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CS/CNS/EE 155
MACHINE LEARNING & DATA MINING



recap of last lecture

logistic regression can’t handle non-linear data distributions 

X1

X2

XOR

not linearly separable
X1

X2

OR

linearly separable
X1

X2

AND

linearly separable
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recap of last lecture

let’s use non-linear features to linearize the problem!

one approach: use a set of hand-crafted non-linear transformations

X1

X2

X1, X2 ! X1, X2, X1X2

linear decision
boundary

hyperbolic decision
boundary

another approach: use a set of learned non-linear transformations

X1, X2 ! X1 ^X2, X1 _X2

¬(X1 ^X2) ^ (X1 _X2)
X1

X2

linear decision
boundary

multiple linear decision
boundaries
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recap of last lecture

‘neuron’

weights

X1

X2

X3

X4

Xp

inp
ut

 fe
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X
summation non-linearity

output feature
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recap of last lecture

‘neural network’

X

X

X

X

X

depth
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neural networks are function approximators that
can be trained to match the data’s label distribution

more parameters,
depth

more expressive,
better approximation

big picture

f(data) ~ P(label | data)
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(as long as you don’t overfit)



when is this useful?
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A: Yisong

Q: why? / how do you know?

Q: who is in this picture?

A: umm…
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observationenvironment

Yisong

pose, facial expression

jacket, collared shirt,
 jeans, watch

red chair, wood wall

lighting

laws of
nature

black
box

your
brain

black
box

inference

Yisong

pose, facial expression

jacket, collared shirt,
 jeans, watch

red chair, wood wall

lighting
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environment observation inference

Yisong

pose, facial expression

jacket, collared shirt,
 jeans, watch

red chair, wood wall

lighting

laws of
nature

your
brain

‘who is this?’

black
box

black
box

Yisong

pose, facial expression

jacket, collared shirt,
 jeans, watch

red chair, wood wall

lighting
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the mappings between properties and images are
too complicated to define manually

deep learning to the rescue!

generation
there are latent properties

that result in specific patterns
in images

Yisong

discrimination
there are patterns in images
that allow us to infer latent

properties

Yisong

two sides of the same coin
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task:
train a deep neural network to discriminate
whether or not an image contains Yisong
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data

labels

Yisong not Yisong
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X

X

X

X

X

network architecture?
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decide on an input size

smaller input:
fewer parameters
noisier patterns

larger input:
more parameters
clearer patterns

280 x 280 x 3205 x 205 x 3150 x 150 x 3

15
x
15
x
3

50 x 50
x 3

35
x

35
x
3

25
x
25
x
3 100 x 100 x 375 x 75 x 3

235,200

126,075

67,500

30,000

16,875
7,500

3,675

1,875
675
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decide on an input size

280 x 280 x 1205 x 205 x 1150 x 150 x 1

15
x
15
x
1

50 x 50
x 1

35
x

35
x
1

25
x
25
x
1

78,400

42,025

22,500

10,000

5,625
2,500

1,225

625

smaller input:
fewer parameters
noisier patterns

larger input:
more parameters
clearer patterns

100 x 100 x 175 x 75 x 1

225
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reshape the image into a vector

10,000

100 x 100 x 1

reshape

10,000

1
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what about the rest of the architecture?

10,000

X

X

X

?

how many units can we afford?

10,000 x 100 = 1 million weights 

10,000 x 1,000 = 10 million weights 

10,000 x 10,000 = 100 million weights 

10,000 x 100,000 = 1 billion weights 

how many basic patterns do we expect to find in the image?
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how many patterns can the image contain?

10,000

100 x 100 x 1

if we consider all values (1 - 256) of all 10,000 pixels, there are 25610,000  possible patterns 

this is more than the number of atoms in the known, observable universe.
in reality, the actual number will be much less 

upper bound

if we want to recognize multiple basic, low-level patterns (e.g. edges, gradients, etc.)
anywhere in the image, I estimate there will be a total of at least 10,000 of these.

the actual number may be far more

lower bound

at least 100 million weights in the first layer alone
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our approach requires a huge number of weights (parameters)

we need to re-evaluate our approach

this dramatically increases the amount of data/labels we need to collect

as well as the amount of computation required for training
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two sources for improving a model

model

data

learn

priors

data
priors

model
priors

know/suspect



22

two sources for improving a model

data

by observing data samples, we can learn about the data distribution

with this knowledge, we can more easily learn mappings
to/from the data to latent quantities of interest
(transfer learning from unsupervised features)

e.g. learn features common to fish and differences between them
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two sources for improving a model

priors
data

priors

model
priors

priors correspond to knowledge (or suspicions)
that we already have about the task

a data prior is additional relevant information about a data example

label or label distribution

p

p

example/class similarity
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two sources for improving a model

priors
data

priors

model
priors

priors correspond to knowledge (or suspicions)
that we already have about the task

a model prior is relevant information about the model/task

model class/architecture

X

X

X

X

X

activity constraints (e.g. dropout)

depth
layer sizes

non-linearities
output distribution

etc.

parameter constraints/values

weight magnitude constraints (L1/L2)

hand-crafted features

etc.

transfer learning from a similar task
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two sources for improving a model

priors
data

priors

model
priors

priors are necessary for any task
without them, we would have no way of knowing what/how to learn

priors can vary in strength
with strong priors, we don’t need data (we already know the solution)
with weak priors, we need a lot of data (we mostly learn the solution)

priors can be good or bad
good/correct priors make learning easier

bad/incorrect priors make learning more difficult or impossible
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two sources for improving a model

priors
data

priors

model
priors

our current approach to visual object recognition
relies too heavily on data

data

need to impose additional/stronger priors
to simplify learning

we’ll impose model priors to restrict the model class
for this task
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properties of images

images have a notion of locality, which operates at multiple scales:

nearby patches tend to share characteristics
and are combined in particular ways

neighboring pixels tend to be similar and vary 
in particular ways

nearby regions (of objects) tend to be found
in particular arrangements 
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properties of images

what does locality imply for our model?

more meaningful to work in image space than with reshaped vectors

image-space is more
meaningful

vector-space is less
meaningful

units should restrict their inputs to areas of nearby units in the previous layer

entire input input patch
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properties of images

objects have a notion of translation invariance

Yisong’s identity is independent of his spatial location

similar statistics apply throughout the image
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properties of images

what does translation invariance imply for our model?

the same weights should apply throughout the input

can use the same weights
to detect both edges

only need a single
vertical edge detector

to find all vertical edges

we can aggregate (pool) over a feature to detect whether or not it is present

vertical
white/black

edge

decrease the spatial size
by ‘summarizing’ the lower-level

activations

keep only a relevant summary

builds translation invariance 
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additional model priors - summary

units only take a small window of inputs

work in the image-space

weights will be shared across multiple units

pool each feature to create translation invariance
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biological inspiration

how do animals recognize visual stimuli?

Hubel & Wiesel - 1950s

recorded responses of neurons in primarily visual cortex (V1) to simple
visual stimuli

found neurons selective for bars at a specific orientation at specific locations

Hubel & Wiesel, 1959
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biological inspiration

how do animals recognize visual stimuli?

simple cells combine lower level 
features (on/off ganglion responses) 
within a receptive field to select for 

more complex features

complex cells combine responses 
from simple cells within a larger 

receptive field to develop translation 
invariance 
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biological inspiration

how do animals recognize visual stimuli?

simple visual features are combined hierarchically to select for more 
complicated visual features

Kandel et al., 2012

two main pathways:
recognition/what (ventral) pathway & location/where (dorsal) pathway
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biological inspiration

how do animals recognize visual stimuli?

areas higher in the recognition hierarchy are selective for highly specific features

Friewald et al., 2009, 2010

these areas tend to be densely interconnected
and relatively invariant to spatial location

face ‘patches’



CONVOLUTIONAL NEURAL 
NETWORKS
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(discrete) convolution
convolution is a filtering operation

convolve a filter/kernel with the input

Gaussian blur ⇤ =

edge detection ⇤ =

sharpening ⇤ =
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take the inner-product of filter weights and input patches across entire input

the output is a measure of the degree of the filter feature’s
presence at each location in the input, known as a feature map

(discrete) convolution

filter weights = 

example:

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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we can pad the input with additional values (typically zeros) around the perimeter

padding

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

this increases the output spatial size in comparison with non-padded convolutions

half (same) padding full padding

‘same’ padding maintains the input size
note that ‘valid’ padding refers to no padding

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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we can apply the kernel with a stride, only computing the output at certain integer intervals

stride

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

this decreases the output spatial size in comparison with non-strided convolutions,
where the stride is one

vertical stride = horizontal stride = 2

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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convolutions can be applied over multiple input feature maps

(discrete) convolutions

in this case, instead of being a matrix, the kernel/filter is a tensor

3 x 3 x 3 filter tensor

can handle RGB images
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aggregate (pool) over each feature map

pooling

can use different operations, e.g. max, average, etc.

pooling is performed over a window

pad and stride can also be applied

example: max pooling, 2 x 2 window, stride 2, no padding

5

0

0

0

21

1

8

3

3

4

3

2

1

4

2

5 8

2 4
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convolutional pop quiz

5 x 5 input feature map 3 x 3 filter

a 3 x 3 filter is convolved with a 5 x 5 input feature map

if we use unit strides and no padding (‘valid’), what is the output spatial size?

if we use a stride of 2 and no padding (‘valid’), what is the output spatial size?

if we use unit strides and half padding (‘same’), what is the output spatial size?

if we use a stride of 2 and half padding (‘same’), what is the output spatial size?

3 x 3

2 x 2

5 x 5

3 x 3
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fully-connected vs. convolutional
example calculation

note that the number of parameters is independent of the spatial size

convolutional layer with 64  3 x 3 filters operating on 3 input channels

64 filters x 3 x 3 x 3 + 64 biases = 1792 parameters

+ 6464 x

if the input dimension is 128 x 128 and the convolution is applied with unit strides and ‘same’ 
padding, the convolutional layer will have an output size of 64 x 128 x 128 = 1,048,576 units

to get the same number of output units from a fully-connected layer would require
(128 x 128 x 3) x 1,048,576 + 1,048,576 = 51,540,656,128 parameters

if the assumptions we made about images (locality, translation invariance) are valid, then we have 
reduced the number of parameters by a factor of over 10 million

convolutional layers allow us to trade off flexibility for an increased representation size
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image datasets

MNIST
10 classes,

60,000 images

Caltech-101
101 classes,
9,146 images

Caltech-256
256 classes,

30,607 images

PASCAL VOC
20 classes,

9,963 images

CIFAR 10
10 classes,

60,000 images

CIFAR 100
100 classes,

60,000 images



46

image datasets

ImageNet

Competition (ILSVRC) Dataset
1,000 classes,

1.2 million images

Full Dataset
21,841 classes,

14 million images

karpathy.github.io

http://karpathy.github.io
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models

LeNet - 1998

LeCun et. al, 1998
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models

AlexNet - 2012

Krizhevsky et. al, 2012
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models

VGG - 2014

Simonyan et. al, 2014
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models

GoogLeNet - 2014

Szegedy et. al, 2014

Inception Block:
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models

ResNet - 2015

He et. al, 2015
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models

Inception v4 - 2016

Szegedy et. al, 2016
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top-5 error on ILSVRC

top-5 error denotes the percentage of examples for which 
the ground truth label is not in the model’s top 5 predictions

1. television
2. radio
3. walkie talkie
4. pager
5. cell phone

correct top-5 prediction

top-5 error
(%)

15

10

5

Alex
Net

15.3

VGG

7.4

GoogL
eN

et

6.7

Res
Net

3.6

In
ce

ptio
n v4

3.08

Hum
an

5.1

Karpathy, 2014



54

number of layers
the number of layers with weights in state-of-the-art 

networks has grown

Alex
Net

7

VGG

19

GoogL
eN

et

22

Res
Net

34

this is primarily due to new tricks that have been developed 
for training deeper networks

number
of

layers

60

40

20

53

In
ce

ptio
n v4



55

number of layers
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ensembles

as a side note:
the winning entries are typically ensembles of networks

since each network likely converges to a different local minimum,
averaging their predictions helps in generalization
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data augmentation

in training these networks, people often use data augmentation
to effectively boost the number of examples in the training set

example data augmentation:

we use priors on the nature of the data to create additional examples
original image

crops rotations

left-right flip



what are these models learning?
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filter visualization

at the first layer, we can visualize the filters as RGB images

Zeiler, 2013
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filter visualization

for later layers, we can no longer visualize them directly in the 
image domain

there are three main ways in which to visualize them:

maximal images from dataset
- feed in all images from the dataset and see which images 

make the filter activate maximally

deconvolution
- run the network in reverse from an intermediate layer to try 

to convert its activation back to the image domain

optimized image
- backpropagate from a filter to the image itself to find an 

image that would make it fire maximally
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013



moving beyond object recognition
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object detection

Girshick, 2013
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object detection

He, 2015

Faster R-CNN
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object segmentation

Pinheiro, 2016
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key point estimation

Papandreou, 2017
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applications

handwriting recognition
- ATM
- note taking

pedestrian/object detection
for self-driving cars

face detection/recognition
- Facebook
- Microsoft
- Snapchat

search by image
- Google image search
- search by image for products on Amazon
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applications

fine-grained object recognition

e.g. recognizing any bird species
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applications

fine-grained object recognition

an expert birder on your phone

Merlin

recognition component developed at Caltech



77

other cool stuff

start with an input image or random noise
randomly activate filters within the network, backpropagate to the image

depending on which filters are chosen, has different interesting effects

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

it’s as though the network is dreaming, hence, deep dream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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other cool stuff

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

deep dream masterpieces

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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other cool stuff

neural style transfer

start with a ‘content image’ and a ‘style image’
backpropagate the style image’s high-level statistics to the content image

Gatys et al., 2015
Johnson et al., 2016
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other cool stuff
colorization

Iizuka et al., 2016

learn a mapping from black and white images to color images based on visual features



81

discrimination
there are patterns in images
that allow us to infer latent

properties

Yisong
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generation
there are latent properties

that result in specific patterns
in images

Yisong
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other cool stuff
generative modeling of images

Goodfellow et al., 2014
Goodfellow et al., 2016 Kingma et al., 2016

Radford et al., 2015
Volkhonskiy et al., 2017
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conclusion

open problems
- choosing network architecture
- limited reasoning abilities, just an input-output mapping
- learning from few examples
- understanding what/how these networks are learning, improving training
- etc.

convolutions are an ideal choice when working with data with 
invariances

- increases parameter efficiency through model priors 
- can also be applied to 1-D and 3-D data

convolutional neural networks have enabled rapid gains in nearly all 
areas of computer vision and other fields

- object recognition/detection/segmentation
- success depends heavily on data and hardware

many interesting new areas to explore
- work with images at multiple levels of abstraction, not just pixel level


