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recap of last lecture

logistic regression can't handle non-linear data distributions
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recap of last lecture

let's use non-linear features to linearize the problem!

one approach: use a set of hand=crafted non-linear transformations
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another approach: use a set of learned non-linear transformations
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recap of last lecture

‘neuron’
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recap of last lecture

depth
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big picture

neural networks are function approximators that
can be trained to match the data’s label distribution

f(data) ~ P(label | data)

more parameters, | MOre expressive,
depth better approximation

(as long as you don't overfit)



when is this useful?
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environment observation inference

Yisong Yisong
pose, facial expression:  laws of your — :pose, facial expression
nature brain
jacket, collared shirt, jacket, collared shirt,
. — B ——
jeans, watch jeans, watch

red chair, wood wall red chair, wood wall

lighting lighting




environment observation inference

Yisong Yisong
pose, facial expression:  laws of your — :pose, facial expression
nature brain
jacket, collared shirt, I, jacket, collared shirt,
jeans, watch box box jeans, watch

A

red chair, wood wall red chair, wood wall

ighting lighting

‘who is this?’



two sides of the same coin

-

generation \

there are latent properties
that result in specific patterns

In Images

K discrimination w
there are patterns in images

that allow us to infer latent
broperties

> Yisong

the mappings between properties and images are
too complicated to define manually

deep learning to the rescue!




task:
train a deep neural network to discriminate
whether or not an image contains Yisong



data

not Yisong

Yisong

labels
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network architecture?!




decide on an Input size

larger input:
Q more parameters

clearer patterns (j
525 35
X X
5 25 35
X 50 x50

75x75%x3 100x 100 x 3 150 x 150 x 3

3 205 x 205 x 3 280 x 280 x 3

SLOB w x
s28°l I o < 12 x 2

W p

-

6,875

smaller input: ‘
126,075
O fewer parameters

noisier patterns € )

235,200



decide on an Input size

larger input:
C) more parameters
clearer patterns (3

150 x 150 x | 205 x 205 x | 280 x 280 x |

, sSmaller input:
() fewer parameters
noisier patterns € )

42,025




reshape the image into a vector
|

100 x 100 x |

reshape

 ————————

10,000




what about the rest of the architecture!?

how many units can we dfford?

10,000 x 100 = | million weights

10,000 x 1,000 = 10 million weights

10,000 x 10,000 = 100 million weights
10,000 x 100,000 = | billion weights

how many basic patterns do we expect to find in the image’

|8



how many patterns can the image contain?

100 x 100 x |

upper bound

if we consider all values (| - 256) of all 10,000 pixels, there are 2569990 possible patterns
this Is more than the number of atoms in the known, observable universe.

in reality, the actual number will be much less

lower bound

it we want to recognize multiple basic, low-level patterns (e.g. edges, gradients, etc.)
anywhere in the image, | estimate there will be a total of at least 10,000 of these.

the actual number may be far more

> at least 100 million weights in the first layer alone

19



our approach requires a huge number of weights (parameters)

this dramatically increases the amount of datal/labels we need to collect

as well as the amount of computation required for training

we need to re-evaluate our approach

20



two sources for improving a model

learn know/suspect

2|



two sources for improving a model

e.g. learn features common to fish and differences between them

with this knowledge, we can more easlily learn mappings
to/from the data to latent quantities of interest

(transfer learning from unsupervised features)
i



two sources for improving a model

priors

data
priors

model
priors

priors correspond to knowledge (or suspicions)
that we already have about the task

a data prior s additional relevant information about a data example

.
.
.
I“‘
.
ws

label or label distribution example/class similarity
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two sources for improving a model

priors

data
priors

model
priors

priors correspond to knowledge (or suspicions)
that we already have about the task

a model prior is relevant information about the model/task

depth
layer sizes weight magnitude constraints (L1/L2)

non-linearities
" output distribution
2 activity constraints (e.g. dropout)
etc. etc,

transfer learning from a similar task

hand-crafted features

model class/architecture parameter constraints/values

s



two sources for improving a model

priors

data
priors

model
priors

priors are necessary for any task
without them, we would have no way of knowing what/how to learn

priors can vary in strength
with strong priors, we don't need data (we already know the solution)
with weak priors, we need a lot of data (we mostly learn the solution)

priors can be good or bad

sood/correct priors make learning easier
bad/incorrect priors make learning more difficult or impossible

25



two sources for improving a model

priors

data
priors

model
priors

our current approach to visual object recognition
relies too heavily on data

need to Impose additional/stronger priors
to simplify learning

we'll Impose model priors to restrict the model class
for this task

26



properties of Images

images have a notion of lecality, which operates at multiple scales:

neighboring pixels tend to be similar and vary
In particular ways

nearby patches tend to share characteristics
and are combined In particular ways

nearby regions (of objects) tend to be found
In particular arrangements

=S5 =
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properties of Images

what does locality imply for our model!

more meaningful to work in image space than with reshaped vectors

image-space is more
meaningful

vector-space is less
meaningful

units should restrict their inputs to

entire input input patch
28



properties of Images

objects have a notion of translation invariance

Yisong's identity Is independent of his spatial location

similar statistics apply throughout the image

i



properties of Images

what does translation invariance mply for our model!

the same weights should apply throughout the input

' can use the same weights

to detect both edges

only need a single
vertical edge detector
. to find all vertical edges

we can aggregate (pool) over a feature to detect whether or not it is present

' decrease the spatial size
by ‘summarizing’ the lower-level
vertical activations

-  white/black

l/ edge keep only a relevant summary

builds translation invariance

30



addrtional model priors - summary

work in the image-space
units only take a small window of inputs
weights will be shared across multiple units

pool each feature to create translation invariance

Gl



biological inspiration

how do animals recognize visual stimuli?

- . “wn o
- - &= -
1

Neural response (spikes/sac)

—_—
= o=

-40

-.'"c.‘l 0 0 40
Stimulus orientation (deg)

Hubel & Wiesel - [950s

recorded responses of neurons In primarily visual cortex (V1) to simple
visual stimull

found neurons selective for bars at a specific orientation at specific locations

32

Hubel & Wiesel, 1959



biological inspiration

how do animals recognize visual stimuli?

simple cells combine lower level

features (on/off ganglion responses)

within a receptive field to select for
more complex features

complex cells combine responses
from simple cells wrthin a larger
receptive field to develop translation
Invariance

B8




biological inspiration

how do animals recognize visual stimuli?

two main pathways:
recognition/what (ventral) pathway & location/where (dorsal) pathway

simple visual features are combined hierarchically to select for more
complicated visual features

34 Kandel et al., 2012



biological inspiration

how do animals recognize visual stimuli?
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areas higher in the recognition hierarchy are selective for highly specific features

these areas tend to be densely interconnected

and relatively invariant to spatial location

35 Friewald et al., 2009, 2010



CONVOLUTIONAL NEURAL
NETWORKS



(discrete) convolution

convolution is a filtering operation

convolve a filter/kernel with the input

Gaussian blur : ‘ >l< B

x
=
|

edge detection
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(discrete) convolution

example:
0 1 2
filter weights = |2 2 0
0 1 2

take the inner-product of filter weights and input patches across entire input

the output Is a measure of the degree of the filter feature’s
presence at each location in the input, known as a feature map

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

padding

half (same) padding full padding

we can pad the input with additional values (typically zeros) around the perimeter

this Increases the output spatial size in comparison with non-padded convolutions

same’ padding maintains the input size
note that valid’ padding refers to no padding

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

e



http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

stride

vertical stride = horizontal stride = 2

we can apply the kernel with a stride, only computing the output at certain integer intervals

this decreases the output spatial size iIn comparison with non-strided convolutions,
where the stride Is one

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

(discrete) convolutions

3 x 3 x 3 filter tensor

convolutions can be applied over multiple input feature maps
in this case, Instead of being a matrix, the kernel/filter is a tensor
can handle RGB images

45



pooling

example: max pooling, 2 x 2 window, stride 2, no padding

agoregate (pool) over each feature map

pooling Is performed over a window

pbad and stride can also be applied
can use different operations, e.g. max, average, etc.

20



convolutional pop quiz

5 X 5 Input feature map 3 x 3 filter

a 3 x 3 filter is convolved with a 5 x 5 input feature map

if we use unit strides and no padding (‘valid’), what Is the output spatial size!

T we use a stride of 2 and no padding (‘valid), what Is the output spatial size?
it we use unit strides and half padding (‘same’), what is the output spatial size?

if we use a stride of 2 and half padding ('same’), what Is the output spatial size?

45

3 X% 3

2 X2

5x5
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fully-connected vs. convolutional

example calculation

convolutional layer with 64 3 x 3 filters operating on 3 input channels

- -~

64 x + 64

——
,/ /I

—> 64 filters x 3 x 3 x 3 + 64 biases = | /92 parameters

note that the number of parameters is independent of the spatial size

it the Input dimension is 128 x |28 and the convolution is applied with unit strides and ‘same’
padding, the convolutional layer will have an output size of 64 x 128 x 128 = 1,048,576 units

to get the same number of output units from a fully=connected layer would require
(128 x 128 x 3) x 1,048,576 + 1,048,576 = 51,540,656,128 parameters

if the assumptions we made about images (locality, translation invariance) are valid, then we have
reduced the number of parameters by a factor of over [0 million

convolutional layers allow us to trade off flexibility for an increased representation size

44
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MNIST

| O classes,
60,000 images

PASCAL VOC
20 classes,
9,963 images

image datasets

10| classes,
9,146 images
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60,000 images
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Caltech-256

256 classes,
30,607 images
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CIFAR 100
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60,000 images




image datasets
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ImageNet

Competition (ILSVRC) Dataset Full Dataset
1,000 classes, 21,841 classes,

|.2 million images |4 million images

karpathy.github.io
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http://karpathy.github.io

models

C3: f. maps 16@10x10
S4: f. maps 16@5x5

rr CS layer F6 layer OUTPUT
'T‘ \ \\
I

Full conAchon Gaussuan connections
Convolutions Subsampling Convolutions Subsamphng Full oonnecnon

LeNet - 1998

C1: feature maps
INPU2T 6@28x28

S2:f. maps
6@14x14

LeCun et. al, 1998
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models
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models
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models
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Szegedy et. al, 2014
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models
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ResNet - 2015

He et. al, 2015
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Convolution
AvgPool
MaxPool
Concat

@0 Dropeut

a0 Fully connected

® Sofltmax

models

Inception v4 - 2016

5k

Szegedy et. al, 2016



top-5 error on ILSVRC

top-5 error denotes the percentage of examples for which
the ground truth label is not In the model's top 5 predictions

television

radio T
walkie talkie ——Pp  correct top-5 prediction
pager

. cell phone

o1 W —

15.3
IS5
top-5 error
(%) T 4 6.7
L 5.1
3.6 308
4>
e ¢ eV ol o
o o° <& & \
0 3 \o Karpathy, 2014



number of layers

the number of layers with weights in state-of-the-art

networks has grown

this i1s primarily due to new tricks that have been developed

for training deeper networks

53

34
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number of layers

1 WAS WINNING
IMAGENET

UNTILA
DEEPER MODEL
GCAME ALONG

55




ensembles

as a side note:
the winning entries are typically ensembles of networks

since each network likely converges to a different local minimum,
averaging their predictions helps in generalization




data augmentation

in training these networks, people often use data augmentation
to effectively boost the number of examples in the training set

we use priors on the nature of the data to create additional examples

original image

example data augmentation:

rotations

S



what are these models learning?

58



filter visualization

at the first layer, we can visualize the filters as RGB images

Zeiler; 2013

5%



filter visualization

for later layers, we can no longer visualize them directly in the
image domain

there are three main ways in which to visualize them:

maximal images from dataset
- feed in all iImages from the dataset and see which images
make the filter activate maximally

deconvolution
- run the network In reverse from an intermediate layer to try
to convert its activation back to the image domain

optimized image

- backpropagate from a filter to the image rtself to find an
image that would make 1t fire maximally

60



filter visualization
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filter visualization

Zeiler; 2013




filter visualization
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filter visualization

Zeiler; 2013




filter visualization

Zeiler; 2013
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filter visualization

Zeiler; 2013




filter visualization
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filter visualization

Zeiler; 2013




moving beyond object recognition
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object detection

R-CNN: Regions with CNN features

. warped reglon ﬂlaeroplaue? 10,
-8 4 :
‘. Aﬁ . %\%i-b pcrson'.? yes.
________________ NNN =
| 4 tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Girshick, 2013
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object detection

Faster R-CNN

classificr

L p
cony lavers /
| -&x{___;’_zz:;

He, 2015
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object segmentation
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key point estimation

Heatmap

*| CNN

Fused activation
maps

Papandreou, 2017
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pedestrian/object detection
for self-driving cars

face detection/recognition
- Facebook
- Microsoft
- Snapchat

search by image

- Google image search
- search by image for products on Amazon GO gle

74



applications

fine-grained object recognition

e.g. recognizing any bird species

s



applications
fine-grained object recognition

an expert birder on your phone

Merlin

recognition component developed at Caltech
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other cool stuff

start with an input image or random noise

randomly activate filters within the network, backpropagate to the image
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depending on which filters are chosen, has different interesting effects

it's as though the network is dreaming, hence, deep dream



https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

other cool stuff

deep dream masterpieces
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

other cool stuff

neural style transfer
start with a ‘content image’ and a ‘style image’

backpropagate the style image’s high-level statistics to the content image

Gatys et al., 2015
Johnson et al., 201¢




other cool stuff

colorization
learn a mapping from black and white images to color images based on visual features

JrpeTe Luminance
(Inrut image)
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(¢) Miner, Sep. 1937 (d) Scot’s Run, Mar, 1937
lizuka et al., 2016

(b) Burns Bascient, May 1910
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K discrimination x
there are patterns in images

that allow us to infer latent
broperties

> Yisong

8|




K generation x

there are latent properties
that result in specific patterns
In Images

Yisong >

82



other cool stuff

generative modeling of images

PR anmke
@5 by

Goodfellow et al., 2016

Goodfellow et al., 2014

Radford et al., 2015

man man woman
with glasses without glasses without glazses

woman with g asses
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conclusion

convolutions are an ideal choice when working with data with

invariances

- Increases parameter efficiency through model priors
can also be applied to |-D and 3-D data

convolutional neural networks have enabled rapid gains in nearly all

areas of computer vision and other fields

object recognition/detection/segmentation
success depends heavily on data and hardware

many Interesting new areas to explore
work with images at multiple levels of abstraction, not just pixel level

open problems

choosing network architecture

imrted reasoning abilities, just an Input-output mapping
learning from few examples

understanding what/how these networks are learning, improving training
etc.
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