
Machine	 Learning	 &	 Data	 Mining	
CS/CNS/EE	 155	

Lecture	 14:	
Embeddings	

1	 Lecture	 14:	 Embeddings	

Past	 Two	 Lectures	

•  Dimensionality	 Reduc?on	
•  Clustering	

•  Latent	 Factor	 Models	
– Learn	 low-‐dimensional	 representa?on	 of	 data	

Lecture	 14:	 Embeddings	 2	

This	 Lecture	

•  Embeddings	
– Generaliza?on	 of	 Latent-‐Factor	 Models	

•  Warm-‐up:	 Locally-‐Linear	 Embeddings	
	

•  Probabilis?c	 Sequence	 Embeddings	
– Playlist	 embeddings	
– Word	 embeddings	

Lecture	 14:	 Embeddings	 3	

Embedding	

•  Learn	 a	 representa?on	 U	
–  Each	 column	 u	 corresponds	 to	 data	 point	

•  Seman?cs	 encoded	 via	 d(u,u’)	
–  Distance	 between	 points	

–  Similarity	 between	 points	

Lecture	 14:	 Embeddings	 4	

d(u,u ') = u−u ' 2

d(u,u ') = uTu ' Generalizes	 	
Latent-‐Factor	 Models	

Locally	 Linear	 Embedding	

•  Given:	
	

•  Learn	 U	 such	 that	 local	 linearity	 is	 preserved	
– Lower	 dimensional	 than	 x	
– “Manifold	 Learning”	

Lecture	 14:	 Embeddings	 5	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

Unsupervised	 Learning	

Any	 neighborhood	
looks	 like	 a	 linear	 plane	

x’s	 u’s	

Approach	

•  Define	 rela?onship	 of	 each	 x	 to	 its	 neighbors	

•  Find	 a	 lower	 dimensional	 u	 that	 preserves	
rela?onship	

Lecture	 14:	 Embeddings	 6	

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

x’s	 u’s	

Locally	 Linear	 Embedding	

•  Create	 B(i)	
–  B	 nearest	 neighbors	 of	 xi	
–  Assump.on:	 B(i)	 is	 approximately	 linear	
–  xi	 can	 be	 wriVen	 as	 a	 convex	 combina?on	 of	 xj	 in	 B(i)	

	

Lecture	 14:	 Embeddings	 7	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi	

B(i)	

Locally	 Linear	 Embedding	

Lecture	 14:	 Embeddings	 8	

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1

hVps://www.cs.nyu.edu/~roweis/lle/	

xi − Wijx j
j∈B(i)
∑

2

= Wij (xi − x j)
j∈B(i)
∑

2

 = Wij (xi − x j)
j∈B(i)
∑

$

%
&&

'

(
))

T

Wij (xi − x j)
j∈B(i)
∑

$

%
&&

'

(
))

 = WijWikCjk
i

k∈B(i)
∑

j∈B(i)
∑

 =Wi,*
TCiWi,* Cjk

i = (xi − x j)
T (xi − xk)

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	 Neighbors	 B(i),	 solve	 local	 linear	 approxima?on	 W:	

Locally	 Linear	 Embedding	

•  Every	 xi	 is	 approximated	 as	
a	 convex	 combina?on	 of	
neighbors	
–  How	 to	 solve?	

Lecture	 14:	 Embeddings	 9	

Wij
j∈B(i)
∑ =1

Cjk
i = (xi − x j)

T (xi − xk)

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑

Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

Given	 Neighbors	 B(i),	 solve	 local	 linear	 approxima?on	 W:	

Lagrange	 Mul?pliers	

argmin
w

L(w) ≡ wTCw

s.t. w =1

∃λ ≥ 0 : ∂wL(y,w)∈ λ∇w w()∧ w =1()

∇wj
w

−1 if wj < 0

+1 if wj > 0

−1,+1[] if wj = 0

#

$
%%

&
%
%

Solu.ons	 tend	 to	 	
be	 at	 corners!	

10	 hVp://en.wikipedia.org/wiki/Lagrange_mul?plier	

Solving	 Locally	 Linear	 Approxima?on	

Lecture	 14:	 Embeddings	 11	

L(W,λ) = Wi,*
TCiWi,* −λi

!
1TWi,* −1()()

i
∑ Wij =

!
1T

j
∑ Wi,*

∂Wi,*
L(W,λ) = 2CiWi,* −λi

!
1

Wi,* =
λi
2
Ci()

−1 !
1∝ Ci()

−1 !
1

Wij ∝ Ci() jk
−1

k∈B(i)
∑ Wij =

Ci() jk
−1

k∈B(i)
∑

Ci()lm
−1

m∈B(i)
∑

l∈B(i)
∑

Lagrangian:	

Locally	 Linear	 Approxima?on	

•  Invariant	 to:	

– Rota?on	

– Scaling	

– Transla?on	

Lecture	 14:	 Embeddings	 12	

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1Axi ≈ AWijx j

j∈B(i)
∑

5xi ≈ 5Wijx j
j∈B(i)
∑

xi + x ' ≈ Wij x j + x '()
j∈B(i)
∑

Story	 So	 Far:	 Locally	 Linear	 Embeddings	

•  Locally	 Linear	 Approxima.on	 	 	

Lecture	 14:	 Embeddings	 13	

Wij =

Ci() jk
−1

k∈B(i)
∑

Ci()lm
−1

m∈B(i)
∑

l∈B(i)
∑

Cjk
i = (xi − x j)

T (xi − xk)

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ = argmin

W
Wi,*

TCiWi,*
i
∑ Wij

j∈B(i)
∑ =1Locally'Linear'Embedding'

•  Create'B(i)'
–  B'nearest'neighbors'of'xi'
–  Assump&on:*B(i)'is'approximately'linear'
–  xi'can'be'wri<en'as'a'convex'combina>on'of'xj'in'B(i)'

'

Lecture'14:'Embeddings' 8'

h<ps://www.cs.nyu.edu/~roweis/lle/'

S = xi{ }i=1
N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi ≈ Wijx j
j∈B(i)
∑

Wij
j∈B(i)
∑ =1

xi'

B(i)'

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	 Neighbors	 B(i),	 solve	 local	 linear	 approxima?on	 W:	

Solu?on	 via	 Lagrange	 Mul?pliers:	

Recall:	 Locally	 Linear	 Embedding	

•  Given:	
	

•  Learn	 U	 such	 that	 local	 linearity	 is	 preserved	
– Lower	 dimensional	 than	 x	
– “Manifold	 Learning”	

Lecture	 14:	 Embeddings	 14	

hVps://www.cs.nyu.edu/~roweis/lle/	

S = xi{ }i=1
N

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

x’s	 u’s	

Dimensionality	 Reduc?on	 	
(Learning	 the	 Embedding)	

•  Find	 low	 dimensional	 U	
– Preserves	 approximate	 local	 linearity	

Lecture	 14:	 Embeddings	 15	

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682
(1998).

37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-
tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/!yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.
Proc. Syst. 5, 50 (1993).

42. In order to evaluate the fits of PCA, MDS, and Isomap
on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

Fe
br

ua
ry

 2
3,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
Fe

br
ua

ry
 2

3,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	 local	 approxima?on	 W,	 learn	 lower	 dimensional	 representa?on:	

x’s	 u’s	

Neighborhood	 	
represented	 by	 Wi,*	

•  Rewrite	 as:	

Lecture	 14:	 Embeddings	 16	

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑ UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

Mij =1 i= j[] −Wij −Wji + WkiWkj
k
∑

M = (IN −W)
T (IN −W)

Symmetric	 posi?ve	 semidefinite	

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	 local	 approxima?on	 W,	 learn	 lower	 dimensional	 representa?on:	

•  Suppose	 K=1	

•  By	 min-‐max	 theorem	
– u	 =	 principal	 eigenvector	 of	 M+	

Lecture	 14:	 Embeddings	 17	

UUT = IK
ui

i
∑ =

!
0

uuT =1

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

argmin
u

Mij ui
Tuj()

ij
∑ ≡ trace uMuT()

= argmax
u

trace uM +uT()

hVp://en.wikipedia.org/wiki/Min-‐max_theorem	

pseudoinverse	

Given	 local	 approxima?on	 W,	 learn	 lower	 dimensional	 representa?on:	

Recap:	 Principal	 Component	 Analysis	

•  Each	 column	 of	 V	 is	 an	 Eigenvector	
•  Each	 λ	 is	 an	 Eigenvalue	 (λ1	 ≥	 λ2	 ≥	 …)	

Lecture	 14:	 Embeddings	 18	

M =VΛVT
Λ =

λ1
λ2

0
0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

M + =VΛ+VT
Λ+ =

1/ λ1
1 / λ2

0
0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

MM + =VΛΛ+VT =V1:2V1:2
T =

1
1
0

0

"

#

$
$
$
$

%

&

'
'
'
'

•  K=1:	
–  u	 =	 principal	 eigenvector	 of	 M+	

–  u	 =	 smallest	 non-‐trivial	 eigenvector	 of	 M	
•  Corresponds	 to	 smallest	 non-‐zero	 eigenvalue	

•  General	 K	
–  U	 =	 top	 K	 principal	 eigenvectors	 of	 M+	

–  U	 =	 boVom	 K	 non-‐trivial	 eigenvectors	 of	 M	
•  Corresponds	 to	 boVom	 K	 non-‐zero	 eigenvalues	

Lecture	 14:	 Embeddings	 19	

UUT = IK

ui
i
∑ =

!
0

argmin
U

Mij ui
Tuj()

ij
∑ ≡ trace UMUT()

hVp://en.wikipedia.org/wiki/Min-‐max_theorem	

hVps://www.cs.nyu.edu/~roweis/lle/	

Given	 local	 approxima?on	 W,	 learn	 lower	 dimensional	 representa?on:	

Recap:	 Locally	 Linear	 Embedding	

•  Generate	 nearest	 neighbors	 of	 each	 xi,	 B(i)	

•  Compute	 Local	 Linear	 Approxima?on:	

	

•  Compute	 low	 dimensional	 embedding	

Lecture	 14:	 Embeddings	 20	

argmin
W

xi − Wijx j
j∈B(i)
∑

2

i
∑ Wij

j∈B(i)
∑ =1

argmin
U

ui − Wijuj
j∈B(i)
∑

2

i
∑

UUT = IK
ui

i
∑ =

!
0

Results	 for	 Different	 Neighborhoods	
(K=2)	

Lecture	 14:	 Embeddings	 21	

hVps://www.cs.nyu.edu/~roweis/lle/gallery.html	

B=3	

B=6	 B=9	 B=12	

True	 Distribu?on	 2000	 Samples	

Probabilis?c	 Sequence	 Embeddings	

Lecture	 14:	 Embeddings	 22	

Example	 1:	 Playlist	 Embedding	

•  Users	 generate	 song	 playlists	
– Treat	 as	 training	 data	

•  Can	 we	 learn	 a	 probabilis.c	 model	 of	
playlists?	

Lecture	 14:	 Embeddings	 23	

Example	 2:	 Word	 Embedding	

•  People	 write	 natural	 text	 all	 the	 ?me	
– Treat	 as	 training	 data	

•  Can	 we	 learn	 a	 probabilis.c	 model	 of	 word	
sequences?	

Lecture	 14:	 Embeddings	 24	

Probabilis?c	 Sequence	 Modeling	

•  Training	 set:	

•  Goal:	 Learn	 a	 Markov	 model	 of	 sequences:	

•  What	 is	 the	 form	 of	 P?	

Lecture	 14:	 Embeddings	 25	

pi = pi
1,..., pi

NiD = pi{ }i=1
N

P(pi
j | pi

j−1)

S = s1,...s|S|{ }
Songs,	 Words	 Playlists,	 Documents	 Sequence	 Defini?on	

First	 Try:	 Probability	 Tables	

Lecture	 14:	 Embeddings	 26	

P(s|s’)	 s1	 s2	 s3	 s4	 s5	 s6	 s7	 sstart	
s1	 0.01	 0.03	 0.01	 0.11	 0.04	 0.04	 0.01	 0.05	

s2	 0.03	 0.01	 0.04	 0.03	 0.02	 0.01	 0.02	 0.02	

s3	 0.01	 0.01	 0.01	 0.07	 0.02	 0.02	 0.05	 0.09	

s4	 0.02	 0.11	 0.07	 0.01	 0.07	 0.04	 0.01	 0.01	

s5	 0.04	 0.01	 0.02	 0.17	 0.01	 0.01	 0.10	 0.02	

s6	 0.01	 0.02	 0.03	 0.01	 0.01	 0.01	 0.01	 0.08	

s7	 0.07	 0.02	 0.01	 0.01	 0.03	 0.09	 0.03	 0.01	 …
	

…	

First	 Try:	 Probability	 Tables	

Lecture	 14:	 Embeddings	 27	

P(s|s’)	 s1	 s2	 s3	 s4	 s5	 s6	 s7	 sstart	
s1	 0.01	 0.03	 0.01	 0.11	 0.04	 0.04	 0.01	 0.05	

s2	 0.03	 0.01	 0.04	 0.03	 0.02	 0.01	 0.02	 0.02	

s3	 0.01	 0.01	 0.01	 0.07	 0.02	 0.02	 0.05	 0.09	

s4	 0.02	 0.11	 0.07	 0.01	 0.07	 0.04	 0.01	 0.01	

s5	 0.04	 0.01	 0.02	 0.17	 0.01	 0.01	 0.10	 0.02	

s6	 0.01	 0.02	 0.03	 0.01	 0.01	 0.01	 0.01	 0.08	

s7	 0.07	 0.02	 0.01	 0.01	 0.03	 0.09	 0.03	 0.01	 …
	

…	
#Parameters	 =	 O(|S|2)	 !!!	
(worse	 for	 higher-‐order	 sequence	 models)	

Second	 Try:	 Hidden	 Markov	 Models	

•  #Parameters	 =	 O(K2)	

•  #Parameters	 =	 O(|S|K)	

•  Total	 =	 O(K2)	 +	 O(|S|K)	

Lecture	 14:	 Embeddings	 28	

P pi, z() = P(End | zNi) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j)

j=1

N j

∏

P(z j | z j−1)

P(pi
j | z j)

Problem	 with	 Hidden	 Markov	 Models	

•  Need	 to	 reliably	 es?mate	 P(s|z)	

	
•  Hard	 to	 do!	 	

Lecture	 14:	 Embeddings	 29	

P pi, z() = P(End | zNi) P(z j | z j−1)
j=1

Ni

∏ P(pi
j | z j)

j=1

N j

∏

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Outline	 for	 Sequence	 Modeling	 	

•  Playlist	 Embedding	
– Distance-‐based	 embedding	
–  hVp://www.cs.cornell.edu/people/tj/playlists/index.html	

•  Word	 Embedding	 (word2vec)	
–  Inner-‐product	 embedding	
–  hVps://code.google.com/archive/p/word2vec/	

•  Compare	 the	 two	 approaches	

Lecture	 14:	 Embeddings	 30	

Homework	 Ques.on!	

Markov	 Embedding	 (Distance)	

•  “Log-‐Radial”	 func?on	
–  (my	 own	 terminology)	

Lecture	 14:	 Embeddings	 31	

P(s | s ')∝ exp − us − vs '
2{ }

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	

us:	 entry	 point	 of	 song	 s	
vs:	 exit	 point	 of	 song	 s	

Log-‐Radial	 Func?ons	

Lecture	 14:	 Embeddings	 32	

vs’	

Each	 ring	 defines	 an	 equivalence	 class	 of	 transi?on	 probabili?es	 	

us	
us”	

2K	 parameters	 per	 song	
2|S|K	 parameters	 total	

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

Learning	 Problem	

•  Learning	 Goal:	

Lecture	 14:	 Embeddings	 33	

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	 Playlists	 Playlist	 Defini?on	
(each	 pj	 corresponds	 to	 a	 song)	

argmax
U,V

P(pi)
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')

Sequences	 Tokens	 in	 each	 Sequence	

Minimize	 Neg	 Log	 Likelihood	

•  Solve	 using	 gradient	 descent	
– Random	 ini?aliza?on	

•  Normaliza?on	 constant	 hard	 to	 compute:	
– Approxima?on	 heuris?cs	

•  See	 paper	

Lecture	 14:	 Embeddings	 34	

argmax
U,V

P(pi
j | pi

j−1)
j
∏

i
∏ = argmin

U,V
− logP(pi

j | pi
j−1)

j
∑

i
∑

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')

Story	 so	 Far:	 Playlist	 Embedding	

•  Training	 set	 of	 playlists	
–  Sequences	 of	 songs	

•  Want	 to	 build	 probability	 tables	 P(s|s’)	
–  But	 a	 lot	 of	 missing	 values,	 hard	 to	 generalize	 directly	
–  Assume	 low-‐dimensional	 embedding	 of	 songs	

Lecture	 14:	 Embeddings	 35	

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

=
exp − us − vs '

2{ }
Z(s ')

Simpler	 Version	

•  Dual	 point	 model:	

•  Single	 point	 model:	
– Transi?ons	 are	 symmetric	

•  (almost)	

– Exact	 same	 form	 of	 training	 problem	

Lecture	 14:	 Embeddings	 36	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

P(s | s ') =
exp − us − vs '

2{ }
Z(s ')

Visualiza?on	 in	 2D	

Lecture	 14:	 Embeddings	 37	

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com

-4 -3 -2 -1 0 1 2 3 4 5

-2.2

-1.2

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

Garth Brooks

Bob Marley

The Rolling Stones

Michael Jackson

Lady Gaga

Metallica

T.I.

All

Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

Simpler	 version:	 	
Single	 Point	 Model	

Single	 point	 model	 is	 	
easier	 to	 visualize	

Sampling	 New	 Playlists	

•  Given	 par?al	 playlist:	

•  Generate	 next	 song	 for	 playlist	 pj+1	
– Sample	 according	 to:	

Lecture	 14:	 Embeddings	 38	

p = p1,...p j

hVp://www.cs.cornell.edu/People/tj/publica?ons/chen_etal_12a.pdf	

P(s | p j) =
exp − us − vp j

2{ }
Z(p j) P(s | p j) =

exp − us −upj
2{ }

Z(p j)

Dual	 Point	 Model	 Single	 Point	 Model	

Demo	

Lecture	 14:	 Embeddings	 39	

hVp://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html	

What	 About	 New	 Songs?	

•  Suppose	 we’ve	 trained	 U:	

•  What	 if	 we	 add	 a	 new	 song	 s’?	
– No	 playlists	 created	 by	 users	 yet…	
– Only	 op?ons:	 us’	 =	 0	 or	 us’	 =	 random	

•  Both	 are	 terrible!	
•  “Cold-‐start”	 problem	

Lecture	 14:	 Embeddings	 40	

P(s | s ') =
exp − us −us '

2{ }
Z(s ')

Song	 &	 Tag	 Embedding	

•  Songs	 are	 usually	 added	 with	 tags	
– E.g.,	 indie	 rock,	 country	
– Treat	 as	 features	 or	 aVributes	 of	 songs	

•  How	 to	 leverage	 tags	 to	 generate	 a	 reasonable	
embedding	 of	 new	 songs?	
– Learn	 an	 embedding	 of	 tags	 as	 well!	

Lecture	 14:	 Embeddings	 41	
hVp://www.cs.cornell.edu/People/tj/publica?ons/moore_etal_12a.pdf	

Lecture	 14:	 Embeddings	 42	

argmax
U,A

P(D |U)P(U | A,T)

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Songs	 Playlists	 Playlist	 Defini?on	

T = T1,...T|S|{ }
Tags	 for	 Each	 Song	

hVp://www.cs.cornell.edu/People/tj/publica?ons/moore_etal_12a.pdf	

P(D |U) = P(pi |U)
i
∏ = P(pi

j | pi
j−1,U)

j
∏

i
∏

P(U | A,T) = P(us | A,TS)
s
∏ ∝ exp −λ us −

1
Ts

At
t∈Ts

∑
2&

'
(

)(

*
+
(

,(s
∏

Learning	 Objec.ve:	

Same	 term	 as	 before:	

Song	 embedding	 ≈	 average	 of	 tag	 embeddings:	

Solve	 using	 gradient	 descent:	

Visualiza?on	 in	 2D	

Lecture	 14:	 Embeddings	 43	

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

8

rock

pop

alternative

classic rock

alternative rock

hard rock

dance

pop rock

singer-songwriter

country

oldies

easy listening

soft rock

metal

indie

chillout

ballad

soundtrack
soul

rnb
acoustic

heavy metal

top 40

rock n roll

live

hip-hop

modern country

grunge

progressive rock

christianhip hop

indie rock

rap

blues

punk

electronic
r&b

alternative metal

christian rock

rock and roll

blues rock

emo

funk
jazz

pop-rock

melancholic

post-grunge

folk

ballads

90s rock

Figure 1: 2D embedding for yes small. The top 50 genre
tags are labeled; lighter points represent songs.

-9

-8

-7

-6

-5

 2 5 10 25 50 100

Av
g.

 lo
g

lik
el

ih
oo

d

d
 2 5 10 25 50 100

d

LME
Uniform

Unigram
Bigram

Figure 2: Log-likelihood on the test set for the LME and
the baselines on yes small (left) and yes big (right).

observation is that the embedding of songs does not uni-
formly cover the space, but forms clusters as expected.
The location of the tags provides interesting insight into
the semantics of these clusters. Note that semantically syn-
onymous tags are typically close in embedding space (e.g.
“christian rock” and “christian”, “metal rock” and “heavy
metal”). Furthermore, location in embedding space gen-
erally interpolates smoothly between related genres (e.g.
“rock” and “metal”). Note that some tags lie outside the
support of the song distribution. The reason for this is
twofold. First, we will see below that a higher-dimensional
embedding is necessary to accurately represent the data.
Second, many tags are rarely used in isolation, so that some
tags may often simply modify the average prior for songs.

To evaluate our method and the embeddings it produces
more objectively and in higher dimensions, we now turn to
quantitative experiments.

4.2 How does the LME compare to n-gram models?

Our first quantitive experiment explores how the general-
ization accuracy of the LME compares to that of traditional
n-gram models from natural language processing (NLP).
The simplest NLP model is the Unigram Model, where

-9

-8

-7

-6

-5

-4

-3

 0 2 4 6 8 10
 0

 0.2

 0.4

 0.6

 0.8

 1

Av
g.

 lo
g

lik
el

ih
oo

d

Fr
ac

tio
n

of
 tr

an
si

tio
ns

Freq. of transitions in training set

LME log-likelihood
Bigram log-likelihood

Fraction of transitions

Figure 3: Log-likelihood on testing transitions with re-
spect to their frequencies in the training set for yes small.

the next song is sampled independently of the previous
songs. The probability p(si) of each song si is estimated
from the training set as p(si) =

niP
j nj

, where ni is the
number of appearances of si.

The Bigram Model conditions the probability of the
next song on the previous song similar to our LME model.
However, the transition probabilities p(sj |si) of each song
pair are estimated separately, not in a generalizing model
as in the LME. To address the the issue of data sparsity
when estimating p(sj |si), we use Witten-Bell smoothing
(see [5]) as commonly done in language modeling.

As a reference, we also report the results for the Uni-
form Model, where each song has equal probability 1/|S|.

Figure 2 compares the log-likelihood on the test set of
the basic LME model to that of the baselines. The x-axis
shows the dimensionality d of the embedding space. For
the sake of simplicity and brevity, we only report the re-
sults for the model from Section 3.1 trained without reg-
ularization (i.e. � = 0). Over the full range of d the
LME outperforms the baselines by at least two orders of
magnitude in terms of likelihood. While the likelihoods on
the big dataset are lower as expected (i.e. there are more
songs to choose from), the relative gain of the LME over
the baselines is even larger for yes big.

The tag-based model from Section 3.2 performs com-
parably to the results in Figure 2. For datasets with less
training data per song, however, we find that the tag-based
model is preferable. We explore the most extreme case,
namely songs without any training data, in Section 4.4.

Among the conventional sequence models, the bigram
model performs best on yes small. However, it fails to beat
the unigram model on yes big (which contains roughly 3
times the number of songs), since it cannot reliably es-
timate the huge number of parameters it entails. Note
that the number of parameters in the bigram model scales
quadratically with the number of songs, while it scales only
linearly in the LME model. The following section analyzes
in more detail where the conventional bigram model fails,
while the LME shows no signs of overfitting.

4.3 Where does the LME win over the n-gram model?

We now analyze why the LME beats the conventional bi-
gram model. In particular, we explore to what extent

hVp://www.cs.cornell.edu/People/tj/publica?ons/moore_etal_12a.pdf	

Revisited:	 What	 About	 New	 Songs?	

•  No	 user	 has	 s’	 added	 to	 playlist	
– So	 no	 evidence	 from	 playlist	 training	 data:	

•  Assume	 new	 song	 has	 been	 tagged	 Ts’	
– The	 us’	 =	 average	 of	 At	 for	 tags	 t	 in	 Ts’	
–  Implica?on	 from	 objec?ve:	

Lecture	 14:	 Embeddings	 44	

D = pi{ }i=1
N

argmax
U,A

P(D |U)P(U | A,T)

s’	 does	 not	 appear	 in	

Switching	 Gears:	 Word	 Embeddings	

•  Given	 a	 large	 corpus	
– Wikipedia	
– Google	 News	

•  Learn	 a	 word	 embedding	 to	 model	 sequences	
of	 words	 (e.g.,	 sentences)	

Lecture	 14:	 Embeddings	 45	

hVps://code.google.com/archive/p/word2vec/	

Switching	 Gears:	 Inner	 Product	 Embeddings	

•  Previous:	 capture	 seman?cs	 via	 distance	

•  Can	 also	 capture	 seman?cs	 via	 inner	 product	

Lecture	 14:	 Embeddings	 46	

P(s | s ') =
exp − us − vs '

2{ }
exp − us" − vs '

2{ }
s"
∑

P(s | s ') =
exp us

Tvs '{ }
exp us"

T vs '{ }
s"
∑

Basically	 a	 latent-‐factor	 model!	

Log-‐Linear	 Embeddings	

Lecture	 14:	 Embeddings	 47	

Each	 projec?on	 level	 onto	 the	 green	 line	 defines	 an	 equivalence	 class	

2K	 parameters	 per	 song	
2|S|K	 parameters	 total	

vs’	
P(s | s ') =

exp us
Tvs '{ }

exp us"
Tvs '{ }

s"
∑ us	

us	

us	

us	

Learning	 Problem	 (Version	 1)	

•  Learning	 Goal:	

Lecture	 14:	 Embeddings	 48	

pi = pi
1,..., pi

NiD = pi{ }i=1
NS = s1,...s|S|{ }

Words	 Sentences	 Sentence	 Defini?on	
(Each	 pj	 is	 a	 word)	

argmax
U,V

P(pi)
i
∏ = P(pi

j | pi
j−1)

j
∏

i
∏

P(s | s ') =
exp us

Tvs '{ }
exp u

s"

T vs '{ }
s"
∑

=
exp u

s

Tvs '{ }
Z(s ')

Sequences	 Tokens	 in	 each	 Sequence	

Skip-‐Gram	 Model	 (word2vec)	

•  Predict	 probability	 of	 any	 neighboring	 word	

Lecture	 14:	 Embeddings	 49	

argmax
U,V

P(pi
j+k | pi

j)
k∈[−C,C]\0
∏

j
∏

i
∏

Sequences	 Tokens	 in	 each	 Sequence	

Skip	 Length	

P(s | s ') =
exp us

Tvs '{ }
exp u

s"

T vs '{ }
s"
∑

=
exp u

s

Tvs '{ }
Z(s ')

hVps://code.google.com/archive/p/word2vec/	

Skip-‐Gram	 Model	 (word2vec)	

•  Predict	 probability	 of	 any	 neighboring	 word	

Lecture	 14:	 Embeddings	 50	

argmax
U,V

P(pi
j+k | pi

j)
k∈[−C,C]\0
∏

j
∏

i
∏

Sequences	 Tokens	 in	 each	 Sequence	

Skip	 Length	

P(s | s ') =
exp us

Tvs '{ }
exp u

s"

T vs '{ }
s"
∑

=
exp u

s

Tvs '{ }
Z(s ')

What	 are	 benefits	 of	
Skip-‐Gram	 model?	

hVps://code.google.com/archive/p/word2vec/	

Intui?on	 of	 Skip-‐Gram	 Model	

•  “The	 dog	 jumped	 over	 the	 fence.”	
•  “My	 dog	 ate	 my	 homework.”	
•  “I	 walked	 my	 dog	 up	 to	 the	 fence.”	

•  Distribu?on	 of	 neighboring	 words	 more	 peaked	
•  Distribu?on	 of	 further	 words	 more	 diffuse	
•  Capture	 everything	 in	 a	 single	 model	

Lecture	 14:	 Embeddings	 51	

argmax
U,V

P(pi
j+k | pi

j)
k∈[−C,C]\0
∏

j
∏

i
∏

Example	 sentences	

Dimensionality	 Reduc?on	

•  What	 dimensionality	 should	 we	 choose	 U,V?	
–  E.g.,	 what	 should	 K	 be?	

	
•  K	 =	 |S|2	 implies	 we	 can	 memorize	 every	 word	 pair	 interac?on	
•  Smaller	 K	 assumes	 words	 lie	 in	 lower-‐dimensional	 space	

–  Easier	 to	 generalize	 across	 words	
•  Larger	 K	 can	 overfit	

Lecture	 14:	 Embeddings	 52	

P(s | s ') =
exp us

Tvs '{ }
exp us"

T vs '{ }
s"
∑

Example	 1	

•  vCzech	 +	 vcurrency	 ≈	 vkoruna	

Lecture	 14:	 Embeddings	 53	

NEG-15 with 10−5 subsampling HS with 10−5 subsampling
Vasco de Gama Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
Ionian Sea Ruegen Ionian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche

Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

To maximize the accuracy on the phrase analogy task, we increased the amount of the training data
by using a dataset with about 33 billion words. We used the hierarchical softmax, dimensionality
of 1000, and the entire sentence for the context. This resulted in a model that reached an accuracy
of 72%. We achieved lower accuracy 66% when we reduced the size of the training dataset to 6B
words, which suggests that the large amount of the training data is crucial.

To gain further insight into how different the representations learned by different models are, we did
inspect manually the nearest neighbours of infrequent phrases using various models. In Table 4, we
show a sample of such comparison. Consistently with the previous results, it seems that the best
representations of phrases are learned by a model with the hierarchical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representations learned by the Skip-gram model exhibit
a linear structure that makes it possible to perform precise analogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-gram representations exhibit another kind of linear
structure that makes it possible to meaningfully combine words by an element-wise addition of their
vector representations. This phenomenon is illustrated in Table 5.

The additive property of the vectors can be explained by inspecting the training objective. The word
vectors are in a linear relationship with the inputs to the softmax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sentence, the vectors can be seen as representing
the distribution of the context in which a word appears. These values are related logarithmically
to the probabilities computed by the output layer, so the sum of two word vectors is related to the
product of the two context distributions. The product works here as the AND function: words that
are assigned high probabilities by both word vectors will have high probability, and the other words
will have low probability. Thus, if “Volga River” appears frequently in the same sentence together
with the words “Russian” and “river”, the sum of these two word vectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural network based representations of words have
published their resulting models for further use and comparison: amongst the most well known au-
thors are Collobert and Weston [2], Turian et al. [17], and Mnih and Hinton [10]. We downloaded
their word vectors from the web3. Mikolov et al. [8] have already evaluated these word representa-
tions on the word analogy task, where the Skip-gram models achieved the best performance with a
huge margin.

3http://metaoptimize.com/projects/wordreprs/

7

hVp://arxiv.org/pdf/1310.4546.pdf	

Example	 2	

•  E.g.,	 vFrance	 –	 vParis	 +	 vItaly	 ≈	 vRome	

Lecture	 14:	 Embeddings	 54	

hVp://arxiv.org/pdf/1301.3781.pdf	

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Example	 3	

•  2D	 PCA	 projec?on	 of	 countries	 and	 ci?es:	

Lecture	 14:	 Embeddings	 55	

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4

hVp://arxiv.org/pdf/1310.4546.pdf	

Aside:	 Embeddings	 as	 Features	

•  Use	 the	 learned	 u	 (or	 v)	 as	 features	

•  E.g.,	 linear	 models	 for	 classifica?on:	

Lecture	 14:	 Embeddings	 56	

h(x) = sign wTφ(x)()

Can	 be	 word	 iden..es	 or	 word2vec	 representa.on!	

Training	 word2vec	

•  Train	 via	 gradient	 descent	

Lecture	 14:	 Embeddings	 57	

argmin
U,V

− logP(pi
j+k | pi

j)
k∈[−C,C]\0
∑

j
∑

i
∑

Sequences	 Tokens	 in	 each	 Sequence	

Skip	 Length	

P(s | s ') =
exp us

Tvs '{ }
exp u

s"

T vs '{ }
s"
∑

=
exp u

s

Tvs '{ }
Z(s ')

hVps://code.google.com/archive/p/word2vec/	

Denominator	 	
expensive!	

Hierarchical	 Approach	
(Probabilis?c	 Decision	 Tree)	

Lecture	 14:	 Embeddings	 58	

hVp://arxiv.org/pdf/1310.4546.pdf	

A	

B	 C	

s1	 s2	 s4	 s3	

•  Decision	 tree	 of	 paths	 	

•  Leaf	 node	 =	 word	 	

•  Choose	 each	 branch	
independently	

Hierarchical	 Approach	
(Probabilis?c	 Decision	 Tree)	

Lecture	 14:	 Embeddings	 59	

hVp://arxiv.org/pdf/1310.4546.pdf	

A	

B	 C	

s1	 s2	 s4	 s3	

P(s1 | s ') = P(B | A, s ')P(s1 | B, s ')

P(s2 | s ') = P(B | A, s ')P(s2 | B, s ')

P(s3 | s ') = P(C | A, s ')P(s3 |C, s ')

P(s4 | s ') = P(C | A, s ')P(s4 |C, s ')

Hierarchical	 Approach	
(Probabilis?c	 Decision	 Tree)	

Lecture	 14:	 Embeddings	 60	

hVp://arxiv.org/pdf/1310.4546.pdf	

A	

B	 C	

s1	 s2	 s4	 s3	

P(B | A, s) = 1
1+ exp −uBC

T vs{ }
=

1
1+ exp uCB

T vs{ }

P(C | A, s) = 1
1+ exp −uCB

T vs{ }
=

1
1+ exp uBC

T vs{ }

uBC = −uCB

Hierarchical	 Approach	
(Probabilis?c	 Decision	 Tree)	

Lecture	 14:	 Embeddings	 61	

hVp://arxiv.org/pdf/1310.4546.pdf	

A	

B	 C	

s1	 s2	 s4	 s3	

P(s1 | B, s) =
1

1+ exp −u12
T vs{ }

=
1

1+ exp u21
T vs{ }

P(s2 | B, s) =
1

1+ exp −u21
T vs{ }

=
1

1+ exp u12
T vs{ }

u12 = −u21

Hierarchical	 Approach	
(Probabilis?c	 Decision	 Tree)	

•  Compact	 formula:	

Lecture	 14:	 Embeddings	 62	

A	

B	 C	

s1	 s2	 s4	 s3	

P(s | s ') = P(nm,s | nm−1,s, s)
m
∏

Levels	 in	 tree	

Internal	 node	 at	 level	 m	
on	 path	 to	 leaf	 node	 s	

Training	 Hierarchical	 Approach	

•  Train	 via	 gradient	 descent	 (same	 as	 before!)	

Lecture	 14:	 Embeddings	 63	

argmin
U,V

− logP(pi
j+k | pi

j)
k∈[−C,C]\0
∑

j
∑

i
∑

Sequences	 Tokens	 in	 each	 Sequence	

Skip	 Length	

hVps://code.google.com/archive/p/word2vec/	

Complexity	
=	 O(log2(|S|))!	

P(s | s ') = P(nm,s | nm−1,s, s)
m
∏

Summary:	 Hierarchical	 Approach	

•  Each	 word	 has	 s	 corresponds	 to:	
–  One	 vs	
–  Log2(|S|)	 u’s!	

•  Target	 factors	 u’s	 are	 shared	 across	 words	
–  Total	 number	 of	 U	 is	 s?ll	 O(|S|)	

•  Previous	 use	 cases	 unchanged	
–  They	 all	 used	 vs	
–  Vector	 subtrac?on,	 use	 as	 features	 for	 CRF,	 etc.	

Lecture	 14:	 Embeddings	 64	

Hierarchical)Approach)
(Probabilis1c)Decision)Tree))

•  Compact)formula:)

Lecture)14:)Embeddings) 62)

A)

B) C)

s1) s2) s4)s3)

P(s | s ') = P(nm,s | nm−1,s, s)
m
∏

Levels)in)tree)

Internal)node)at)level)m)
on)path)to)leaf)node)s)

Recap:	 Embeddings	

•  Given:	 Training	 Data	
–  Care	 about	 some	 property	 of	 training	 data	

•  Markov	 Chain	
•  Skip-‐Gram	

•  Goal:	 learn	 low	 dim	 representa?on	 	
–  “Embedding”	
–  Geometry	 of	 embedding	 captures	 property	 of	 interest	

•  Either	 by	 distance	 or	 by	 inner-‐product	

Lecture	 14:	 Embeddings	 65	

Visualiza?on	 Seman?cs	

Lecture	 14:	 Embeddings	 66	

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

This reduces the complexity of a gradient step to O(|Ci|).
The key problem lies in identifying a suitable candidate set
Ci for each si. Clearly, each Ci should include at least most
of the likely successors of si, which lead us to the following
landmark heuristic.

We randomly pick a certain number (typically 50) of songs
and call them landmarks, and assign each song to the near-
est landmark. We also need to specify a threshold r 2 [0, 1].
Then for each si, its direct successors observed in the train-
ing set are first added to the subset Cr

i , because these songs
are always needed to compute the local log-likelihood. We
keep adding songs from nearby landmarks to the subset, un-
til ratio r of the total songs has been included. This defines
the final subset Cr

i . By adopting this heuristic, the gradients
of the local log-likelihood become

@l(sa,sb)
@U(sp)

=1[a=p]2

2

4��!
�2(sa,sb)+

P
sl2Cr

p
e��2(sa,sl)

2�!
�2(sa,sl)

Zr(sa)

3

5

@l(sa,sb)
@V (sq)

=1[b=q]2
�!
�2(sa, sb)� 2

e��2(sa,sq)
2�!
�2(sa, sq)

Zr(sa)
,

where Zr(sa) is the partition function restricted to Cr
a , namelyP

sl2Cr
a
e��2(sa,sl)

2
. Empirically, we update the landmarks

every 10 iterations1, and fix them after 100 iterations to
ensure convergence.

5.3 Implementation
We implemented our methods in C. The code is available

online at http://lme.joachims.org.

6. EXPERIMENTS
In the following experiments we will analyze the LME in

comparison to n-gram baselines, explore the e↵ect of the
popularity term and regularization, and assess the compu-
tational e�ciency of the method.

To collect a dataset of playlists for our empirical eval-
uation, we crawled Yes.com during the period from Dec.
2010 to May 2011. Yes.com is a website that provides radio
playlists of hundreds of stations in the United States. By
using the web based API2, one can retrieve the playlists of
the last 7 days for any station specified by its genre. With-
out taking any preference, we collect as much data as we can
by specifying all the possible genres. We then generated two
datasets, which we refer to as yes small and yes big . In the
small dataset, we removed the songs with less than 20, in the
large dataset we only removed songs with less than 5 appear-
ances. The smaller one is composed of 3, 168 unique songs.
It is then divided into into a training set with 134, 431 tran-
sitions and a test set with 1, 191, 279 transitions. The larger
one contains 9, 775 songs, a training set with 172, 510 transi-
tions and a test set with 1, 602, 079 transitions. The datasets
are available for download at http://lme.joachims.org.

Unless noted otherwise, experiments use the following
setup. Any model (either the LME or the baseline model)
is first trained on the training set and then tested on
the test set. We evaluate test performance using the
average log-likelihood as our metric. It is defined as
log(Pr(Dtest))/Ntest, where Ntest is the number of transi-
tions in test set. One should note that the division of train-

1A iteration means a full pass on the training dataset.
2
http://api.yes.com

-4 -3 -2 -1 0 1 2 3 4 5

-2.2

-1.2

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

Garth Brooks

Bob Marley

The Rolling Stones

Michael Jackson

Lady Gaga

Metallica

T.I.

All

Figure 3: Visual representation of an embedding
in two dimensions with songs from selected artists
highlighted

ing and test set is done so that each song appears at least
once in the training set. This was done to exclude the case
of encountering a new song when doing testing, which any
method would need to treat as a special case and impute
some probability estimate.

6.1 What do embeddings look like?
We start with giving a qualitative impression of the em-

beddings that our method produces. Figure 3 shows the two-
dimensional single-point embedding of the yes small dataset.
Songs from a few well-known artists are highlighted to pro-
vide reference points in the embedding space.
First, it is interesting to note that songs by the same artist

cluster tightly, even though our model has no direct knowl-
edge of which artist performed a song. Second, logical con-
nections among di↵erent genres are well-represented in the
space. For example, consider the positions of songs from
Michael Jackson, T.I., and Lady Gaga. Pop songs from
Michael Jackson could easily transition to the more elec-
tronic and dance pop style of Lady Gaga. Lady Gaga’s
songs, in turn, could make good transitions to some of the
more dance-oriented songs (mainly collaborations with other
artists) of the rap artist T.I., which could easily form a gate-
way to other hip hop artists.
While the visualization provides interesting qualitative in-

sights, we now provide a quantitative evaluation of model
quality based on predictive power.

6.2 How does the LME compare to n-gram
models?

We first compare our models against baseline methods
from Natural Language Processing. We consider the follow-
ing models.
Uniform Model. The choices of any song are equally

likely, with the same probability of 1/|S|.

Inner-‐Product	 Embeddings	
Similarity	 measured	 via	 dot	 product	
Rota?onal	 seman?cs	
Can	 interpret	 axes	
Can	 only	 visualize	 2	 axes	 at	 a	 ?me	

Distance-‐Based	 Embedding	
Similarity	 measured	 via	 distance	
Clustering/locality	 seman?cs	
Cannot	 interpret	 axes	
Can	 visualize	 many	 clusters	 simultaneously	

Next	 Week	

•  Recent	 Applica?ons	 Lectures	

•  Latent	 Factor	 Models	

•  Deep	 Genera?ve	 Models	

Lecture	 14:	 Embeddings	 67	

