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Past	  Two	  Lectures	  

•  Dimensionality	  Reduc?on	  
•  Clustering	  

•  Latent	  Factor	  Models	  
– Learn	  low-‐dimensional	  representa?on	  of	  data	  
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This	  Lecture	  

•  Embeddings	  
– Generaliza?on	  of	  Latent-‐Factor	  Models	  

•  Warm-‐up:	  Locally-‐Linear	  Embeddings	  
	  

•  Probabilis?c	  Sequence	  Embeddings	  
– Playlist	  embeddings	  
– Word	  embeddings	  

Lecture	  14:	  Embeddings	   3	  



Embedding	  

•  Learn	  a	  representa?on	  U	  
–  Each	  column	  u	  corresponds	  to	  data	  point	  

•  Seman?cs	  encoded	  via	  d(u,u’)	  
–  Distance	  between	  points	  

–  Similarity	  between	  points	  
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d(u,u ') = u−u ' 2

d(u,u ') = uTu ' Generalizes	  	  
Latent-‐Factor	  Models	  



Locally	  Linear	  Embedding	  

•  Given:	  
	  

•  Learn	  U	  such	  that	  local	  linearity	  is	  preserved	  
– Lower	  dimensional	  than	  x	  
– “Manifold	  Learning”	  
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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Unsupervised	  Learning	  

Any	  neighborhood	  
looks	  like	  a	  linear	  plane	  

x’s	   u’s	  



Approach	  

•  Define	  rela?onship	  of	  each	  x	  to	  its	  neighbors	  

•  Find	  a	  lower	  dimensional	  u	  that	  preserves	  
rela?onship	  
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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x’s	   u’s	  



Locally	  Linear	  Embedding	  

•  Create	  B(i)	  
–  B	  nearest	  neighbors	  of	  xi	  
–  Assump.on:	  B(i)	  is	  approximately	  linear	  
–  xi	  can	  be	  wriVen	  as	  a	  convex	  combina?on	  of	  xj	  in	  B(i)	  
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S = xi{ }i=1
N
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0.4
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0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi	  

B(i)	  



Locally	  Linear	  Embedding	  
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argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1
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xi − Wijx j
j∈B(i)
∑

2

= Wij (xi − x j )
j∈B(i)
∑

2

                          = Wij (xi − x j )
j∈B(i)
∑

$

%
&&

'

(
))

T

Wij (xi − x j )
j∈B(i)
∑

$

%
&&

'

(
))

                          = WijWikCjk
i

k∈B(i)
∑

j∈B(i)
∑

                          =Wi,*
TCiWi,* Cjk

i = (xi − x j )
T (xi − xk )

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'
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S = xi{ }i=1
N
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0

0.1
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0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	  Neighbors	  B(i),	  solve	  local	  linear	  approxima?on	  W:	  



Locally	  Linear	  Embedding	  

•  Every	  xi	  is	  approximated	  as	  
a	  convex	  combina?on	  of	  
neighbors	  
–  How	  to	  solve?	  
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Wij
j∈B(i)
∑ =1

Cjk
i = (xi − x j )

T (xi − xk )

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'
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Given	  Neighbors	  B(i),	  solve	  local	  linear	  approxima?on	  W:	  



Lagrange	  Mul?pliers	  

argmin
w

L(w) ≡ wTCw

s.t. w =1

∃λ ≥ 0 : ∂wL(y,w)∈ λ∇w w( )∧ w =1( )

∇wj
w

−1 if wj < 0

+1 if wj > 0

−1,+1[ ] if wj = 0

#

$
%%

&
%
%

Solu.ons	  tend	  to	  	  
be	  at	  corners!	  

10	  hVp://en.wikipedia.org/wiki/Lagrange_mul?plier	  



Solving	  Locally	  Linear	  Approxima?on	  
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L(W,λ) = Wi,*
TCiWi,* −λi

!
1TWi,* −1( )( )

i
∑ Wij =

!
1T

j
∑ Wi,*

∂Wi,*
L(W,λ) = 2CiWi,* −λi

!
1

Wi,* =
λi
2
Ci( )

−1 !
1∝ Ci( )

−1 !
1

Wij ∝ Ci( ) jk
−1

k∈B(i)
∑ Wij =

Ci( ) jk
−1

k∈B(i)
∑

Ci( )lm
−1

m∈B(i)
∑

l∈B(i)
∑

Lagrangian:	  



Locally	  Linear	  Approxima?on	  

•  Invariant	  to:	  

– Rota?on	  

– Scaling	  

– Transla?on	  
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xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1Axi ≈ AWijx j

j∈B(i)
∑

5xi ≈ 5Wijx j
j∈B(i)
∑

xi + x ' ≈ Wij x j + x '( )
j∈B(i)
∑



Story	  So	  Far:	  Locally	  Linear	  Embeddings	  

•  Locally	  Linear	  Approxima.on	  	  	  
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Given	  Neighbors	  B(i),	  solve	  local	  linear	  approxima?on	  W:	  

Solu?on	  via	  Lagrange	  Mul?pliers:	  



Recall:	  Locally	  Linear	  Embedding	  

•  Given:	  
	  

•  Learn	  U	  such	  that	  local	  linearity	  is	  preserved	  
– Lower	  dimensional	  than	  x	  
– “Manifold	  Learning”	  
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n 

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

x’s	   u’s	  



Dimensionality	  Reduc?on	  	  
(Learning	  the	  Embedding)	  

•  Find	  low	  dimensional	  U	  
– Preserves	  approximate	  local	  linearity	  

Lecture	  14:	  Embeddings	   15	  

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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hVps://www.cs.nyu.edu/~roweis/lle/	  

Given	  local	  approxima?on	  W,	  learn	  lower	  dimensional	  representa?on:	  

x’s	   u’s	  

Neighborhood	  	  
represented	  by	  Wi,*	  



•  Rewrite	  as:	  

Lecture	  14:	  Embeddings	   16	  

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑ UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj( )

ij
∑ ≡ trace UMUT( )

Mij =1 i= j[ ] −Wij −Wji + WkiWkj
k
∑

M = (IN −W )
T (IN −W )

Symmetric	  posi?ve	  semidefinite	  

hVps://www.cs.nyu.edu/~roweis/lle/	  

Given	  local	  approxima?on	  W,	  learn	  lower	  dimensional	  representa?on:	  



•  Suppose	  K=1	  

•  By	  min-‐max	  theorem	  
– u	  =	  principal	  eigenvector	  of	  M+	  

Lecture	  14:	  Embeddings	   17	  

UUT = IK
ui

i
∑ =

!
0

uuT =1

argmin
U

Mij ui
Tuj( )

ij
∑ ≡ trace UMUT( )

argmin
u

Mij ui
Tuj( )

ij
∑ ≡ trace uMuT( )

= argmax
u

trace uM +uT( )

hVp://en.wikipedia.org/wiki/Min-‐max_theorem	  

pseudoinverse	  

Given	  local	  approxima?on	  W,	  learn	  lower	  dimensional	  representa?on:	  



Recap:	  Principal	  Component	  Analysis	  

•  Each	  column	  of	  V	  is	  an	  Eigenvector	  
•  Each	  λ	  is	  an	  Eigenvalue	  (λ1	  ≥	  λ2	  ≥	  …)	  

Lecture	  14:	  Embeddings	   18	  
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•  K=1:	  
–  u	  =	  principal	  eigenvector	  of	  M+	  

–  u	  =	  smallest	  non-‐trivial	  eigenvector	  of	  M	  
•  Corresponds	  to	  smallest	  non-‐zero	  eigenvalue	  

•  General	  K	  
–  U	  =	  top	  K	  principal	  eigenvectors	  of	  M+	  

–  U	  =	  boVom	  K	  non-‐trivial	  eigenvectors	  of	  M	  
•  Corresponds	  to	  boVom	  K	  non-‐zero	  eigenvalues	  
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UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj( )

ij
∑ ≡ trace UMUT( )

hVp://en.wikipedia.org/wiki/Min-‐max_theorem	  

hVps://www.cs.nyu.edu/~roweis/lle/	  

Given	  local	  approxima?on	  W,	  learn	  lower	  dimensional	  representa?on:	  



Recap:	  Locally	  Linear	  Embedding	  

•  Generate	  nearest	  neighbors	  of	  each	  xi,	  B(i)	  

•  Compute	  Local	  Linear	  Approxima?on:	  

	  

•  Compute	  low	  dimensional	  embedding	  

Lecture	  14:	  Embeddings	   20	  

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ Wij

j∈B(i)
∑ =1

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

UUT = IK
ui

i
∑ =

!
0



Results	  for	  Different	  Neighborhoods	  
(K=2)	  
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hVps://www.cs.nyu.edu/~roweis/lle/gallery.html	  

B=3	  

B=6	   B=9	   B=12	  

True	  Distribu?on	   2000	  Samples	  



Probabilis?c	  Sequence	  Embeddings	  
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Example	  1:	  Playlist	  Embedding	  

•  Users	  generate	  song	  playlists	  
– Treat	  as	  training	  data	  

•  Can	  we	  learn	  a	  probabilis.c	  model	  of	  
playlists?	  

Lecture	  14:	  Embeddings	   23	  



Example	  2:	  Word	  Embedding	  

•  People	  write	  natural	  text	  all	  the	  ?me	  
– Treat	  as	  training	  data	  

•  Can	  we	  learn	  a	  probabilis.c	  model	  of	  word	  
sequences?	  
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Probabilis?c	  Sequence	  Modeling	  

•  Training	  set:	  

•  Goal:	  Learn	  a	  Markov	  model	  of	  sequences:	  

•  What	  is	  the	  form	  of	  P?	  

Lecture	  14:	  Embeddings	   25	  

pi = pi
1,..., pi

NiD = pi{ }i=1
N

P(pi
j | pi

j−1)

S = s1,...s|S|{ }
Songs,	  Words	   Playlists,	  Documents	   Sequence	  Defini?on	  



First	  Try:	  Probability	  Tables	  
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P(s|s’)	   s1	   s2	   s3	   s4	   s5	   s6	   s7	   sstart	  
s1	   0.01	   0.03	   0.01	   0.11	   0.04	   0.04	   0.01	   0.05	  

s2	   0.03	   0.01	   0.04	   0.03	   0.02	   0.01	   0.02	   0.02	  

s3	   0.01	   0.01	   0.01	   0.07	   0.02	   0.02	   0.05	   0.09	  

s4	   0.02	   0.11	   0.07	   0.01	   0.07	   0.04	   0.01	   0.01	  

s5	   0.04	   0.01	   0.02	   0.17	   0.01	   0.01	   0.10	   0.02	  

s6	   0.01	   0.02	   0.03	   0.01	   0.01	   0.01	   0.01	   0.08	  

s7	   0.07	   0.02	   0.01	   0.01	   0.03	   0.09	   0.03	   0.01	  …
	  

…	  



First	  Try:	  Probability	  Tables	  
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P(s|s’)	   s1	   s2	   s3	   s4	   s5	   s6	   s7	   sstart	  
s1	   0.01	   0.03	   0.01	   0.11	   0.04	   0.04	   0.01	   0.05	  

s2	   0.03	   0.01	   0.04	   0.03	   0.02	   0.01	   0.02	   0.02	  

s3	   0.01	   0.01	   0.01	   0.07	   0.02	   0.02	   0.05	   0.09	  

s4	   0.02	   0.11	   0.07	   0.01	   0.07	   0.04	   0.01	   0.01	  

s5	   0.04	   0.01	   0.02	   0.17	   0.01	   0.01	   0.10	   0.02	  

s6	   0.01	   0.02	   0.03	   0.01	   0.01	   0.01	   0.01	   0.08	  

s7	   0.07	   0.02	   0.01	   0.01	   0.03	   0.09	   0.03	   0.01	  …
	  

…	  
#Parameters	  =	  O(|S|2)	  !!!	  
(worse	  for	  higher-‐order	  sequence	  models)	  



Second	  Try:	  Hidden	  Markov	  Models	  

•  #Parameters	  =	  O(K2)	  

•  #Parameters	  =	  O(|S|K)	  

•  Total	  =	  O(K2)	  +	  O(|S|K)	  
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P pi, z( ) = P(End | zNi ) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j )

j=1

N j

∏

P(z j | z j−1)

P(pi
j | z j )



Problem	  with	  Hidden	  Markov	  Models	  

•  Need	  to	  reliably	  es?mate	  P(s|z)	  

	  
•  Hard	  to	  do!	  	  
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P pi, z( ) = P(End | zNi ) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j )

j=1

N j

∏

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }



Outline	  for	  Sequence	  Modeling	  	  

•  Playlist	  Embedding	  
– Distance-‐based	  embedding	  
–  hVp://www.cs.cornell.edu/people/tj/playlists/index.html	  

•  Word	  Embedding	  (word2vec)	  
–  Inner-‐product	  embedding	  
–  hVps://code.google.com/archive/p/word2vec/	  

•  Compare	  the	  two	  approaches	  
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Homework	  Ques.on!	  



Markov	  Embedding	  (Distance)	  

•  “Log-‐Radial”	  func?on	  
–  (my	  own	  terminology)	  
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P(s | s ')∝ exp − us − vs '
2{ }

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	  

us:	  entry	  point	  of	  song	  s	  
vs:	  exit	  point	  of	  song	  s	  



Log-‐Radial	  Func?ons	  
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vs’	  

Each	  ring	  defines	  an	  equivalence	  class	  of	  transi?on	  probabili?es	  	  

us	  
us”	  

2K	  parameters	  per	  song	  
2|S|K	  parameters	  total	  

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑



Learning	  Problem	  

•  Learning	  Goal:	  
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hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	  

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	   Playlists	   Playlist	  Defini?on	  
(each	  pj	  corresponds	  to	  a	  song)	  

argmax
U,V

P(pi )
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')

Sequences	   Tokens	  in	  each	  Sequence	  



Minimize	  Neg	  Log	  Likelihood	  

•  Solve	  using	  gradient	  descent	  
– Random	  ini?aliza?on	  

•  Normaliza?on	  constant	  hard	  to	  compute:	  
– Approxima?on	  heuris?cs	  

•  See	  paper	  
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argmax
U,V

P(pi
j | pi

j−1)
j
∏

i
∏ = argmin

U,V
− logP(pi

j | pi
j−1)

j
∑

i
∑

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	  

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')



Story	  so	  Far:	  Playlist	  Embedding	  

•  Training	  set	  of	  playlists	  
–  Sequences	  of	  songs	  

•  Want	  to	  build	  probability	  tables	  P(s|s’)	  
–  But	  a	  lot	  of	  missing	  values,	  hard	  to	  generalize	  directly	  
–  Assume	  low-‐dimensional	  embedding	  of	  songs	  
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P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')



Simpler	  Version	  

•  Dual	  point	  model:	  

•  Single	  point	  model:	  
– Transi?ons	  are	  symmetric	  

•  (almost)	  

– Exact	  same	  form	  of	  training	  problem	  
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P(s | s ') =
exp − us −us '

2{ }
Z(s ')

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')



Visualiza?on	  in	  2D	  
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This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com
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Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	  

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

Simpler	  version:	  	  
Single	  Point	  Model	  

Single	  point	  model	  is	  	  
easier	  to	  visualize	  



Sampling	  New	  Playlists	  

•  Given	  par?al	  playlist:	  

•  Generate	  next	  song	  for	  playlist	  pj+1	  
– Sample	  according	  to:	  

Lecture	  14:	  Embeddings	   38	  

p = p1,...p j

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	  

P(s | p j ) =
exp − us − vp j

2{ }
Z(p j ) P(s | p j ) =

exp − us −upj
2{ }

Z(p j )

Dual	  Point	  Model	   Single	  Point	  Model	  



Demo	  
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hVp://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html	  



What	  About	  New	  Songs?	  

•  Suppose	  we’ve	  trained	  U:	  

•  What	  if	  we	  add	  a	  new	  song	  s’?	  
– No	  playlists	  created	  by	  users	  yet…	  
– Only	  op?ons:	  us’	  =	  0	  or	  us’	  =	  random	  

•  Both	  are	  terrible!	  
•  “Cold-‐start”	  problem	  
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P(s | s ') =
exp − us −us '

2{ }
Z(s ')



Song	  &	  Tag	  Embedding	  

•  Songs	  are	  usually	  added	  with	  tags	  
– E.g.,	  indie	  rock,	  country	  
– Treat	  as	  features	  or	  aVributes	  of	  songs	  

•  How	  to	  leverage	  tags	  to	  generate	  a	  reasonable	  
embedding	  of	  new	  songs?	  
– Learn	  an	  embedding	  of	  tags	  as	  well!	  
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argmax
U,A

P(D |U)P(U | A,T )

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	   Playlists	   Playlist	  Defini?on	  

T = T1,...T|S|{ }
Tags	  for	  Each	  Song	  

hVp://www.cs.cornell.edu/People/tj/publica?ons/moore_etal_12a.pdf	  

P(D |U) = P(pi |U)
i
∏ = P(pi

j | pi
j−1,U)

j
∏

i
∏

P(U | A,T ) = P(us | A,TS )
s
∏ ∝ exp −λ us −

1
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At
t∈Ts

∑
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'
(
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*
+
(

,(s
∏

Learning	  Objec.ve:	  

Same	  term	  as	  before:	  

Song	  embedding	  ≈	  average	  of	  tag	  embeddings:	  

Solve	  using	  gradient	  descent:	  



Visualiza?on	  in	  2D	  
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Figure 1: 2D embedding for yes small. The top 50 genre
tags are labeled; lighter points represent songs.
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Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes small (left) and yes big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where
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Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes small.

the next song is sampled independently of the previous
songs. The probability p(si) of each song si is estimated
from the training set as p(si) =

niP
j nj

, where ni is the
number of appearances of si.

The Bigram Model conditions the probability of the
next song on the previous song similar to our LME model.
However, the transition probabilities p(sj |si) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(sj |si), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. � = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes small. However, it fails to beat
the unigram model on yes big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent

hVp://www.cs.cornell.edu/People/tj/publica?ons/moore_etal_12a.pdf	  



Revisited:	  What	  About	  New	  Songs?	  

•  No	  user	  has	  s’	  added	  to	  playlist	  
– So	  no	  evidence	  from	  playlist	  training	  data:	  

•  Assume	  new	  song	  has	  been	  tagged	  Ts’	  
– The	  us’	  =	  average	  of	  At	  for	  tags	  t	  in	  Ts’	  
–  Implica?on	  from	  objec?ve:	  
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D = pi{ }i=1
N

argmax
U,A

P(D |U)P(U | A,T )

s’	  does	  not	  appear	  in	  



Switching	  Gears:	  Word	  Embeddings	  

•  Given	  a	  large	  corpus	  
– Wikipedia	  
– Google	  News	  

•  Learn	  a	  word	  embedding	  to	  model	  sequences	  
of	  words	  (e.g.,	  sentences)	  
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hVps://code.google.com/archive/p/word2vec/	  



Switching	  Gears:	  Inner	  Product	  Embeddings	  

•  Previous:	  capture	  seman?cs	  via	  distance	  

•  Can	  also	  capture	  seman?cs	  via	  inner	  product	  
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P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

P(s | s ') =
exp us

Tvs '{ }
exp us"

T vs '{ }
s"
∑

Basically	  a	  latent-‐factor	  model!	  



Log-‐Linear	  Embeddings	  

Lecture	  14:	  Embeddings	   47	  

Each	  projec?on	  level	  onto	  the	  green	  line	  defines	  an	  equivalence	  class	  

2K	  parameters	  per	  song	  
2|S|K	  parameters	  total	  

vs’	  
P(s | s ') =

exp us
Tvs '{ }

exp us"
Tvs '{ }

s"
∑ us	  

us	  

us	  

us	  



Learning	  Problem	  (Version	  1)	  

•  Learning	  Goal:	  
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pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Words	   Sentences	   Sentence	  Defini?on	  
(Each	  pj	  is	  a	  word)	  

argmax
U,V

P(pi )
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp us

Tvs '{ }
exp u

s"

T vs '{ }
s"
∑

=
exp u

s

Tvs '{ }
Z(s ')

Sequences	   Tokens	  in	  each	  Sequence	  



Skip-‐Gram	  Model	  (word2vec)	  

•  Predict	  probability	  of	  any	  neighboring	  word	  
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argmax
U,V

P(pi
j+k | pi

j )
k∈[−C,C ]\0
∏

j
∏

i
∏

Sequences	   Tokens	  in	  each	  Sequence	  

Skip	  Length	  
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Skip-‐Gram	  Model	  (word2vec)	  

•  Predict	  probability	  of	  any	  neighboring	  word	  
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argmax
U,V

P(pi
j+k | pi

j )
k∈[−C,C ]\0
∏

j
∏
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Sequences	   Tokens	  in	  each	  Sequence	  

Skip	  Length	  

P(s | s ') =
exp us

Tvs '{ }
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What	  are	  benefits	  of	  
Skip-‐Gram	  model?	  

hVps://code.google.com/archive/p/word2vec/	  



Intui?on	  of	  Skip-‐Gram	  Model	  

•  “The	  dog	  jumped	  over	  the	  fence.”	  
•  “My	  dog	  ate	  my	  homework.”	  
•  “I	  walked	  my	  dog	  up	  to	  the	  fence.”	  

•  Distribu?on	  of	  neighboring	  words	  more	  peaked	  
•  Distribu?on	  of	  further	  words	  more	  diffuse	  
•  Capture	  everything	  in	  a	  single	  model	  
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argmax
U,V

P(pi
j+k | pi

j )
k∈[−C,C ]\0
∏

j
∏

i
∏

Example	  sentences	  



Dimensionality	  Reduc?on	  

•  What	  dimensionality	  should	  we	  choose	  U,V?	  
–  E.g.,	  what	  should	  K	  be?	  

	  
•  K	  =	  |S|2	  implies	  we	  can	  memorize	  every	  word	  pair	  interac?on	  
•  Smaller	  K	  assumes	  words	  lie	  in	  lower-‐dimensional	  space	  

–  Easier	  to	  generalize	  across	  words	  
•  Larger	  K	  can	  overfit	  
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P(s | s ') =
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Example	  1	  

•  vCzech	  +	  vcurrency	  ≈	  vkoruna	  
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NEG-15 with 10−5 subsampling HS with 10−5 subsampling
Vasco de Gama Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
Ionian Sea Ruegen Ionian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche

Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

To maximize the accuracy on the phrase analogy task, we increased the amount of the training data
by using a dataset with about 33 billion words. We used the hierarchical softmax, dimensionality
of 1000, and the entire sentence for the context. This resulted in a model that reached an accuracy
of 72%. We achieved lower accuracy 66% when we reduced the size of the training dataset to 6B
words, which suggests that the large amount of the training data is crucial.

To gain further insight into how different the representations learned by different models are, we did
inspect manually the nearest neighbours of infrequent phrases using various models. In Table 4, we
show a sample of such comparison. Consistently with the previous results, it seems that the best
representations of phrases are learned by a model with the hierarchical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representations learned by the Skip-gram model exhibit
a linear structure that makes it possible to perform precise analogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-gram representations exhibit another kind of linear
structure that makes it possible to meaningfully combine words by an element-wise addition of their
vector representations. This phenomenon is illustrated in Table 5.

The additive property of the vectors can be explained by inspecting the training objective. The word
vectors are in a linear relationship with the inputs to the softmax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sentence, the vectors can be seen as representing
the distribution of the context in which a word appears. These values are related logarithmically
to the probabilities computed by the output layer, so the sum of two word vectors is related to the
product of the two context distributions. The product works here as the AND function: words that
are assigned high probabilities by both word vectors will have high probability, and the other words
will have low probability. Thus, if “Volga River” appears frequently in the same sentence together
with the words “Russian” and “river”, the sum of these two word vectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural network based representations of words have
published their resulting models for further use and comparison: amongst the most well known au-
thors are Collobert and Weston [2], Turian et al. [17], and Mnih and Hinton [10]. We downloaded
their word vectors from the web3. Mikolov et al. [8] have already evaluated these word representa-
tions on the word analogy task, where the Skip-gram models achieved the best performance with a
huge margin.

3http://metaoptimize.com/projects/wordreprs/
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Example	  2	  

•  E.g.,	  vFrance	  –	  vParis	  +	  vItaly	  ≈	  vRome	  
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Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.
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Example	  3	  

•  2D	  PCA	  projec?on	  of	  countries	  and	  ci?es:	  
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4
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Aside:	  Embeddings	  as	  Features	  

•  Use	  the	  learned	  u	  (or	  v)	  as	  features	  

•  E.g.,	  linear	  models	  for	  classifica?on:	  
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h(x) = sign wTφ(x)( )

Can	  be	  word	  iden..es	  or	  word2vec	  representa.on!	  



Training	  word2vec	  

•  Train	  via	  gradient	  descent	  
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Denominator	  	  
expensive!	  



Hierarchical	  Approach	  
(Probabilis?c	  Decision	  Tree)	  
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A	  

B	   C	  

s1	   s2	   s4	  s3	  

•  Decision	  tree	  of	  paths	  	  

•  Leaf	  node	  =	  word	  	  

•  Choose	  each	  branch	  
independently	  



Hierarchical	  Approach	  
(Probabilis?c	  Decision	  Tree)	  
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B	   C	  
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P(s3 | s ') = P(C | A, s ')P(s3 |C, s ')
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Hierarchical	  Approach	  
(Probabilis?c	  Decision	  Tree)	  
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Hierarchical	  Approach	  
(Probabilis?c	  Decision	  Tree)	  
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Hierarchical	  Approach	  
(Probabilis?c	  Decision	  Tree)	  

•  Compact	  formula:	  
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A	  

B	   C	  

s1	   s2	   s4	  s3	  

P(s | s ') = P(nm,s | nm−1,s, s)
m
∏

Levels	  in	  tree	  

Internal	  node	  at	  level	  m	  
on	  path	  to	  leaf	  node	  s	  



Training	  Hierarchical	  Approach	  

•  Train	  via	  gradient	  descent	  (same	  as	  before!)	  
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Complexity	  
=	  O(log2(|S|))!	  

P(s | s ') = P(nm,s | nm−1,s, s)
m
∏



Summary:	  Hierarchical	  Approach	  

•  Each	  word	  has	  s	  corresponds	  to:	  
–  One	  vs	  
–  Log2(|S|)	  u’s!	  

•  Target	  factors	  u’s	  are	  shared	  across	  words	  
–  Total	  number	  of	  U	  is	  s?ll	  O(|S|)	  

•  Previous	  use	  cases	  unchanged	  
–  They	  all	  used	  vs	  
–  Vector	  subtrac?on,	  use	  as	  features	  for	  CRF,	  etc.	  
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Recap:	  Embeddings	  

•  Given:	  Training	  Data	  
–  Care	  about	  some	  property	  of	  training	  data	  

•  Markov	  Chain	  
•  Skip-‐Gram	  

•  Goal:	  learn	  low	  dim	  representa?on	  	  
–  “Embedding”	  
–  Geometry	  of	  embedding	  captures	  property	  of	  interest	  

•  Either	  by	  distance	  or	  by	  inner-‐product	  
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Visualiza?on	  Seman?cs	  
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become
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where Zr(sa) is the partition function restricted to Cr
a , namelyP
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a
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2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com
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Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

Inner-‐Product	  Embeddings	  
Similarity	  measured	  via	  dot	  product	  
Rota?onal	  seman?cs	  
Can	  interpret	  axes	  
Can	  only	  visualize	  2	  axes	  at	  a	  ?me	  

Distance-‐Based	  Embedding	  
Similarity	  measured	  via	  distance	  
Clustering/locality	  seman?cs	  
Cannot	  interpret	  axes	  
Can	  visualize	  many	  clusters	  simultaneously	  



Next	  Week	  

•  Recent	  Applica?ons	  Lectures	  

•  Latent	  Factor	  Models	  

•  Deep	  Genera?ve	  Models	  
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