboring word

\[
\text{argmax}_{U,V} \prod_i \prod_j \prod_{k \in [-C,C] \setminus 0} P(p_{i+j+k} | p_i^j)
\]

What are benefits of Skip-Gram model?

https://code.google.com/archive/p/word2vec/
Intuition of Skip-Gram Model

• “The dog jumped over the fence.”
• “My dog ate my homework.”
• “I walked my dog up to the fence.”

Example sentences

\[\arg \max_{U,V} \prod_i \prod_j \prod_{k \in [-C, C] \setminus 0} P(p_{i+j+k} \mid p_i^j) \]

• Distribution of neighboring words more peaked
• Distribution of further words more diffuse
• Capture everything in a single model
Dimensionality Reduction

• What dimensionality should we choose U, V?
 – E.g., what should K be?

\[P(s \mid s') = \frac{\exp\left\{ u_s^T v_{s'} \right\}}{\sum_{s''} \exp\left\{ u_{s''}^T v_{s'} \right\}} \]

• K = |S|^2 implies we can memorize every word pair interaction
• Smaller K assumes words lie in lower-dimensional space
 – Easier to generalize across words
• Larger K can overfit
Example 1

- $V_{\text{Czech}} + V_{\text{currency}} \approx V_{\text{koruna}}$

<table>
<thead>
<tr>
<th>Czech + currency</th>
<th>Vietnam + capital</th>
<th>German + airlines</th>
<th>Russian + river</th>
<th>French + actress</th>
</tr>
</thead>
<tbody>
<tr>
<td>koruna</td>
<td>Hanoi</td>
<td>airline Lufthansa</td>
<td>Moscow</td>
<td>Juliette Binoche</td>
</tr>
<tr>
<td>Check crown</td>
<td>Ho Chi Minh City</td>
<td>carrier Lufthansa</td>
<td>Volga River</td>
<td>Vanessa Paradis</td>
</tr>
<tr>
<td>Polish zolty</td>
<td>Viet Nam</td>
<td>flag carrier Lufthansa</td>
<td>upriver</td>
<td>Charlotte Gainsbourg</td>
</tr>
<tr>
<td>CTK</td>
<td>Vietnamese</td>
<td>Lufthansa</td>
<td>Russia</td>
<td>Cecile De</td>
</tr>
</tbody>
</table>

• \(\text{E.g., } \mathbf{v}_{\text{France}} - \mathbf{v}_{\text{Paris}} + \mathbf{v}_{\text{Italy}} \approx \mathbf{v}_{\text{Rome}} \)

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>France - Paris</td>
<td>Italy: Rome</td>
<td>Japan: Tokyo</td>
<td>Florida: Tallahassee</td>
</tr>
<tr>
<td>big - bigger</td>
<td>small: larger</td>
<td>cold: colder</td>
<td>quick: quicker</td>
</tr>
<tr>
<td>Miami - Florida</td>
<td>Baltimore: Maryland</td>
<td>Dallas: Texas</td>
<td>Kona: Hawaii</td>
</tr>
<tr>
<td>Einstein - scientist</td>
<td>Messi: midfielder</td>
<td>Mozart: violinist</td>
<td>Picasso: painter</td>
</tr>
<tr>
<td>Sarkozy - France</td>
<td>Berlusconi: Italy</td>
<td>Merkel: Germany</td>
<td>Koizumi: Japan</td>
</tr>
<tr>
<td>copper - Cu</td>
<td>zinc: Zn</td>
<td>gold: Au</td>
<td>uranium: plutonium</td>
</tr>
<tr>
<td>Berlusconi - Silvio</td>
<td>Sarkozy: Nicolas</td>
<td>Putin: Medvedev</td>
<td>Obama: Barack</td>
</tr>
<tr>
<td>Microsoft - Windows</td>
<td>Google: Android</td>
<td>IBM: Linux</td>
<td>Apple: iPhone</td>
</tr>
<tr>
<td>Microsoft - Ballmer</td>
<td>Google: Yahoo</td>
<td>IBM: McNealy</td>
<td>Apple: Jobs</td>
</tr>
<tr>
<td>Japan - sushi</td>
<td>Germany: bratwurst</td>
<td>France: tapas</td>
<td>USA: pizza</td>
</tr>
</tbody>
</table>

Example 3

- 2D PCA projection of countries and cities:
Aside: Embeddings as Features

• Use the learned u (or v) as features

• E.g., linear models for classification:

\[h(x) = \text{sign} \left(w^T \phi(x) \right) \]

Can be word identities or word2vec representation!
Training word2vec

• Train via gradient descent

\[
\arg\min_{U,V} \sum_{i} \sum_{j} \sum_{k \in [-C,C] \setminus 0} -\log P(p_{i}^{j+k} | p_{i}^{j})
\]

Sequences

Tokens in each Sequence

Skip Length

\[
P(s | s') = \frac{\exp\{u_{s}^{T}v_{s'}\}}{\sum_{s''} \exp\{u_{s'}^{T}v_{s''}\}} = \frac{\exp\{u_{s}^{T}v_{s'}\}}{Z(s')}
\]

Denominator expensive!

https://code.google.com/archive/p/word2vec/
Hierarchical Approach
(Probabilistic Decision Tree)

- Decision tree of paths
- Leaf node = word
- Choose each branch independently

Hierarchical Approach
(Probabilistic Decision Tree)

\[P(s_1 | s') = P(B | A, s') P(s_1 | B, s') \]

\[P(s_2 | s') = P(B | A, s') P(s_2 | B, s') \]

\[P(s_3 | s') = P(C | A, s') P(s_3 | C, s') \]

\[P(s_4 | s') = P(C | A, s') P(s_4 | C, s') \]

Hierarchical Approach
(Probabilistic Decision Tree)

\[
P(B \mid A, s) = \frac{1}{1 + \exp\left\{-u_{BC}^T v_s\right\}} = \frac{1}{1 + \exp\left\{u_{CB}^T v_s\right\}}
\]

\[
P(C \mid A, s) = \frac{1}{1 + \exp\left\{-u_{CB}^T v_s\right\}} = \frac{1}{1 + \exp\left\{u_{BC}^T v_s\right\}}
\]

\[u_{BC} = -u_{CB}\]
Hierarchical Approach
(Probabilistic Decision Tree)

\[P(s_1 \mid B, s) = \frac{1}{1 + \exp\{-u_{12}^T v_s\}} = \frac{1}{1 + \exp\{u_{21}^T v_s\}} \]

\[P(s_2 \mid B, s) = \frac{1}{1 + \exp\{-u_{21}^T v_s\}} = \frac{1}{1 + \exp\{u_{12}^T v_s\}} \]

\[u_{12} = -u_{21} \]
Hierarchical Approach
(Probabilistic Decision Tree)

• Compact formula:

\[P(s | s') = \prod_{m} P(n_{m,s} | n_{m-1,s}, s) \]

Levels in tree

Internal node at level m on path to leaf node s
Training Hierarchical Approach

- Train via gradient descent (same as before!)

\[
\arg\min_{U,V} \sum_{i} \sum_{j} \sum_{k \in [-C,C] \setminus 0} -\log P(p_{i}^{j+k} | p_{i}^{j})
\]

Complexity = \(O(\log_2(|S|))!\)

\[
P(s | s') = \prod_{m} P(n_{m,s} | n_{m-1,s}, s)
\]

https://code.google.com/archive/p/word2vec/
Summary: Hierarchical Approach

• Each word has a corresponding:
 – One \(v_s \)
 – \(\log_2(|S|) \) u’s!

• Target factors u’s are shared across words
 – Total number of U is still \(O(|S|) \)

• Previous use cases unchanged
 – They all used \(v_s \)
 – Vector subtraction, use as features for CRF, etc.
Recap: Embeddings

• **Given**: Training Data
 – Care about some property of training data
 • Markov Chain
 • Skip-Gram

• **Goal**: learn low dim representation
 – “Embedding”
 – Geometry of embedding captures property of interest
 • Either by distance or by inner-product
Visualization Semantics

Inner-Product Embeddings
Similarity measured via dot product
Rotational semantics
Can interpret axes
Can only visualize 2 axes at a time

Distance-Based Embedding
Similarity measured via distance
Clustering/locality semantics
Cannot interpret axes
Can visualize many clusters simultaneously
Next Week

• Recent Applications Lectures

• Latent Factor Models

• Deep Generative Models