

Machine Learning & Data Mining CS/CNS/EE 155

Past Two Lectures

- Dimensionality Reduction
- Clustering

• Latent Factor Models

- Learn low-dimensional representation of data

This Lecture

• Embeddings

- Generalization of Latent-Factor Models

- Warm-up: Locally-Linear Embeddings
- Probabilistic Sequence Embeddings
 - Playlist embeddings
 - Word embeddings

Embedding

• Learn a representation U

- Each column u corresponds to data point

• Semantics encoded via d(u,u')

Distance between points

$$d(u,u') = \left\|u - u'\right\|^2$$

Similarity between points

$$d(u,u') = u^T u'$$

Generalizes Latent-Factor Models

• Given:
$$S = \{x_i\}_{i=1}^N$$

Unsupervised Learning

- Learn U such that local linearity is preserved
 - Lower dimensional than x
 - "Manifold Learning"

Any neighborhood looks like a linear plane

x's

u's

https://www.cs.nyu.edu/~roweis/lle/

Approach

• Define relationship of each x to its neighbors

• Find a lower dimensional u that preserves relationship

• Create B(i)

$$S = \left\{ x_i \right\}_{i=1}^N$$

- B nearest neighbors of x_i
- Assumption: B(i) is approximately linear
- $-x_i$ can be written as a convex combination of x_i in B(i)

$$x_i \approx \sum_{j \in B(i)} W_{ij} x_j$$
$$\sum_{j \in B(i)} W_{ij} = 1$$

https://www.cs.nyu.edu/~roweis/lle/

Given Neighbors B(i), solve local linear approximation W:

$$\underset{W}{\operatorname{argmin}} \sum_{i} \left\| x_{i} - \sum_{j \in B(i)} W_{ij} x_{j} \right\|^{2}$$

 $\sum_{j \in B(i)} W_{ij} = 1$

$$\begin{split} x_{i} - \sum_{j \in B(i)} W_{ij} x_{j} \Big\|^{2} &= \left\| \sum_{j \in B(i)} W_{ij} (x_{i} - x_{j}) \right\|^{2} \\ &= \left(\sum_{j \in B(i)} W_{ij} (x_{i} - x_{j}) \right)^{T} \left(\sum_{j \in B(i)} W_{ij} (x_{i} - x_{j}) \right) \\ &= \sum_{j \in B(i)} \sum_{k \in B(i)} W_{ij} W_{ik} C_{jk}^{i} \\ &= W_{i,*}^{T} C^{i} W_{i,*} \end{split}$$

https://www.cs.nyu.edu/~roweis/lle/

Given Neighbors B(i), solve local linear approximation W:

$$\underset{W}{\operatorname{argmin}} \sum_{i} \left\| x_{i} - \sum_{j \in B(i)} W_{ij} x_{j} \right\|^{2} = \underset{W}{\operatorname{argmin}} \sum_{i} W_{i,*}^{T} C^{i} W_{i,*}$$

$$\sum_{j \in B(i)} W_{ij} = 1$$

$$C_{jk}^{i} = (x_{i} - x_{j})^{T} (x_{i} - x_{k})$$

- Every x_i is approximated as a convex combination of neighbors
 - How to solve?

Lagrange Multipliers

http://en.wikipedia.org/wiki/Lagrange_multiplier 10

Solving Locally Linear Approximation

Lagrangian:

$$L(W,\lambda) = \sum_{i} \left(W_{i,*}^{T} C^{i} W_{i,*} - \lambda_{i} \left(\vec{1}^{T} W_{i,*} - 1 \right) \right) \qquad \sum_{j} W_{ij} = \vec{1}^{T} W_{i,*}$$

$$\partial_{W_{i,*}} L(W,\lambda) = 2C^i W_{i,*} - \lambda_i \vec{1}$$

Locally Linear Approximation

• Invariant to:

- Rotation
$$Ax_i \approx \sum_{j \in B(i)} AW_{ij}x_j$$

$$x_i \approx \sum_{j \in B(i)} W_{ij} x_j$$
$$\sum_{j \in B(i)} W_{ij} = 1$$

-Scaling
$$5x_i \approx \sum_{j \in B(i)} 5W_{ij}x_j$$

- Translation
$$x_i + x' \approx \sum_{j \in B(i)} W_{ij} (x_j + x')$$

Story So Far: Locally Linear Embeddings

Given Neighbors B(i), solve local linear approximation W:

$$\underset{W}{\operatorname{argmin}} \sum_{i} \left\| x_{i} - \sum_{j \in B(i)} W_{ij} x_{j} \right\|^{2} = \underset{W}{\operatorname{argmin}} \sum_{i} W_{i,*}^{T} C^{i} W_{i,*} \qquad \qquad \sum_{j \in B(i)} W_{ij} = 1$$

Solution via Lagrange Multipliers:

$$W_{ij} = \frac{\sum_{k \in B(i)} (C^{i})_{jk}^{-1}}{\sum_{l \in B(i)} \sum_{m \in B(i)} (C^{i})_{lm}^{-1}}$$

Locally Linear Approximation

https://www.cs.nyu.edu/~roweis/lle/

Lecture 14: Embeddings

 $C_{ik}^{i} = (x_{i} - x_{i})^{T} (x_{i} - x_{k})$

Recall: Locally Linear Embedding

• Given:
$$S = \{x_i\}_{i=1}^N$$

- Learn U such that local linearity is preserved
 - Lower dimensional than x
 - "Manifold Learning"

https://www.cs.nyu.edu/~roweis/lle/

Dimensionality Reduction (Learning the Embedding)

Given local approximation W, learn lower dimensional representation:

$$\underset{U}{\operatorname{argmin}} \sum_{i} \left\| u_{i} - \sum_{j \in B(i)} W_{ij} u_{j} \right\|^{2}$$

- Find low dimensional U
 - Preserves approximate local linearity

https://www.cs.nyu.edu/~roweis/lle/

Given local approximation W, learn lower dimensional representation:

$$\underset{U}{\operatorname{argmin}} \sum_{i} \left\| u_{i} - \sum_{j \in B(i)} W_{ij} u_{j} \right\|^{2}$$

$$UU^{T} = I_{K}$$
$$\sum_{i} u_{i} = \vec{0}$$

• Rewrite as:

$$\operatorname{argmin}_{U} \sum_{ij} M_{ij} \left(u_i^T u_j \right) = \operatorname{trace} \left(UMU^T u_j \right)$$
$$M_{ij} = \mathbb{1}_{[i=j]} - W_{ij} - W_{ji} + \sum_k W_{ki} W_{kj}$$
$$M = (I_N - W)^T (I_N - W)$$

Symmetric positive semidefinite

https://www.cs.nyu.edu/~roweis/lle/

Given local approximation W, learn lower dimensional representation:

$$\underset{U}{\operatorname{argmin}} \sum_{ij} M_{ij} \left(u_i^T u_j \right) = \operatorname{trace} \left(U M U^T \right) \qquad U U^T = I_K$$

$$\sum_{i} u_{i} = \vec{0}$$

 $uu^T = 1$

$$\operatorname{argmin}_{u} \sum_{ij} M_{ij} \left(u_i^T u_j \right) = \operatorname{trace} \left(u M u^T \right)$$
$$= \operatorname{argmax}_{u} \operatorname{trace} \left(u M^+ u^T \right)$$
pseudoinverse

http://en.wikipedia.org/wiki/Min-max_theorem

Recap: Principal Component Analysis

0

 $M = V \Lambda V^T$

- Each column of V is an Eigenvector ۲
- Each λ is an Eigenvalue ($\lambda_1 \ge \lambda_2 \ge ...$) •

$$M^+ = V\Lambda^+ V^T$$

$$MM^{+} = V\Lambda\Lambda^{+}V^{T} = V_{1:2}V_{1:2}^{T} = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & 0 & \\ & & & 0 \end{bmatrix}$$

$$\Lambda^{+} = \begin{bmatrix} 1/\lambda_{1} & & \\ & 1/\lambda_{2} & \\ & & 0 & \\ & & & 0 \end{bmatrix}$$

г

Given local approximation W, learn lower dimensional representation:

$$\underset{U}{\operatorname{argmin}} \sum_{ij} M_{ij} \left(u_i^T u_j \right) = \operatorname{trace} \left(U M U^T \right) \qquad U U^T = I_K$$

• K=1:

 $\sum_{i} u_{i} = \vec{0}$

- u = principal eigenvector of M⁺
- u = smallest non-trivial eigenvector of M
 - Corresponds to smallest non-zero eigenvalue

• General K

- U = top K principal eigenvectors of M⁺
- U = bottom K non-trivial eigenvectors of M
 - Corresponds to bottom K non-zero eigenvalues

https://www.cs.nyu.edu/~roweis/lle/

http://en.wikipedia.org/wiki/Min-max_theorem

Recap: Locally Linear Embedding

- Generate nearest neighbors of each x_i, B(i)
- Compute Local Linear Approximation:

$$\underset{W}{\operatorname{argmin}} \sum_{i} \left\| x_{i} - \sum_{j \in B(i)} W_{ij} x_{j} \right\|^{2} \qquad \qquad \sum_{j \in B(i)} W_{ij} = 1$$

Compute low dimensional embedding

$$\underset{U}{\operatorname{argmin}} \sum_{i} \left\| u_{i} - \sum_{j \in B(i)} W_{ij} u_{j} \right\|^{2} \qquad \qquad UU^{T} = I_{K}$$
$$\sum_{i} u_{i} = \vec{0}$$

Results for Different Neighborhoods (K=2)

https://www.cs.nyu.edu/~roweis/lle/gallery.html

Probabilistic Sequence Embeddings

Example 1: Playlist Embedding

- Users generate song playlists
 - Treat as training data
- Can we learn a probabilistic model of playlists?

Example 2: Word Embedding

- People write natural text all the time
 - Treat as training data
- Can we learn a probabilistic model of word sequences?

Probabilistic Sequence Modeling

• Training set:

$$S = \{s_1, \dots, s_{|S|}\} \qquad D = \{p_i\}_{i=1}^N \qquad p_i = \left\langle p_i^1, \dots, p_i^{N_i} \right\rangle$$

Songs, Words Playlists, Documents Sequence Definition

• Goal: Learn a Markov model of sequences:

$$P(p_i^j \mid p_i^{j-1})$$

• What is the form of P?

First Try: Probability Tables

P(s s')	s ₁	S ₂	S ₃	S ₄	S ₅	s ₆	S ₇	S _{start}
S ₁	0.01	0.03	0.01	0.11	0.04	0.04	0.01	0.05
s ₂	0.03	0.01	0.04	0.03	0.02	0.01	0.02	0.02
S ₃	0.01	0.01	0.01	0.07	0.02	0.02	0.05	0.09
s ₄	0.02	0.11	0.07	0.01	0.07	0.04	0.01	0.01
S ₅	0.04	0.01	0.02	0.17	0.01	0.01	0.10	0.02
s ₆	0.01	0.02	0.03	0.01	0.01	0.01	0.01	0.08
s ₇	0.07	0.02	0.01	0.01	0.03	0.09	0.03	0.01

First Try: Probability Tables

P(s s')	s ₁	s ₂	S ₃	S ₄	S ₅	s ₆	S ₇	S _{start}
S ₁	0.01	0.03	0.01	0.11	0.04	0.04	0.01	0.05
s ₂	0.03	0.01	0.04	0.03	0.02	0.01	0.02	0.02
S ₃	0.01	0.01	0.01	0.07	0.02	0.02	0.05	0.09
s ₄	0.02	0.11	0.07	0.01	0.07	0.04	0.01	0.01
S ₅								
s ₆								
s ₇	$#Parameters = O(S ^2)$							
	(worse for higher-order sequence models)							

Second Try: Hidden Markov Models

$$P(p_i, z) = P(End \mid z^{N_i}) \prod_{j=1}^{N_i} P(z^j \mid z^{j-1}) \prod_{j=1}^{N_j} P(p_i^j \mid z^j)$$

 $P(z^{j} | z^{j-1})$ • #Parameters = O(K²)

 $P(p_i^j | z^j)$ • #Parameters = O(|S|K)

Problem with Hidden Markov Models

$$P(p_i, z) = P(End \mid z^{N_i}) \prod_{j=1}^{N_i} P(z^j \mid z^{j-1}) \prod_{j=1}^{N_j} P(p_i^j \mid z^j)$$

Need to reliably estimate P(s|z)

$$S = \{s_1, ..., s_{|S|}\} \qquad D = \{p_i\}_{i=1}^N \qquad p_i = \langle p_i^1, ..., p_i^{N_i} \rangle$$

• Hard to do!

Outline for Sequence Modeling

- Playlist Embedding
 - Distance-based embedding
 - <u>http://www.cs.cornell.edu/people/tj/playlists/index.html</u>
- Word Embedding (word2vec) Homework Question!
 - Inner-product embedding
 - <u>https://code.google.com/archive/p/word2vec/</u>
- Compare the two approaches

Markov Embedding (Distance)

$$P(s \mid s') \propto \exp\left\{-\left\|u_s - v_{s'}\right\|^2\right\}$$

u_s: entry point of song s v_s: exit point of song s

$$P(s \mid s') = \frac{\exp\{-\|u_s - v_{s'}\|^2\}}{\sum_{s''} \exp\{-\|u_{s''} - v_{s'}\|^2\}}$$

- "Log-Radial" function
 - (my own terminology)

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

Log-Radial Functions

$$P(s \mid s') = \frac{\exp\left\{-\left\|u_{s} - v_{s'}\right\|^{2}\right\}}{\sum_{s''} \exp\left\{-\left\|u_{s''} - v_{s'}\right\|^{2}\right\}}$$

2K parameters per song 2|S|K parameters total

Each ring defines an equivalence class of transition probabilities

Learning Problem

$$S = \left\{ s_1, \dots s_{|S|} \right\}$$

$$D = \left\{ p_i \right\}_{i=1}^N$$

$$p_i = \left\langle p_i^1, \dots, p_i^{N_i} \right\rangle$$

Songs

Playlists

Playlist Definition (each p^j corresponds to a song)

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

Minimize Neg Log Likelihood

$$\underset{U,V}{\operatorname{argmax}} \prod_{i} \prod_{j} P(p_{i}^{j} \mid p_{i}^{j-1}) = \underset{U,V}{\operatorname{argmin}} \sum_{i} \sum_{j} -\log P(p_{i}^{j} \mid p_{i}^{j-1})$$

- Solve using gradient descent
 Random initialization
- Normalization constant hard to compute:
 - Approximation heuristics
 - See paper

$$P(s \mid s') = \frac{\exp\{-\|u_s - v_{s'}\|^2\}}{Z(s')}$$

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

Story so Far: Playlist Embedding

- Training set of playlists
 - Sequences of songs
- Want to build probability tables P(s|s')
 - But a lot of missing values, hard to generalize directly
 - Assume low-dimensional embedding of songs

$$P(s \mid s') = \frac{\exp\left\{-\left\|u_{s} - v_{s'}\right\|^{2}\right\}}{\sum_{s''} \exp\left\{-\left\|u_{s''} - v_{s'}\right\|^{2}\right\}} = \frac{\exp\left\{-\left\|u_{s} - v_{s'}\right\|^{2}\right\}}{Z(s')}$$

Simpler Version

• Dual point model:

$$P(s \mid s') = \frac{\exp\{-\|u_s - v_{s'}\|^2\}}{Z(s')}$$

Single point model:

$$P(s \mid s') = \frac{\exp\{-\|u_s - u_{s'}\|^2\}}{Z(s')}$$

- Transitions are symmetric
 - (almost)
- Exact same form of training problem

Visualization in 2D

Simpler version: Single Point Model

$$P(s \mid s') = \frac{\exp\{-\|u_s - u_{s'}\|^2\}}{Z(s')}$$

Single point model is easier to visualize

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

Sampling New Playlists

• Given partial playlist:

$$p = \left\langle p^1, \dots p^j \right\rangle$$

Generate next song for playlist p^{j+1}

- Sample according to:

$$P(s \mid p^{j}) = \frac{\exp\left\{-\left\|u_{s} - v_{p^{j}}\right\|^{2}\right\}}{Z(p^{j})} \qquad P(s \mid p^{j}) = \frac{\exp\left\{-\left\|u_{s} - u_{p^{j}}\right\|^{2}\right\}}{Z(p^{j})}$$

Dual Point Model

Single Point Model

http://www.cs.cornell.edu/People/tj/publications/chen_etal_12a.pdf

Demo

http://jimi.ithaca.edu/~dturnbull/research/lme/lmeDemo.html

What About New Songs?

• Suppose we've trained U:

$$P(s \mid s') = \frac{\exp\{-\|u_s - u_{s'}\|^2\}}{Z(s')}$$

- What if we add a new song s'?
 - No playlists created by users yet...
 - Only options: $u_{s'} = 0$ or $u_{s'} = random$
 - Both are terrible!
 - "Cold-start" problem

Song & Tag Embedding

- Songs are usually added with tags
 - E.g., indie rock, country
 - Treat as features or attributes of songs
- How to leverage tags to generate a reasonable embedding of new songs?
 - Learn an embedding of tags as well!

$$S = \left\{ s_1, \dots s_{|S|} \right\}$$

$$D = \left\{ p_i \right\}_{i=1}^N$$

$$p_i = \left\langle p_i^1, \dots, p_i^{N_i} \right\rangle$$

Songs

Playlists

Playlist Definition

$$T = \left\{T_1, \dots, T_{|S|}\right\}$$

Tags for Each Song

Learning Objective: $\underset{U,A}{\operatorname{argmax}} P(D | U) P(U | A, T)$

Same term as before:
$$P(D | U) = \prod_{i} P(p_i | U) = \prod_{i} \prod_{j} P(p_i^j | p_i^{j-1}, U)$$

Song embedding \approx average of tag embeddings: $P(U \mid A, T) = \prod_{s} P(u_s \mid A, T_s) \propto \prod_{s} \exp\left\{-\lambda \left\| u_s - \frac{1}{|T_s|} \sum_{t \in T_s} A_t \right\|^2\right\}$

Solve using gradient descent:

http://www.cs.cornell.edu/People/tj/publications/moore_etal_12a.pdf

Visualization in 2D

http://www.cs.cornell.edu/People/tj/publications/moore_etal_12a.pdf

Revisited: What About New Songs?

No user has s' added to playlist

- So no evidence from playlist training data:

s' does not appear in $D = \{p_i\}_{i=1}^N$

- Assume new song has been tagged ${\rm T}_{\rm s'}$

- The $u_{s'}$ = average of A_t for tags t in $T_{s'}$

Implication from objective:

 $\underset{U,A}{\operatorname{argmax}} P(D | U) P(U | A, T)$

Switching Gears: Word Embeddings

- Given a large corpus
 - Wikipedia
 - Google News

• Learn a word embedding to model sequences of words (e.g., sentences)

https://code.google.com/archive/p/word2vec/

Switching Gears: Inner Product Embeddings

• Previous: capture semantics via distance

$$P(s \mid s') = \frac{\exp\left\{-\left\|u_{s} - v_{s'}\right\|^{2}\right\}}{\sum_{s''} \exp\left\{-\left\|u_{s''} - v_{s'}\right\|^{2}\right\}}$$

• Can also capture semantics via inner product

$$P(s \mid s') = \frac{\exp\{u_{s}^{T} v_{s'}\}}{\sum_{s''} \exp\{u_{s''}^{T} v_{s'}\}}$$

Basically a latent-factor model!

Log-Linear Embeddings

$$\boldsymbol{P}(\boldsymbol{s} \mid \boldsymbol{s}') = \frac{\exp\left\{\boldsymbol{u}_{\boldsymbol{s}}^{T} \boldsymbol{v}_{\boldsymbol{s}'}\right\}}{\sum_{\boldsymbol{s}''} \exp\left\{\boldsymbol{u}_{\boldsymbol{s}''}^{T} \boldsymbol{v}_{\boldsymbol{s}'}\right\}}$$

2K parameters per song 2|S|K parameters total

Each projection level onto the green line defines an equivalence class

Learning Problem (Version 1)

$$S = \left\{ s_1, \dots s_{|S|} \right\}$$

$$D = \left\{ p_i \right\}_{i=1}^N$$

Sentences

 $p_i = \left\langle p_i^1, \dots, p_i^{N_i} \right\rangle$

Sentence Definition (Each p^j is a word)

• Learning Goal: Sequences Tokens in each Sequence $\operatorname{argmax}_{U,V} \prod_{i} P(p_{i}) = \prod_{i} \prod_{j} P(p_{i}^{j} | p_{i}^{j-1})$ $P(s | s') = \frac{\exp\{u_{s}^{T} v_{s'}\}}{\sum \exp\{u_{s''}^{T} v_{s'}\}} = \frac{\exp\{u_{s}^{T} v_{s'}\}}{Z(s')}$

Skip-Gram Model (word2vec)

Predict probability of any neighboring word

https://code.google.com/archive/p/word2vec/

Skip-Gram Model (word2vec)

• Predict probability of any neighboring word

https://code.google.com/archive/p/word2vec/

Intuition of Skip-Gram Model

- "The dog jumped over the fence."
- "My dog ate my homework."

- Example sentences
- "I walked my dog up to the fence."

$$\underset{U,V}{\operatorname{argmax}} \prod_{i} \prod_{j} \prod_{k \in [-C,C] \setminus 0} P(p_i^{j+k} \mid p_i^j)$$

- Distribution of neighboring words more peaked
- Distribution of further words more diffuse
- Capture everything in a single model

Dimensionality Reduction

- What dimensionality should we choose U,V?
 - E.g., what should K be?

$$P(s \mid s') = \frac{\exp\{u_{s}^{T}v_{s'}\}}{\sum_{s''} \exp\{u_{s''}^{T}v_{s'}\}}$$

- $K = |S|^2$ implies we can memorize every word pair interaction
- Smaller K assumes words lie in lower-dimensional space
 - Easier to generalize across words
- Larger K can overfit

Example 1

• $V_{Czech} + V_{currency} \approx V_{koruna}$

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

http://arxiv.org/pdf/1310.4546.pdf

Example 2

• E.g., $v_{\text{France}} - v_{\text{Paris}} + v_{\text{Italy}} \approx v_{\text{Rome}}$

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Example 3

• 2D PCA projection of countries and cities:

http://arxiv.org/pdf/1310.4546.pdf

Aside: Embeddings as Features

• Use the learned u (or v) as features

• E.g., linear models for classification:

$$h(x) = \operatorname{sign}\left(w^T\phi(x)\right)$$

Can be word identities or word2vec representation!

Training word2vec

• Train via gradient descent

https://code.google.com/archive/p/word2vec/

Hierarchical Approach (Probabilistic Decision Tree)

- Decision tree of paths
- Leaf node = word
- Choose each branch independently

http://arxiv.org/pdf/1310.4546.pdf

Hierarchical Approach (Probabilistic Decision Tree)

 $P(s_1 | s') = P(B | A, s')P(s_1 | B, s')$

 $P(s_2 | s') = P(B | A, s')P(s_2 | B, s')$

$$P(s_3 | s') = P(C | A, s')P(s_3 | C, s')$$

$$P(s_4 | s') = P(C | A, s')P(s_4 | C, s')$$

http://arxiv.org/pdf/1310.4546.pdf

$$P(B \mid A, s) = \frac{1}{1 + \exp\{-u_{BC}^{T}v_{s}\}} = \frac{1}{1 + \exp\{u_{CB}^{T}v_{s}\}}$$

$$P(C \mid A, s) = \frac{1}{1 + \exp\{-u_{CB}^{T}v_{s}\}} = \frac{1}{1 + \exp\{u_{BC}^{T}v_{s}\}}$$

$$u_{BC} = -u_{CB}$$

http://arxiv.org/pdf/1310.4546.pdf

$$P(s_1 | B, s) = \frac{1}{1 + \exp\{-u_{12}^T v_s\}} = \frac{1}{1 + \exp\{u_{21}^T v_s\}}$$
$$P(s_2 | B, s) = \frac{1}{1 + \exp\{-u_{21}^T v_s\}} = \frac{1}{1 + \exp\{u_{12}^T v_s\}}$$
$$u_{12} = -u_{21}$$

http://arxiv.org/pdf/1310.4546.pdf

Hierarchical Approach (Probabilistic Decision Tree)

• Compact formula:

Internal node at level m on path to leaf node s

$$P(s \mid s') = \prod_{m} P(n_{m,s} \mid n_{m-1,s}, s)$$

Levels in tree

Training Hierarchical Approach

• Train via gradient descent (same as before!)

$$P(s \mid s') = \prod_{m} P(n_{m,s} \mid n_{m-1,s}, s) \qquad \begin{array}{l} \text{Complexity} \\ = O(\log_2(|S|))! \end{array}$$

https://code.google.com/archive/p/word2vec/

Summary: Hierarchical Approach

- Each word has s corresponds to:
 - One v_s
 - $Log_2(|S|) u's!$

- Target factors u's are shared across words
 - Total number of U is still O(|S|)
- Previous use cases unchanged
 - They all used v_s
 - Vector subtraction, use as features for CRF, etc.

Recap: Embeddings

- **Given:** Training Data
 - Care about some property of training data
 - Markov Chain
 - Skip-Gram
- Goal: learn low dim representation
 - "Embedding"
 - Geometry of embedding captures property of interest
 - Either by distance or by inner-product

Visualization Semantics

Inner-Product Embeddings

Similarity measured via dot product Rotational semantics Can interpret axes Can only visualize 2 axes at a time

Similarity measured via distance Clustering/locality semantics Cannot interpret axes Can visualize many clusters simultaneously

Next Week

• Recent Applications Lectures

Latent Factor Models

• Deep Generative Models